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ABSTRACT

Recalling past cases and their associated diagnoses to apply o a current fault situation
is often an important step in the diagnostic process. In this thesis, a model for fault
diagnosis in telephone networks has been developed, along with a prototype that
implements the model using case-based reasoning. The prototype, called TETAA
(TElephone Trouble Analyst's Assistant), aids in analysis and diagnosis of
telecommunications faults by retrieving and presenting past fault cases and their
diagnostic information. The diagnostic categorization model serves as an analytical tool
to aid in fault reduction. The TETAA prototype was evaluated over a two month period
at a New Brunswick Telephone Company (NBTel) repair center to.‘determine its
performance and potential in diagnosing and reducing network faults. The prototype
demonstrated that case-based reasoning is applicable to fault diagnosis for a large

telecommunications network and demonstrates potential for aiding in fault reduction.
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1. INTRODUCTION

1.1 Overview of Case-Based Reasoning
1.1.} Knowledge-Based Systems
Artificial intelligence can be defined as the branch of computer science that is

concerned with the automation of intelligent behavior [Luger and Stubblefield, 1989].

The problem with this statement is that if implies that computer scientists currently

understand and can define the process of human intelligence well enough to automate it.

Instead, research in artificial intelligence serves as a tool for exploring and evaluating

theories about the mysteries of intelligence. Knowledge-based systems comprise one of

the more prominent areas of this research.

Knowledge-based systems, or expert systems, focus on knowledge in a specified
problem domain that is represented symbolically, and perform very specialized and
difficult tasks at expert levels of performance. In recent years, these types of systems
have become one of the hottest topics in computer science and artificial intelligence, and
have been implemented in a broad range of problem domains from medical diagnosis to
mineral exploration, to telecommunications [Leibowitz, 1988].

An integral component of any knowledge based system is the domain specific
knowledge that it utilizes for problem solving, or, in other words, the knowledge-base

_ itself. The knowledge base can appear in two different forms, with the first and most
common being a set of domain specific rules that emulate the knowledge of an expert in
an area, allowing the knowledge-based system to solve problems in that domain with
competence often comparable to an expert. The second knowledge base representation,
and the focus of this work, is a set of domain specific examples with known solutions,

called a case-base, with an associated reasoning process called case-based reasoning.




1.1.2 Rule-Based Reasoning

The traditional approach to implementing a knowledge-based system is through the
use of rule-based reasoning (RBR). The premise behind rule-based reasoning is that the
knowledge of an expert can be represented by a set of rules. This idea was first
encountered in Newell and Simon’s pioneering work on the General Problem Solver
(GPS) [Newell and Simon, 1972], one of the first artificially intelligent programs, and
was implemented at Stanford University in the DENDRAL project, a mass spectrometer
analyzer, and one of the first rule-based expert systems [Riesbeck and Schank, 1989].

The rule-based reasoning model is made up of three basic components: available
information about the current state of the problem domain (i.e. fact base), the rule-base,
which represents domain specific, expert level operational knovﬂedge, and the inference
engine or rule interpreter that combines the current state of the domain and the actions
inferred by the rule-base to traverse the reasoning chain to reach decisions and
conclusions.

The rules of most rule-based systems can be represented by production rules of the
following form:

IF <some conditions are met>

THEN <some actions are taken>

The “IF” clause of the rule, referred to as the left hand side (ILHS), specifies certain
conditions that, when met, will cause the rule to “fire”, triggering the actions specified in
the “THEN” clause or right hand side (RHS).

The use of rules to represent knowledge is undoubtedly the most popular approach
to knowledge representation today. Rules are a natural and intuitive mode of representing
many types of domain knowledge [e.g. Ignizio, 1991]. As well, the additivity property
[Riesbeck and Schank, 1989], or the characteristic of adding or modifying knowledge
through the addition or modification of rules in the knowledge base, allows relatively

easy maintenance of rule-based expert systems.




There are two approaches that can be used to implement rules-based reasoning,
each of which perform better in certain problem domains. These approaches are forward
chaining and backward chaining.
1.1.2.1 Forward Chaining

Forward chaining is often referred to as data driven reasoning. The reasoner
constructs a chain of inferences from an initial set of facts (i.e. data) to a final conclusion.
This type of chaining is most eftective in interpretation or data analysis problem domains
which give all or most of the data in the initial problem statement [Luger and
Stubblefield, 1989].
1.1.2.2 Backward Chaining

Backward chaining is often referred to as goal driven reaSom'ng. In this case the
reasoner, starts with a hypothesis (or goal) that can solve the problem, finds the rules that
can produce the hypothesis, and chains backward through successive rules and subgoals
to the given facts of the problem. This type of chaining is most effective in problem
domains where a goal or hypothesis is given in the problem [Luger and Stubblefield,
1989]. The domain of diagnosis, which is examined in this thesis, is best implemented
using backward chaining by considering potential diagnoses in a systematic fashion.
1.1.2.3 Combining Forward and Backward Chaining

A forward chainer can conduct backward chaining by forward chaining from goals.
The goal 1s asserted to describe a fact that is needed to match the LHS of the rule (i.e. a
fact about a fact). The goal is generally the first clause in the LHS of a backward
chaining rule. A match between a goal and the LHS of a rule causes the backward
chaining rule to be fired, generally asserting a fact that satisfies the goal fact. This new
fact will instantiate the original goal. This process is referred to as the “Message and

Reply Model” [Inference Corporation, 1991].



1.1.3 Case-Based Reasoning
1.1.3.1 What is Case-Based Reasoning?

Case-based reasoning is the technique of comparing a current case to a library of
similar experiences with known solutions. It is particularly useful in tasks where a formal
set of domain-specific rules for generating solutions are difficult to obtain, but examples
of correct solutions are readily available [Riesbeck and Schank, 1989].

At its simplest, case-based reasoning is based on the premise that when we solve a
problem we often base our solution on one that worked for a similar problem in the past.
An example would be driving to work. When you get in the car in the morning you don't
intentionally plan your route, vou take the route you usually take. If you meet a traffic
jam you may remember how you avoided a similar jam in the pést. If you take an
alternate route to avoid a jam and it solves the problem, you will remember it and use it
again in similar circumstances in the future.

Case-based reasoning is a relatively simple problem solving process that involves
matching your current problem against problems that you have solved successfully in the
past. The process can be broadened by adapting solutions so they more closely match the
current problem.
1.1.3.2 The Development of Case-Based Reasoning

The roots of case-based reasoning in artificial intelligence is found in the work of
Roger Schank on dynamic memory and the central role that a reminding of earlier
situations or cases, and situation patterns (scripts, MOPs) has in problem solving and
learning [Schank, 1982].

The first system that might be called a case-based reasoner was the CYRUS
system, developed by Janet Kolodner [Kolodner, 1983], at Yale University in a group
headed by Schank. CYRUS was based on Schank's dynamic memory model and MOP
theory of problem solving and Iearning [Schank, 1982]. It was basically a question-

answering system with knowledge of the various travels and meetings of former US




Secretary of State Cyrus Vance. The case memory model developed for this system has
later served as the basis for several other case-based reasoning systems (including
MEDIATOR [Simpson, 1985], PERSUADER [Sycara, 1988], CHEF [Hammond, 1989],
JULIA fHinrichs, 1992}, and CASEY [Koton, 1989]).

Another basis for case-based reasoning, was developed by Bruce Porter and his
group [Porter, 1986] at the University of Texas. Their research on the problem of concept
learning for classification tasks eventually lead to the development of the PROTOS
system [Bareiss, 1989], whose emphasis was on integrating domain knowledge and
specific case knowledge into a single knowledge base. The combination of cases with
domain knowledge was pushed further in GREBE [Branting, 1991], an application in the
domain of law. Another early significant contribution to case-based reasoning was the
work by Edwina Rissland and her group at the University of Massachusetts, Amhearst,
With several law scientists in the group, they were interested in the role of precedence
reasoning in legal judgments [Rissland, 1983]. In this system, cases were not used to

produce a single answer, but to interpret a situation in court, and to produce and assess

arguments for both parties. This resulted in the HYPO system [Ashley, 1990], and later
the combined case-based and rule-based system CABARET [Skalak, 1992]. Phyllis

Koton at MIT studied the use of case-based reasoning to optimize performance in an

existing knowledge based system, where the domain (heart failure) was described by a
causal model. This resulted in the CASEY system [Koton, 1989], in which case-based
reasoning was combined with deep model-based reasoning which describes the actual
behavior of the modelled system.

In Europe, research on case-based reasoning began to develop a little later than in
North America. One of the earliest results was the work on case-based reasoning for

complex technical diagnosis within the MOLTKE system, done by Michael Richter

together with Klaus Dieter Althoff and others at the University of Kaiserslautern [Althoff,

1989]. This lead to the PATDEX system [Richter, 1991], with Stefan Wess as the main




developer. At IHA in Blanes, Enric Plaza and Ramon Lopez de Mantaras developed a
case-based learning apprentice system for medical diagnosis [Plaza, 1990}, and Beatrice
Lopez researched the use of case-based methods for strategy-level reasoning [Lopez,
1990]. In Aberdeen, Derek Sleeman's group studied the use of cases for knowledge base
refinement. An early result was the REFINER system, developed by Sunil Sharma
[Sharma, 1988]. Another result is the [IULIAN system for theory revision [Oehimann-
92]. At the University of Trondheim, Agnar Aamodt and colleagues at Sintef studied the
learning aspect of case-based reasoning in knowledge acquisition. Research on
combining domain knowledge and cases lead to the development of the CREEK system
and integration framework [Aamodt, 1991], and to continued work on knowledge-
intensive case-based reasoning. In the area of cognitive science; garly work was done on
analbgicai reasoning by Mark Keane, at Trinity College, Dublin, [Keane, 1988]. Keane
used analogical reasoning as a form of case-based reasoning to derive implications, or
form analogies, from cases with missing data and incomplete specification of parameters.
In Gerhard Strube's group at the University of Freiburg, the role of knowledge
representing events over a period of time in the form of episodes for knowledge
aquisition or cognitive models was investigated in the EVENTS project [Strube, 1990],
which lead to the group's current research profile of cognitive science and case-based
reasoning.

Currently, research on case-based reasoning research is becoming more prominent
throughout the world. In an internet query performed in the process of researching this
subject, over one hundred recently published papers on case-based reasoning or related
topics were found. As well, several highly regarded conferences that focus on case-based
reasoning in both national and international forums have been established. For example
the American Association for Artificial Intelligence(AAAI) has sponsored a series of

case-based reasoning workshops at its annual conference, and a new international




conference, The International Conference on Case-Based Reasoning, held for the first
time in 1995, has been orgamzed.

Case-based reasoning has also begun to achieve recognition in commercial fields.
Research has spawned several commercial implementations of case-based reasoning from
different companies and numerous software firms are developing and shipping
commercial case-based reasoning products worldwide. In the customer support and
service market, all of the top eight suppliers offer case-based reasoning problem
identification and resolution technology along with their problem management and call
tracking products.

In total, case-based reasoning has now been licensed and is in use by hundreds of
corporations and hundred of thousands of users worldwide. It has been implemented in
over a dozen different languages, proving its adaptability, and has been successfully
implemented in a host of commercial applications [Tierney, 1995].
1.1.3.3 Why the Interest?

As has been previously described (see section 1.1.3.2), much interest in the field of
case-based reasoning exists, and continues to grow. The reason for this expanding
research is the potential that case-based reasoning shows in helping to understand human
intelligence and how human experts reason which is the main objective of research in
artificial intelligence,

Case based-reasoning has been proposed by its promoters to be a more
psychologically sound model of the reasoning of an expert than the more common rule-
based reasoning that is the basis of most knowledge-based systems in existence
today[Riesbeck and Schank, 1989]. The purpose of a knowledge-based system is to
effectively model the knowledge of an expert in a given area. Therefore, when
determining the effectiveness of the two reasoning approaches, a question that must be
asked is whether that expert reasons using rules or by referencing previous experiences

and situations. Most experts can supply to knowledge engineers some rules that they use




to solve problems, but they will also tell you that it is their actual experience that makes
them experts. If we believe that experts reason using rules, then we must also believe that
their experience is encoded in their memories as a set of rules. Since experts will also tell
you that it is not unusual for a rule that they follow to have a number of exceptions, and
in these situations frequently fall back on the experience of previous cases that the current
case reminds them of. The implication of this process is that reminding plays an
important part in expert reasoning [Riesbeck and Schank, 1989).

Case-based reasoning is at the base of how human reasoning works. People reason
from experience. They use their own experiences if they have a relevant one, or they
make use of the experience of others to the extent that they can obtain information about
such experiences. An individual's knowledge is the collection of experiences that he has

had or that he has heard about [Riesbeck and Schank, 1989].  This discovery is the

reason for the increase in research and commercial use of case-based reasoning, and also
the reason for the success achieved.
1.1.3.4 The Case-Based Reasoning Cycle

The basic cycle of a case-based reasoner is to input a problem, find a relevant old
solution, and adapt it. Figure 1.1 explains the general case-based reasoning model put
torward by Riesbeck and Schank [Riesbeck and Schank, 1989] in more detail.

The first step in the CBR process is to determine which situations that are present

in the case base are similar to the presented case. To accomplish this, the features of the
relevant case base cases must be organized and Iabeled so that the features of the
presented case can be used to find them. Determining the relevance of a case is usually
not just a function of matching presented features with case base features, but also
involves using relationships between features, absence of features, and so on. Therefore,

the case-based reasoner must determine what features, or indices of a presented case are

relevant for finding similar cases. The “indexing problem”, as it is sometimes called, is




the probiem of determining what extra, non-obvious, non-input features are needed for a

particular domain.

Indexing
—
Rules
Input + Indices
Case . Match
Memory cirieve ' Rules
Retrieved
Adaptatiop
- Rules

Assign
Indices

Predictive
Features

Analysis

Repair
Rules

Figure 1.1 Case-Based Reasoning Cycle [from Riesbeck and Schank, 1989].

Once the indices have been finalized, the next step in the CBR process is to
determine a best match for the presented case. In doing this the case-based reasoner
must retrieve a set of cases from the case base which most closely resemble the presented
case, reject the cases that differ too much from the presented case, and determine which
of the remaining cases most resemble the presented case. In determining the similarity of
cases there are two aspects that are important: how well the cases match on each feature

or index, and how important the features or indexes are.




The adaptation step of the CBR cycle adjusts the best match case to fit the
presented situation. This involves determining what is different about the retrieved and
presented case, and modifying the solution of the retrieved case so that it is also
applicable to the presented case. The adaptation process applies usually complex rules
designed to bridge the differences between the retrieved case and the presented case. The
degree of adaptation depends on the differences between the retrieved case and the
presented case. Sometimes little or no adaptation will be needed, while at other times
there will be such a high degree of mismatch that it will be of no use to the user. In this
case, the best approach is to ask a human expert for the solution, and save this as a new
case in the case base.

1.1.4 Rule Versus Case-Based Reasoning

| When comparing rule-based reasoning and case-based reasoning, a useful starting
point is to consider the analogy given by Riesbeck and Schank [1989]. Many of the
differences between case-based reasoning and rule-based reasoning are similar to the
human problem solving of an individual with experience in resolving problems in a
specific situation, and an individual with textbook knowledge of how to solve the same
problem. The experienced individual will apply case-based reasoning, while the
individual with the textbook knowledge will apply the rules that he has learned using
rule-based reasoning,

In this situation a number of tradeoffs will occur. The individual utilizing case-
based reasoning will, based on experience, be able to give an approximate answer almost
immediately. The individual applying rule-based reasoning will reach an exact solution
after taking a much longer period of time. The case-based reasoner will only be able to
provide a solution for situations exactly like or similar to situations that he has
experienced in the past, but it will be efficient, and the solution will be known to have
worked previously. The rule-based reasoner will be flexible and provide an exact answer

but will not necessarily be efficient and will be prone to error. These characteristics
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favour the rule-based reasoner in simple problem domains, but as the probiem domain
becomes more complex, so does the rule-base and the amoumt of knowledge engineering
required. This situation characterizes one of the major problems traditionally experienced
with rule-based reasoning called the knowledge engineering bottleneck [Hayes-Roth et al,
1983]. |

Case-based knowledge engineering requires the somewhat easier task of acquiring

past cases with known solutions and identifying the relevant case features. This

characteristic has a number of advantages including allowing case-based reasoning
systems to be implemented faster than rule-based systems, as well as allowing case-based

systems to be implemented with a partial case-base. Indeed the case-base is never

complete; as new cases become available, the case-base will continue to grow. This
characteristic of case-based knowledge engineering eliminates the problem (encountered

with rules) of knowing when a knowledge base is complete. By the same token, case-

based reasoning allows for implementation in problem domains where no rule based
model is available, but past cases and sclutions are readily available

In a complex problem domain utilizing a complicated rule-base, long and involved
reasoning chain can be encountered, as the knowledge is broken into a number of separate

pieces (i.e. rules). This characteristic adds to the inefficiency that rule-based

implementations can introduce. It seems logical that knowledge would be better
represented if related items were “near” each other [Smith et al, 1978] which is the case
with case-based reasoning.

Maintenance of a rule-base is generally considered to be a straight forward process.
The addition or modification of a piece of knowledge can be easily translated to the
addition or modification of rules in the knowledge-base. This assumption is true of
simple rule-bases, but as the rule-base grows in size and complexity, maintenance can
become a complex debugging task. Case-based knowledge representation requires litile

maintenance; in fact, a case-base can maintain itself. When a search fails to locate a
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similar case, the presented case itself becomes the basis for a new case. In effect, the
case-based reasoner learns from experience and_can keep pace with a changing
environment.

Finally, a major disadvantage of rules is that they are not a good way to represent
experiences [Riesbeck and Schank, 1989]. The knowledge gained from an experience is
representable in rule form, but characteristics of an experience, such as a sequence of
events, cannot be easily represented. Case-based reasoning solves this problem by using
events to describe the knowledge represented by the rule base, as well as effectively
representing an experience.

The following case-study supports the claim that case-based reasoning systems can
be implemented faster than model-based systems. A study conducted by Cognitive
Systems stated that it took two weeks to develop a case-based version of a system that
took four months to build in rule-based form [Goodman, 1989]. More recently,
developers at Digital Equipment Corporation confirmed that a rule-based system called
CANASTA took more than eight times longer to develop than CASCADE, a case-based
system with the same functionality [Simoudis et al., 1993]. They also claim that the
maintenance of CANASTA is continual whereas CASCADE needs almost no
maintenance. Related claims are provided by Hennessy and Hinkle [1992] concerning
CLAVIER. Instances such as these may not be indicative of all comparable rule and
- case-based systems. We should also be aware that for well understood domains, rule-
based systems can be very effective and are a relatively mature and well understood

technology.

12 Overview of Fault Diagnosis in Knowledge-Based Systems
Diagnosis has been one of the major subjects of research in the Artificial
Intelligence and Knowledge-Based community since the early 1970's. Defining diagnosis

m the operational sense: "Diagnosis is the process of fault finding in a system (or
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determination of disease state in a living system) based on the interpretation of potentially.
noisy data” [Stefik et al., 1982]. The fault diagnosis problems has been addressed in
many different problem domains, from troubleshooting in electric appliances and circuits,
to diagnosis of complex mechanical or physical systems, o medical diagnosis [Torasso
and Console, 1989). |

Many diagnostic expert systems have been developed since the early 1970’s and
many problem solving approaches and inference processes have 1t\)een implemented. To
date, the most widely adopted approach to fault diagnosis has been to use production
rules for knowledge representation, form hypotheses about possible fault causes, and
evaluate these hypotheses as goals in a backward chaining system to reach a correct
diagnosis (see section 1.1.2). Starting with MYCIN {Buchanari and Shortliffe, 1984],
many other systems have been built based on this approach. This approach demonstrated
some success, but problems with knowledge engineering and maintenance gave rise to
other approaches such as causal reasoning [Torasso et al, 1989], and model-based
reasoning [Hamscher et al, 1992). Another approach to improve diagnostic performance
is the combination of various types of reasoning, such as the combining heuristic (rule-
based) reasoning and causal reasoning as in the CHECK system [Console et al, 1993].

As with many other fields of Artificial Intelligence research, case-based reasoning
has recently emerged as one of the leading approaches to diagnostic problem solving.
Some of the earliest case-based diagnostic systems were in the medical field, specifically
the area of heart failure [Koton, 1989; Aghassi, 1990]. Since then, diagnostic research in
the area of case-based reasoning has continued to evolve with the combination of case-
based reasoning and other reasoning approaches, such as model-based reasoning [Pews
and Wess, 1993; Torasso and Portinale, 1995]. This type of research has provided some
of the best results, with accurate diagnosis, but also showing major efficiency gains over

other reasoning approaches.
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1.3 The Problem

With the rapid advancement of telecommunications in recent years, a need for
better understanding the new technologies has developed. The emergence of knowledge-
based systems as an important research topic in computer science has provided a way to
effectively capture (and put to widespread use) knowledge about telecommunication
operations {Leibowitz, 1988]. Several successful examples include: the Automated Cable
Expertise system (ACE), which assists telephone company engineers in maintaining the
local loop, a switch maintenance analysis and repair tool (SMART) for diagnosis of
analog switch problems, and an expert system for screening and diagnosing telephone
troubles (MAX) [Rabinowitz et al, 1991].

The investigation of the opportunities for knowledge—baséd systems in the
telecommunications industry was undertaken in conjunction with the New Brunswick
Telephone Company Limited (NBTel). NBTel is the major supplier of
telecommunication services in the province of New Brunswick. Their primary goal is to
provide communications solutions efficiently and effectively to the expressed satisfaction’
of their customers. This thesis is a result of NBTel's interest in on-going research in
knowledge-based system applications in telecommunications, and how these applications
can benefit their business.

Maintenance of the telecommunication network is a significant problem for any
telephone company. The task of diagnosing and repairing customer-reported faults has
been made more difficult in recent years by technological advances in network
components, new kinds of customer premise equipment, and nonstandard equipment that
was not anticipated by most current diagnostic sysiems. With these technological
advancements, it has become more and more difficult for any individual, or group of
individuals, to be experts in all of the areas that troubles are typically encountered, thus

making the diagnosis process much more difficuit.
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~ Work has been done in the area of using rule-based reasoning tools for telephone
fault diagnosis which shows that this technology is beneficial in increasing the
effectiveness of the network maintenance process, although difficulties in knowledge
engineering still remain [Rabinowitz et al, 1991].
It is hypothesized that case-based reasoning may provide a better solution in this
problem domain than the typical rule-based approach. The investigation of the feasibility
of using case-based reasoning for fault diagnosis, and specifically telecommunications

tault diagnosis, is the objective of this thesis.
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2.0 ADAPTING CASE-BASED REASONING TO FAULT
DIAGNOSIS

2.1 A Diagnostic Model

In the course of this research, while data gathering, knowledge engineering and
conducting interviews with NBTel personnel, it was discovered that there is much interest
in, and a large amount of work being done, in the area of trouble report reduction, and
trouble prevention. This interest is not specific to NBTel alone, but to any
telecommunications or other product delivery company that is interested in remaining
competitive. The reason for this is obvious, in that it will allow the company to provide
better service, and reduce maintenance costs, and in doing so benefit both the customer
and the company.

The inspection and analysis of past trouble reports is one starting point for
accomplishing the goal of trouble prevention, and effective trouble analysis requires tools
that provide the analyst with pertinent information in a useful format. Tt was also
discovered through interviews with the NBTel managers who are responsible for trouble
report rate reduction that an analysis tool for the categorization of troubles and their
diagnoses would be very useful. This section presents a model that accomplishes this
categorization. Figure 2.1 shows a condensed overview of the mode! structure, while the
entire model is presented in detail in Appendix L
 2.1.1 Model Structure

Following analysis of trouble report records, and the information contained therein,
it was evident that a model for categorizing troubles and their diagnoses should be
structured hierarchically, as illustrated in Figure 2.1, with each descending level of the
resulting tree representing a further step in the trouble classification and diagnosis
process. Each level of the hierarchy represents a specific piece of diagnostic information,

whose significance is explained below.
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Trouble

Category
Trouble
Type
Cannot Call -| [Cannot Call - Physical ) Trouble
No Dial Tone| |Other * "t * ' | Conditien Miscellaneou Type
Disposition
Outside Inside | » - - .« »| Customer
Plant Plant Provided Trouble
Equipment . N
/ \ Bisposition
N Un-
Authorized |z 4 orized
Defective] |Defectiv Defective‘ Open SJ Defectwe Defectw Trouble
Cable " "INEZ . Fax
" Wire Numper Carhon Set Found

Figure 2.1 Overview of Diagnostic Model

2.1.1.1 Trouble Type

The top level of the model hierarchy is represented by the trouble type, which is the
starting point for the trouble diagnosis. The trouble type is indicative of the problem
reported by the customer, and in diagnostic terms, represents the symptom of the fauit.

The trouble types are broken down into eight broad classifications; all possible

customer reported trouble symptoms will fit into one of these ¢lassifications. These

classifications, whose names are self explanatory, are listed in Table 2.1.
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Table 2.1 Trouble Types

Trouble Types (Symptoms)
Cannot Call - No Dial Tone
Cannot Call - Other
Transmisston Noise

Cannot Be Called

Memory Service Failure
Data Failure

Physical Condition

ol Dl BAl NG [l ol I e

Miscellaneous

2.1.1.2 Disposition
~ All levels of the model hierarchy that are between the tofn and leaf levels are
represented by the trouble disposition. Generally, the disposition corresponds to only one
level of the hierarchy, but in some cases sub-dispositions are identified. In these cases
the disposition represents at most two levels of the model.
The main purpose of the disposition classification is to indicate, either directly or

indirectly, the physical location of the fault on the telecommunications network. This is

the logical next step in the fault diagnosis process after identifying the symptoms. The
disposition classifications also allow for special cases where the fault that was reported
cannot be found, or the trouble must be referred to an outside party. The trouble

disposition classifications are listed in table 2.2.
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Table 2.2 Trouble Dispositions

Trouble Dispositions

1. Outside Plant
2. Inside Plant
3. Customer Premises

3.1 Station Set

3.2 Station Wiring

3.3 Other Station Equipment
4. No Problem Found
4.1 Test OK
4.2 Found OK In
4.3 Found OK Out
Referred Out

Subscriber Carrier

Customer Action

Sl el P Sl

Customer Provided Equipment
8.1 Authorized
8.2 Unauthorized

2.1.1.3 Trouble Found |

The final step in the diagnosis of a fault is the determination of the specific

problem. This data is represented at the leaf level of the model hierarchy by trouble
found. This piece of information describes what was found to be causing the problem,
and what was repaired by the installation and repair craftsperson.

The list of trouble found classifications is unique depending on the disposition that
it appears under. The reason for this is that only certain faults are encountered in
different regions of the network, and the types of faults that correspond to these regions
are reflected in the trouble found classifications under each disposition. The trouble

found classifications for each disposition are listed in Tables 2.3 through 2.9.
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Table 2.3 Trouble Found Classifications - Qutside Plant

Trouble Found Classifications- Qutside Plant

Defective Cable Pair

Open Cable Pair

Incorrect Cable Pair Assignment

Defective Cable

Open Jumper in Jumper Wired Interface

Defective Binding Post Lead

Binding Post Lead Open

Defective NEZ Wire

Table 2.4 Trouble Found Classifications - Inside Plant

Trouble Found Classifications - Inside Plant

Defective Jumper

Open Jumper

Defective LLE

Defective SLR

Switch Hardware Problem

Switch Sofiware Problem

Incorrect Cable Pair Assignment

Defective Carbons

R Rl PN BN Bl ol ol D e

Open Carbons

20




Table 2.5 Trouble Found Classifications - Customer Premises

Trouble Found Classification - Customer Premises
Station Set Station Wiring Other Station Equipment
. Defective Receiver Cord 1. Defective Jack 1. Defective SX200 Equnipment
2. Defective Hand Set 2. Corroded Wiring 2. Defective Norstar Equipment
3. Defective Dial / Touch-tone Pad | 3. Defective Outside Wiring 3. Defective SP1 Equipment
4. Defective Set 4. Ground In Wiring 4. Defective V12 Equipment
5. Defective Base Cord 5. Defective Connecting Block 5. Defective Tye Equipment
6. Defective Receiver Unit 6. Defective Inside Wiring 6. Defective Button / Buzzer
7. Defective Transmitter Unit 7. Defective Protector 7. Defective Transformer
8. Defective Carbons 8. Defective Extension Ringer
9. Defective Protector
10. Ground Not Connected
11. Pefective Ground Clamp

Table 2.6 Trouble Found Classifications - Referred Out

Trouble Found Classifications - Referred Qut
Assigning
Central Office
Technical Assistance Centre

Business Office

Engineering
Data

SN RO F ol Bl I

Construction

Table 2.7 Trouble Found Classifications - Subscriber Carrier

Trouble Found Classifications - Subscriber Carrier

1. Defective Subscriber Carrier
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Table 2.8 Troubie Found Classifications - Customer Action

Trouble Found Classifications- Customer Action
I. Receiver Off Hook
2. Calling Party Hold
3. Damage By Customer

Table 2.9 Trouble Found Classifications - Customer Provided Equipment

Trouble Found Classifications - Customer Provided Equipment

Authorized Unauthorized
1. Defective Fax Machine 1. Defective Unauthorized Customer
Provided Equipment

2. Defective Modem

3. Defective Set

2,1.2 Trouble Categorization

For the diagnostic model to be useful as an analysis tool it is important that the
troubles with the same diagnosis be classified into the same distinct category. This can
be accomplished by treating a complete path from the top, down to the leaf level of the
hierarchy as a trouble category. Therefore there will be as many trouble categories
represented by the model as there are paths in the tree.

A category can be easily represented by a list of integers that individually represent
the branch chosen at a given level of the model. To do this, numbers must be assigned to
the nodes of the tree in a way such that all the children of a specific node have a unique
number. These number designations are shown in Tables 2.1 through 2.9.

As an example, let us consider a trouble report that has been determined to have a
trouble type of cannot call - no dial tone, a trouble disposition of inside plant, and the
trouble found being an open jumper. From Table 2.1, Table 2.2, and Table 2.4 we see

that the corresponding numbers are 1, 2, and 2 respectively. Therefore, the trouble
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category of cannot call - no dial tone, inside plant, open jumper can be represented by the
string "1.2.2".

The current model structure contains 8 trouble type classifications, 13 trouble
disposition classifications, and 58 trouble found classifications. This structure allows for
representation of 488 unique fault categories.

2.1.3 Disposition Classifications

The disposition classification terms, listed in Table 2.2, describe the physical
locations, and special cases of the types of troubles that occur on a telecommunications
network. Some of the terms used are not self explanatory, and are described below.
2.1.3.1 Inside Plant

The term inside plant refers to any components of the network that are contained
Wlthm a building. The building referred to is generally the Central Office, which houses
the local switching equipment, and are dispersed as needed throughout the network.
Inside plant generally refers to the switching equipment, which is responsible for
directing calls to their proper destinations, and the frame, which connects the switch to
the outside world. The trouble found categories for this disposition are listed in Table
2.4.
2.1.3.2 OQOutside Plant

The outside plant is the part of the network that connects the Central Office (Inside
- Plant) and the customer's premises. This includes feeder cables, which are large cables
with many pairs that feed directly from the switch, distribution cables, which have a
smaller number of pairs that are distributed into the populated areas, and the jumper
wired interfaces, which connect the feeder cables to the distribution cables. In general,

the relationship between feeder cables and distribution cables is one-to-many.
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2.1.3.3 Customer Premises

The disposition classification of customer premises is fairly self explanatory in that
it represents any trouble whose cause is at the customers home or place of business. This
category can be broken down into three sub-dispositions:

Station set refers to a telephone set at the customers premises that may be causing a
problem.

Station wiring refers to any of the telecommunication related wiring at the
customers premises in which there may be a fault.

Other station equipment refers to any other telecommunication equipment, such as
signaling equipment, cabinets or booths, that are the cause of the trouble.
2.1.3.4 No Problem Found |

| No problem found is a special case of disposition classification that describes a
trouble that was reported by the customer but cannot be detected by a line test or re-
created by the technician. This classification can be broken down into three sub-
dispositions:

Test OK applies to a trouble that was reported by the customer, but when a line test
does not indicate trouble, and no other trouble-causing condition can be determined.

“Found OK in” describes a trouble that was thought to be in the central office, but
when investigated by a technician, no problem was found, a line test did not indicate a
problem, and no other trouble-causing condition can be determined.

“Found OK out” refers to a trouble that was thought to be outside (i.e. outside
plant), but when investigated by a technician, no problem was found, a line test did not
indicate a problem, and no other trouble-causing condition can be determined.
2.1.3.5 Referred Out

Trouble reports referred to other technician groups such as toll offices, crossbar
tandem offices, or Plant Service Centres, are classified as referred out. Trouble reports

with this disposition are not closed until the referred to party has corrected the problem.
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2.1.3.6 Subscriber Carrier

Trouble reports caused by switching equipment failures are referred to as
Subscriber Carrier. The failure of line cards which terminate the feeder pair at the central
office are also included in this disposition.
2.1.3.7 Customer Action

Customer action is again a self explanatory term that describes any trouble that has
occurred because of the action that a customer has taken. This classification usually
refers to problems whose cause is at the customers premises.
2.1.3.8 Customer Provided Equipment

Customer provided equipment refers to troubles that are a result of equipment that
was not provided by the telephone company, but was bought by the customer from a third
party. This classification 1s made up of two sub-dispositions:

Authorized, which describes equipment that the telephone company does not
provide, but is under contract with the third party to maintain.

Unaufhorized, which refers to equipment that that the telephone company does not
provide, and does not maintain. When a trouble of this disposition occurs, the customer

1s responsible for any repairs.

2.2 Diagnosis Using Matching

The diagnostic task is to determine why a correctly designed system is not
functioning as it was intended, and to explain the faulty bebavior by specifying what is at
variance with the design [De Kleer et al., 1992]. The concept of case-based reasoning is
based on the ability of the reasoner to find the best match for the presented case. This
implies, that the effectiveness of fault diagnosis using case-based reasoning in resolving
and explaining the fault in the system is dependent upon determining which of the
features of the fault cases are the most important in determining the faulty behavior, and

the ability of the diagnostic system to match on these features and retrieve the case with
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the correct diagnosis. In a diagnostic system, these features can be characterized as
symptoms of the fault, and will vary according to the fault diagnosis problem domain. To
be able to retrieve the stored case from memory that will provide the most applicable
solution, the case-based reasoner must be able to match on the features or symptoms of
the fault that are most relevant to the diagnostic problem domain. We will refer to these
symptoms as the diagnostic case features.

To determine the best match, and therefore the most applicable diagnosis of the
fault, the case-base must contain three kinds of knowledge [Hammond, 1989].
2.2.1 Case Library

The case library provides descriptions of unique fault situations and their correct
diagnosis for the diagnostic domain being examined. These cases include the diagnostic
case .features that have been determined to be most relevant in determining the cause of
the fault. These features are indexed to ensure that matching is efficient, and that the
appropriate cases are retricved. The diagnostic case features provide the foundation for
the diagnostic matching process and are the basis upon which the other two types of
knowledge in the case-base are brought to bear.
2.2.2 Partial Matching

The case-base must include a way to determine and evaluate the degree of partial
matching on diagnostic case features. When a diagnostic system cannot find a case that
- exactly matches the symptoms of the presented case, it must have a means of finding a
case which partially satisfies the symptoms. A case based diagnostic system also needs
some idea of which symptom descriptions are similar to each other. It can then use the
partial satisfaction of presented case symptoms, along with the similarity measurement to
retrieve the most suitable fault diagnosis.
2.2.3 Value Hierarchy

The value hierarchy determines the relative importance or weight of the diagnostic

case features in the matching process. The case-based reasoner integrates this knowledge
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with the degree of matching on the identified fault symptoms to determine the value or
score of a stored case with respect to the presented fault symptoms, and retrieves the case

that will most likely provide the correct diagnosis.

2.3 Explanation

The explanation process is another integral aspect to the study of human
intelligence, and plays an important role in diagnosis and case-based reasoning. An
important component of the diagnostic process 1s, upon determination of the cause of the
faulty behavior in the system, to also explain what has caused the problem [Torasso and
Console, 1989]. Explanation has a number of applications when applying case-based
reasoning to diagnosis.

2.3.1 Failure Explanation

Failure of a case-based reasoning system to find an existing case that matches the
presented situation brings about the need for the explanation and repair of the failure (see
Figure 1.1). These two steps are interrelated in that one is based on the other, depending
on problem domain in which the failure has occurred. In a planning system the
explanation 1s needed to correctly complete the repair of the plan, but in a diagnostic
domain, the correct diagnosis, and subsequently the repair, is needed before a failure caﬁ
be explained; therefore the explanation is dependent on the repair.

Curently the appropriate reasoning technique for implementing the failure
explanation process is a matter of research and debate. The explanafion of a failure can
be represented by a chain of inference which implies that the reasoning should be rule
based, but the complexity of the failure explanation process suggests that it is more often
case-based [Riesbeck and Schank, 1989].

2.3.2 Explanation Facility
The second application of explanation in diagnosis using case-based reasoning is

the implementation of an explanation facility. An explanation facility in a knowledge-
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based system provides justification for the solution from the system to the domain
experts. This concept is important in a diagnostic system as it is usually a domain expert
who is seeking the diagnosis, and the result must be justifiable by the system. Generally
this justification is given as the answer to the questions “Why?” and “How?”. Why is the
system asking me for this piece of information? How did the system come to that
solution? In a case-based reasoning diagnostic system, it can be argued that the case
itself can provide the explanation for why it was selected as the solution to the problem
[Riesbeck and Schank, 1989] because of the premise that expertise is most likely a library
of past experiences and better supports knowledge transfer. In fact, a significant amount
of research is being done in using case-based reasoning to implement explanation systems
in a broad range of problem domains [Schank et al, 1994]. |

The traditional approach to implementing explanation facilities in knowledge-based
systems is to use the inference chain that has taken place in the reasoning process through
“firing” of the rules in the knowledge-base. MYCIN was one of the first knowledge-
based systems to offer this innovation [Buchanan and Shortliffe, 1984].

An explanation facility for a diagnostic case-based reasoner can be implemented by
recalculating the diagnosis match scores (see section 3.2.2.5 for match score calculation)
for the cases being proposed as solutions [Taylor, 1994]. This process would determine
the contribution made to the final match score by each diagnostic case feature, and be
- explained back to the user in textual format, answering the question how the case came to
be given as a solution.

The traditional approach to implementing an explanation facility was not followed
in this thesis and is left to future work (see section 5.2), but a non-traditional explanation
facility was implemented. During the course of research, it was found that the cases with
known solutions available in technical domains, specifically fault diagnosis, are usually
stored in systems built for tracking and analyzing these cases. In these cases many

features are stored as codes or numbers which represent a textual description. This
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approach is beneficial in conserving storage space, but causes a problem when building a
case-base. The case-based reasoner must be able to answer the question “what?” and
explain to the user the meaning of the codes and sequence numbers. In this thesis, this
knowledge is included in the knowledge base and presented to the user during the

diagnostic process (for details see section 3.3).
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3.0 AKNOWLEDGE BASE FOR TELECOMMUNICATIONS
TROUBLES

3.1 ART-IM Expert System Shell

Expert system shells are software products that aid users in developing knowledge-
based systems. These shells provide knowledge representation, data structures necessary
for representing knowledge, an inference engine which provides the ability to reason
about that knowledge, as well as user and external system interface capabilities.

Before examining the knowledge base required to diagnose telecommunication
troubles, it is first necessary to describe the expert system shell used in its development,
and the components that were used to host, represent, and manipulate the knowledge
base. This will allow the knowledge base to be described in terins of the expert system
shell. |

The Automated Reasoning Tool - Information Management (ART-IM) is an expert
system shell developed by Inference Corporation that provides an effective tool kit for
development of knowledge-based systems. ART-IM contains the ART-IM language as
well as several special purpose components for developing user interfaces and linking to
external procedural languages.

ART-IM employs a modified Rete match algorithm within its inference engine, a
memory intensive pattern matching algorithm, which provides the matching in ART-IM,
and drives the inference engine through pattern matching on forward chaining rules (see
section 1.1.2.1). The extent and inclination of the modifications that Inference has made
to the Rete match algorithm are not known, as this implementation information is
considered proprietary and is kept confidential [Taylor, 1994],

ART-IM is available on a number of platforms, and is continnally evolving and

improving its user interaction and reasoning modules. Recently, Inference Corporation
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has focused on case-based reasoning, with its CBR2 family of products, providing case-
based reasoning tools in 2 number of commercial fields, such as help desk applications.
3.1.1 Schema Structure

A schema is a data structure, made up of frames, that is used to represent a
collection of information about a particular object [Inference Corporation, 1991].
Schemas in ART-IM are the fundamental data structure and consist of a schema name
and a number of constituents called slots. The slots represent individual pieces of
mformation describing characteristics of the schema or its relationship with other
schemas. A slot is a data structure used to represent some characteristic of an object. A
slot consists of a slot name and zero or more values.

Schemas have a number of powerful characteristics. Hierarchies of schemas can be
creat.ed using the schema characteristic of inheritance. Inheritance allows some schemas
to represent a class of objects and other schemas to represent individual objects. Objects
belonging to a class share characteristics or slots, which allows these characteristics to be
shared with other objects or schemas belonging to that class.

Schemas can be retrieved from memory though the use of a key slot whose value
uniquely identifies the schema, and is used as the parameter for retrieval.

3.1.2 Case-Based Reasoner

ART-IM provides a retrieval mechanism for ART-IM objects for implementing
case-based reasoning. This mechanism can be used in conjunction with other ART-IM
features to build case-based systems. This retrieval mechanism searches a collection of
stored cases, represented as ART-IM schemas, to find and retrieve the cases which most
closely match the presented case. The degree of match depends on the degree of
similarity. Once a case is retrieved, it can then be examined to determine if it provides a
solution to the presented problem.

In ART-IM, the objects used to represent cases are schemas. A case base structure

is defined by a case schema whose slots represent the features of the stored case, and
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which acts as the access method for the application to the case-base. Any operation
performed on the case-base must be through the case schema, including adding cases,
retrieving cases, and maintaining the feature values and index slot information that, along

with the Rete match algorithm, provide ART-IM’s matching and retrieval functionality.

3.2 The Case Base
3.2.1 Case Library
3.2.1.1 Source of Telecommunication Trouble Cases
A reliable set of cases with known solutions are a requirement for an effective case-
based reasoning system. When dealing with the telecommunication network diagnosis
domain the logical place to obtain this information is from a teIe_communications
company, who will have a ready supply of network troubles with associated resolutions.
This process simplifies the knowledge engineering task to a great extent, which is an
- important characteristic of case-based reasoning
At the New Brunswick Telephone Company Ltd. (NBTel), telecommunication
network facility information and related subscriber information is stored in the
TELephone FACilities System (TELFACS). When a customer reported network trouble
is received, the pertinent trouble information is entered by a repair clerk into the Trouble
Reporting System (TRS) which is a sub-system of TELFACS. Here the trouble
information is associated with the related facility and subscriber information. Once the
‘trouble has been resolved, and the cause and resolution are recorded, the trouble, facility,
and subscriber information are extracted and stored in the Trouble Report Analysis
Capability Enhancement (TRACE) system.
The TRACE system operates on an IBM 3090 mainframe computer, running IBM’s
MVS operating system. The system is implemented using the COBOL programming
language, and sequential files. TRACE data s used to provide batch analysis reports to

indicate the performance of NBTel’s repair personnel.
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TRACE groups troubles into monthly files that are maintained for 90 days in the
system. This data provides complete and reliable instances of faults and their
characteristics, along with solutions, in a defined telecommunications network.
3.2.1.2 Case Preprocessing

Once the trouble information has been extracted from the TRACE system, the data
must be optimized through a number of processing steps before it can be used as entries
in the case base. It would be redundant to have cases with the same symptoms, diagnosis
and descriptive information, so duplicate cases must be removed. This step is
accomplished by a stand alone C procedure that sorts the case records on all fields, and
sequentially compares the entire case records, removing any exact duplicates. This
process removes only exact duplicate cases, as cases with any different feature values
may .improve the diagnostic performance of the case base.

As well as removing duplicate cases, unused (blank) fields that are included in the
TRACE record must also be removed. This function is performed by the rule base as the
cases are inttially loaded into the case base (see section 4.4.3.1) The removal of unused
fields reduces the size of the case base and results in helping to improve the efficiency of
matching.

A third processing step that must take place is the generation of fields that do not
exist in the original data, but are derived from existing fields to provide possible
- symptoms or diagnostic case features that are implied in the data but not easily indexed.
This function is also performed by the rule base when creating the case base (see section
4.4.3.1). The addition of derived knowledge to the trouble case provides extended
capabilities in using case-based reasoning to diagnose the trouble (see section 3.2.1.4).
3.2.1.3 Telecommunication Trouble Case Record Format

Adter preprocessing, the trouble case record contains 71 fields of information (see
table 3.1) which describe trouble characteristics, subscriber information, and outside plant

equipment and location information. Included in this information are trouble symptoms
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diagnostic system.

and diagnostic information, which makes this data appropriate for the case base of a

(defschema trouble (DISPOSITION) (REF-DATE)
(ACC-INFO) (DIST) (REF-IND)
(ADDRESS) (DPAIR) (REF-ORG-IND)
(APP-DATE) (DPAIR25) (REF-TIME)
(APPNTMT) (DPAIRS50) (RPM-INIT)
(AUX-LINE) (EQUIP-TYP) (SERVICE-CENTRE)
(BATCH-DATE) (EST-DATE) (SR-CNT)
(CABCNT-REM) (EST-TIME) (SR-IND)
(CABLE-LOC) (EXTEN) (SRI)
(CABLE-NUM) (FCI) (STUDY)

(CAD (FEEDER) (SUB-NAME)
(CARRIER) (GSA) (TC-REM)
(CATEGORY) (MCSIRBAN) (TEL-NUMBER)
(CAUSE) (NET-NUM) (TESTED-BY)
(CAUSE-SUB) (NTR-IND) © (TF-REM)
(CLASS-OF-SERVICE) (NUMBER-KEY) * (TI-REM)

(CLOSE-DATE) (OP-INIT) (TRBL-REM)
(CLOSED-BY) (PAIR) (TROUBLE-TYPE)
(CO-EQUIP) (PAIR2S5) (TSTR-INIT)
(CO-GROUP) (PAIRS0) (TT-CODE)
(COS-SUB) (PHONE-REM) (TT-DATE)
(DIS-DATE) (PRITY-IND) (TT-IND)
(DIS-TIME) (REC-BY) (TT-TIME)
(DISP-SUB) (REC-DATE) (WC))

Figure 3.1 Trouble Case Schema Structure

Also included in the trouble case record is the implied trouble categorization

~defined by the previously described diagnostic quel (see section 2.1). This model
requires the “trouble type”, “disposition”, and “trouble found” values for categorization
of troubles. This information exists in the trouble case record, with the exception of the
“trouble found” value which provides the specific diagnosis. This “trouble found” field is
available in NBTel’s Trouble Reporting System (TRS) (see section 3.2.1.1) but has not
been carried through the extraction of data to the TRACE system, and therefore the data
is not available for the case-base. The absence of this piece of information does not affect

the usefulness of the case base in providing diagnostic information, as a diagnosis
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description is available in the mandatory “trouble found remarks™ field, but a proper
categorization of the trouble is not possible without it. The inclusion of the “trouble
found” field in the TRS extract is left to future work (see section 5.2).

A trouble case in ART-IM is represented using the trouble case schema (see figure
3.1), with a schema slot defined for each trouble case feature. This trouble case schema is

always used when accessing or manipulating information in the case base.

35




M T O R L R

Table 3.1 Trouble Case Data Fields

Trouble Feature Name

Trouble Feature Slot Name

Trouble Feature Description

Aceess Information ACC-INFO Trouble Acoess Point Deseription -
Address ADDRESS Trouble Address
Appointment Date APP-DATE Repair Appointment Date
Appointment Time APPNTMT Eepair Appoiniment Fime
Auxiliary Line AUX-LINE Auxiliary Line Indicator
Batch Date BATCH-DATE TRACE Batch Date
Cable Count Remark CABCNT-REM Unformatted Input Describing Cable Count
Cable Location CABLE-LOC Trouble Cable Location
{Cable Mumber CABLE-MNUM Cable Serial Nuinber
Customer Advised Indicator CA, Indicates Customer wag_Advised of Closed Trouble
Subscriber Carier CARRIER, Subscriber Long Distance Carrier
Eeporied Category CATEGORY Category of how Trouble was Reported
Trouble Cauge CAUSE Classification of Trouble Cause
Trouble Cavse Sub Code CAUSE-SUB Used for Special Studieg
Clasgs of Service CLASS-OF-SERVICE Class of Service
Trouble Close Date CLOSE-DATE Date Trouble was Closed
Trouble Closcd By CLOSED-BY Identifier of Person who Clased Trouble
Centrai Office Equipinent CO-EQUIP Type of Central Office Equipment
Central Office Group CO-GROIP Central Office Group Classification
Class of Seriice Sub Code COS-3UB Used for Special Study
Trouble Dispateh Date DIS-DATE Date Trouble was Dispatched
Trouble Dispatch Time DIS-TIME Time Trouble was Dispatched
Trouble Disposition Sub Code DISP-SUB Used for Special Studies
Trouble Dispogition DISPOSITION Trouble Physieal Location Disposition
Distribution Cable DIST Dristribution Cable Munber
Distribution Cable Pair DPAIR Distribution Cable Fair Number
Distribution Cable 23 Pair Range DPAIR25 Derived Field to Make Cable Fault Matching More Ffficient
Distribution Cable 50 Pair Range DPAIRS0 BDerived Field to Make Cable Fault Matching More Efficient
Equipment Type EQUIP-TYP Switching Equipment Type
Trouble Established Date EST-DATE Diate Trouble was Established
Trouble Established Time EST-TIME Time Trouble was Established
Extenzion EXTEN Extension Identifier
Frame Check Tndicator FCI Frame Check Indicator
Feeder Cable Number FEEDER Feeder Cable Number
Geographical Serving Area G54 Geographical Serviny Area
Multi-Purpose Field MCSIRBAN Describes Varions Characteristics of Trouble
Network Serial Number NET-NUM Network Serial Number
Mo Test Required NTR-IND No Test Reguired Indicator
Sequence Number Key NUMBER-KEY Derived Figld to Provide Unique Key
Operator Initals QP-INIT Initiais of Operator Involved in Trouble
Feeder Cable Pair PAIR, Feeder Cable Pair Mumber
Feeder Cablg; 25 Pair Range PAIRZS Derived Field to Make Cable Fanlt Matching More Efficient
Feeder Cable 50 Pair Rangg BAIRSG Derived Field to Make Cable Fanlt Matching More Efficient
Phone Remarks PHONE-REM Unformatted Input Describing Phone Trouble
Priority Indicator PRITY-IND Classification of Priority of Trouble
Received By BECEBY dentifier of who Received Trouble Report
Trouble Received Date REC-DATE Date Trouble was Received
Referred Date REF-DATE Date Trouble was Refemed to another Office
Referred Indicator REF-IND Indicates Trouble was Referred
Referred Orpanization Indicator REF-ORG-IND Indicates What Group Trouble was Referred to
Referred Time REF-TIME Time that Trouble was Referred
Repairman’s Initials RPM-INIT Initiatg of Person who Repaired Trouble
Service Center SERVICE-CENTRE Provincial Service Center
Subscriber Report Count SR-CNT Indicates Number of Subscriber Reports
Subsetiber Report Indicator SR-IND Indicates if Subseriber Reported Trouble
Set Repaired Indicator SR Tndicates if Phone Set was Repaired
Special Study STUDY Trouble Included in Special Study
Subsenber Mame SUB-NAME Trouble Subscriber Name
Trouble Cavse Remarks TC-REM Unformatted Input Describing Tronble Cause
Trouble Telgphone Number TEL-NUMBER Trooble Telephone Number
Trouble Tested By TESTED-BY Tester Identifier
Trouble Found Remarks TF-REM Unformatted Input Describing Trenble Found
Trouble Test Information Remarks | TTREM Unfoomatted Input Describing Test Results
Trouble Remarks TRBL-REM Unformatted Input Describing Generat Trouble Remarks
Trouble Type TROUBLE-TYPE Deseription of Reported Trouble

| Tester Initials TSTR-INIT Initials of Trouble Tester
Trouble Type Code TT-CODE Trouble Type Code
Trouble Test Dite TT-DATE Diate Trouble was Tested
Trouble Test Indicator TT-IND Indicates Trouble was Tested
Trouble Test Time TT-TIME Time Trouble was Tested
Wire Center WC Provincial Wire Center
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3.2.1.4 Diagnostic Case Features

Alithough experts are not needed for creation of the knowledge base when
implementing a case-based reasoner, expert knowledge and experience are still required
to optimize the performance of the system. Of the 71 fields of information available
about each trouble case, 9 were identified by repair personnel experienced in isolating
and diagnosing telecommunication network troubles, as being typical symptoms or
diagnostic case features of troubles with similar diagnoses. Table 3.2 describes the
trouble diagnostic case features, along with their schema slot names, and ART-IM match
types. The experts also determined that the ability to search for cable pair ranges would
be useful to allow trouble trend analysis on groups of cable pairs. This requirement
intttated the addition of four derived index fields (see table 3.2;.slot names DPAIR2S,
DPAIRS 0, PAIR25, PAIRS50). These indices, whose values are derived from the feeder
and distribution cable pair values, allow matching on each stored case for inclusion in a
cable pair ranges of 25 or 50 pairs. These index features contain values indicating the
first cable pair in the specified cable ranges of 25 or 50 pairs, allowing matching on each
stored case for inclusion in the cable range of a presented case.

In a telecommunication network, the feeder and distribution cable pairs are
numbered sequentially for a given cable. If the feeder cable pair associated with a
spectfic trouble is number 37, then the feeder cable pair feature (PAIR slot) of that case
will contain the value “37”. In this case, the value “26” will be placed in the PAIR25 slot
to indicate the first cable pair in the 25 pair range that the feeder cable pair value is
included in (i.e. [26, 50]). Likewise, the value “1” will be placed in the PAIR50 slot to
indicate the first cable pair in the 50 pair range that the feeder cable pair value is included
i (i.e. [1, 50]). These value can then be matched when inclusion in a specific range is
requested.

Input from trouble diagnosis experts also indicated that additional diagnostic case

features, such as line test values, would be beneficial in utilizing the case base to
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diagnose troubles. This data is available in the TRS system, but is not included in the
TRACE extract. The inclusion of the line test results in the case base as a diagnostic case

feature is left to future work (see section 5.2).

Table 3.2 Trouble Diagnostic Case Features

Feature Name Feature Slot Name Matching Type
Subscriber Address ADDRESS Character
Distribution Cable Identifier DIST Character
Distribution Cable Pair DPAIR String
Distribution Cable 25 Pair Range | DPAIR2S String
Distribution Cable 50 Pair Range | DPAIRS0 String
Feeder Cable Identifier FEEDER String
Geographical Serving Area GSA String
Feeder Cable Pair PAIR String
Feeder Cable 25 Pair Range PAIR2S String
Feeder Cable 50 Pair Range PAIR50 String
Subscriber Name SUB-NAME String
Telephone Number TEL-NUMBER String
Wire Center WwC String

3.2.2 Partial Matching
One of the principles of case-based reasoning is to find and retrieve similar cases to
the case being presented. To accomplish this in a diagnostic case-based reasoner, partial

matching on the diagnostic case features (i.e. some features match and some don’t) must

be possible. As well, specialized types of matching can also provide partial or “fuzzy”

matching on an individual diagnostic case feature. ART-IM provides a number of match

types and case scoring algorithms to accomplish partial matching,

It should be noted that not all of the match types described in the following sections
are used in the case base implemented as part of this thesis, but are included to give a
complete description of the types of matching that ART-IM provides, as well as indicate
the types of matching that could be used if more diagnostic case features were added to

the cage base.
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3.2.2.1 String Matching

String matching is the simplest match type. Either a string feature of the presented
case 15 the exact match of a string in a stored case or it is not. The string match, when
applied to a case feature, requires the specification of a match weight and a mismatch
weight. If the strings match, the match weight is used to increase the case’s score. If the
strings do not match, the mismatch weight is used to decrease the cases score. In the case
base implemented as part of this thesis, the match weight was set by the user, and could
range between 0 and 100. The mismatch weight could range between -50 and 0 (see
section 3.2.3 for calculation of the mismatch weight).

The user may also specify absolute matching on strings. If “select” is specified as

the match weight, and a match is generated, the stored case is given a perfect score of 1.0,

If “reject” 1s specified as the mismatch weight, and a mismatch is generated, the stored

case is given an absolute mismatch score of -1.0.
The following formula is used to determine the string feature weight that is

contributed to the overall score of the stored case [Inference Corporation, 1991]:

tehi, =
Sfeature weights(fi = Smatchs, if .f i )]
Smismatchi, if  f #p

where

Fnatchi = the match weight of feature f for the i case,
Tmismatchi = the mismatch weight of feature ffor the i™ case,
f = string value for the i case,
p = string value of the same feature of the presented case.
This equation represents the feature-weight value for feature £ of the i® stored case

which is being compared to the presented case.
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3.2.2.2 Word Matching

In word matching, all of the words of the presented case’s texi feature are compared
to all of the words in the stored case’s text feature. The degree of partial matching is
based on the proportion of words in the presented case’s text feature that match words in
the stored case’s text feature. The order of the words is unimportant,

This type of matching provides a higher degree of partial matching than string

matching in that it allows for partial matching of sentences or phrases. The following

formula is used to determine the word feature weight that is contributed to the overall

score of the stored case [Inference Corporation, 1991]:

wx — wm v
= (—————) fmismatchi + Reila fmatchi (2)
wx wx

Sfeature weights(f)i

where
wm = the number of words in common between the presented case and
the i" case,
wx = the number of words in the presented case (after text
preprocessing),

Jmaichi = the match weight of feature f for the i® case,

Smismatchi = the mismatch weight of feature £for the i® case.
This equation represents the feature-weight value for feature fof the i stored case
which is being compared to the presented case.
3.2.2.3 Character Matching
Character match is by far the most powerful of the text matching types provided. It
is similar to word matching but provides a much higher degree of partial matching.

Instead of using words, character matching uses consecutive trigrams as the match unit.

A trigram is a 3-character sequence. For example the word “speaker” has 9 trigrams

embedded in it (i'e. “_S'J'J’ “_Sp”’ “Spe”’ Ccpea”’ “eak”’ “ake”, “ker”, “CI‘_”, aIld “1'_”).
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Character matching, like word matching, provides partial matching, but again at a
much higher degree. This type of matching will still generate a partial match if words are
misspelled, whereas with string or word matching, a misspelled word would generate a
total mismatch.

In character matching, the trigrams of the character feature of the presented case are
matched against the trigrams of the character feature of the stored case. The degree of
partial matching is based on the proportion of the trigrams in the presented case that
match trigrams in the stored case. The order of the trigrams is unimportant,

The following formula is used to determine the word feature weight that is

contributed to the overall score of the stored case {Inference Corporation, 1991]:

x—1im t
Sfeature weights(f)i = (—w-};c—) fmismatchi + -21- Jfmatchi (3)

where
fm = the number of trigrams in common between the presented case and
the i case,
tx = the number of trigrams in the presented case (after text
preprocessing),
JSmatehi = the match weight of feature £ for the i* case,
Fmismatchi = the mismatch weight of feature ffor the i case.
This equation represents the feature-weight value for feature £ of the i™ stored case
which is being compared to the presented case.
3.2.2.4 Numeric Matching
String, word and character matching are very useful for matching textual features.
These types of matching do not perform well if the feature value of the presented case is a
number. Number matching uses the distance between two numbers to determine the

score of the feature. As well as supplying the match and mismatch weights as were
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required with the other types of matching, number matching also requires that a minimum
value, maximum value, match deviation and minimum precision be specified. Figure 3.2
depicts the graph used in calculating the match score of the numeric feature of the stored
case. The match deviation specifies the width of the base of the triangle. If the value of
the numeric feature of the stored case is outside the triangle, the mismatch weight will be
applied. If the value of the numeric feature of the stored case is within the triangle, the
score will be determined by the matching coordinate on the y-axis. If the value of the

numeric features of the presented case and stored case are a perfect match, the match

weight will be applied. :
Presented Case -
Match | Numleric Yalue
Weight (pvalue) .
Minimum Maximum :
Valoe Value
Stored Case-x
Mumeric Value
{cvaloe)
Mismatch
Weicht
: Match Deviaten
Distance {T,,..)

Figure 3.2 Numeric Scoring Function

The following formula is used to determine the numeric feature weight that is

contributed to the overall score of the stored case [Inference Corporation, 1991]:
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Jmatchi — s( fmatchi — fmismatchi )if s <1

4
fmismatchi, if s 21 %

Jeature weights(f)i = {

where
_ |evalue ~ pvaluel

3
j;ﬂdev

cvalue = the i case’s value for the feature,

¥

pvalue = the presented case’s value for the feature,

!

Ffmdey = the match deviation,
Tmatchi = the match weight of feature ffor the i" case,

Tmismatchi = the mismatch weight of feature ffor the i* case.

This equation represents the feature-weight value for feature f of the i stored case
which is being compared to the presented case.
3.2.2.5 Case Scoring

Once the feature weights(f}i have been calculated for the indexed case features, or
in our case diagnostic case features using Equations 1 through 4, the variable percentage
contribution weight for the i case can be calculated using Equations 5 through 7
[Inference Corporation, 1991]. Normally, the importance of a feature to a case score is
relative to the weights and degree of matching to the other features of the stored case.
These features are referred to as variable percentage.

The vp_maximum_weight for a stored case is the sum of the greater of the feature
match-weights and mismatch weights for the variable percentage features of the i stored

case, and can be calculated using the following formula:
vp_maximum_weighti= > ma( finatchi, fmismatchi ) (5)
Vf eCasei

where
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Case; = the set of all features, except the fixed percentage slot (see
equation 8), that are found in the i* case.
The vp_weight is the sum of all feature weights for the ith case’s variable-
percentage features that appear on the presented case, and can be calculated using the

following formula:

vp_weighti= > feature_weights(f): (©6)

Vf cPcase, f eCaser
where
Pcase = the set of all features, except the fixed percentage slot, that
are found in the presented case,
Case; = the set of all features found on the presented case, except
the fixed percentage slots.
The contribution of the variable-percentage slots can be calculated using the

following formula:

vp weighti + vp_absence weighti

vp_contributioni =

(7)

vp maximum_weight;
where
vp_absence weight; = the sum of the absence weights (i.e. penalty
welghts for cases missing specific slots) for all variable percentage slots of
the i case .
Fixed percentage features provide the ability to set the contribution of a feature in
the stored case to contribute a fixed percentage to case scores, regardiess of the number of
other features. The fixed percentage contribution is calculated using Equation 8, as

follows:
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fo._contribution = Jp_weighti + fp_absence weighti

(8)

Jp_maximum_weighti

With the calculation of the variable and fixed percentage slot contribution

complete, the raw score can now be calculated using equation 9 as follows:

raw_scorei = min(l, fp x fp_contribution: + (1 — fp) x vp_contribution }(9)
where
Jr = the fixed percentage value given a single feature slot.

This raw score for a case fails into a range (-0, 1].

Equation 10 can now be used to calculate the case score, mapping the raw score to
the range [-1, 1], allowing for easy in-order retrieval of cases similar to the presented
case.

2

case_scorgi= -1 10)
2 —raw_scorei

The mapping relationship between the raw score and the case score is shown in
Figure 3.3. This demonstrates how the case score values approach -1, 0, and 1 for the

corresponding raw score values of -, 0 and 1 respectively.

Case Score

Figure 3.3 Case Score vs. Raw Score
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To fully illustrate the scoring equations that aré defined in this section, an example
consisting of a presented case, and a case base containing two cases is given. Each case
has two slots. One contains the subscriber address, which uses word matching, while the
other contains the Geographical Serving Area, which uses string matching. The
assoctated match and mismatch weights are 80 and -40 for the GSA and 50 and -25 for
the address. The presented case and two case base cases are shown in Table 3.3, and the
trigrams that are contained in the Subscriber Address values, that are needed to calculate

the feature weight, are specified in Table 3.4.

Table 3.3 Score Calculation Example Cases

Presented Case Case 1 Case 2
Subscriber Address P1 RL231 P4 RL231 P7RL223
Geographical Serving Area HVS HVS HVS

Table 3.4 Subscriber Address Value Trigrams

Presented Case Case 1 Case 2
“opr “ P “ P
<P < pg TPy
“p1” “P4 “P7”
“1 R” “4 R” “7 R”
“ RLT “ RL” *“ RL”
“RL27 “RL2” “RL2”
“L237 “L23" “E227
“2317 “231” “223”
“31 " “31” “23 7
“1." “1 " “3 7

The following calculations are performed to determine which case is the best match

for the presented case.

from Equation 3 feature_weight(Address), = ((10-7)/10y*(-25)+(7/10)*50=27.5
similarly feature_weight(Address), = ((10-3)/10)*(-25H-(3/10)*%50 = 17.5
from Equation 1 feature_weight{(GSA), = 80
similarly feature_weight{GSA), = 80
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from Equation 5 vp_maximum_weight, = 80 + 50 =130

similarly vp_maximum weight, = 130

from Equation 6 vp_weight, =27.5+ 80 =107.5

simitarty vp_weight, = 17.5+ 80=97.5

from Equation 7 vp_contribution, = (107.5 + 0)/130 = (.8269
similarly vp_centribution, = (97.5 + 0)/130=0.75

This assumes that a fixed percentage slot is not used.

from Equation 8 raw_score, =min(l, 0 + (1-0} *0.8265) = 0.8269
simitarly raw_score, = min{1, 0 + (1-0)} *0.75) = 0.75

", from Equation 10 case_score, = (2/(2 - 0.8269)) -1 =0.7049

' similarly case_score, = (2/(2 - 0.75)}-1=0.6

Therefore, casel is a better match for the presented case than case 2.

It should be noted that the scores presented to the user for this thesis have been
multiplied by 1000, and had the decimal places truncated. Thi:.*.‘ was done to allow the
value to be read easily, and also provide adequate accuracy of the score.

3.2.3 Value Hierarchy

The value hierarchy defines the relative importance of the diagnostic case features
and are used extensively in determining the contribution of a case feature to the score of a
stored case. In ART-IM the value hierarchy is represented by the match and mismatch
weights assigned to the diagnostic case features. In the trouble diagnosis case base
default match and mismatch weights are assigned which give all of the indexed features
the same relative importance,

There are two approaches to determining the appropriate value hierarchy for a
diagnostic case-based reasoner; (1) the value hierarchy to be used in various diagnostic
situations can be based on statistical study and analysis of the value hierarchy which
produces the best diagnosis results, or (2) allow the user of the diagnostic case-based
reasoning tool to determine the value hierarchy that they feel is appropriate based on their
experience or preference. There are pros and cons for both of these approaches. The

statistical approach may produce better results, at least until the user has had enough
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experience to realize which value hierarchies will perform best in various situations, but
allowing the user to have contro! of the diagnostic process by establishing the value
hierarchy will most likely insure more use, and therefore improved success, of the
diagnostic tool in practical situations.

An important feature of the value hierarchy implemented in ART-IM is that match
and mismatch weights can be changed at run-time. The trouble diagnosis case base
utilizes this feature to allow the diagnostic case feature value hierarchy to be changed
depending on the situation by applying the specified match weights to the appropriate
indexed features. For example the user may determine that outside plant features are
important in diagnosing the current trouble (i.e. wire centre, cable, cable pair). The user
may then change the relative importance of these diagnostic case features, and have them
reflected in the subsequent match.

The mismatch weight is calculated using equation 11.

match weight]

.
> (11

mismatch_weight = —(

3.3 Explanation Facility

An important part of the knowledge base for telecommunication fault diagnosis is
the explanation facility. Instead of the traditional explanation facility, answering the
- questions “why?” and “how?”, this facility answers the question “what” by providing a
description look-up utility that matches field codes contained in the case base with their
associated textual description and provides this description to the user in place of the

cryptic codes and numbers on a case-by-case basis.
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{DEFSCHEMA type-fld0
{(instance-of look-up)
{field-name "type™)
{field-code "0")
{desc "Cannot Call - No Dial Tone™))

Figure 3.4 Sample Description Look-up Schema

The description knowledge is stored in the “desc” slot of instances of the “look-up”
schema representing a specific field and code (see Figure 3.3). The name of the
individual look-up schemas is derived from the case feature that it applies to (e.g. type)
and the value used to represent the description contained in the schema (e.g. “0”) The
description is accessed by matching on the “field-name™ and “field-code” and retrieving
the value in the “desc” slot. The description retrieval is performed by the knowledge base
as pai't of the case refrieval process. When the features of a specific case are being
retrieved, the descriptions associated with that case are also retrieved. This is
accomplished through the use of a retrieval rule and ART-IM user defined functions
which are described in sections 4.4.3.1 and 4.4.3.2.

The description look-up knowledge base consists of the retrieval rule, the
functions, and 81 instances of the look-up schema containing description information for
the possible values of 8 trouble case fields. For a complete list of the look-up schemas,

see Appendix III.

3.4 Integration of Rule and Case-Based Reasoning

As we have seen, rules play an important part in the case-based reasoning cycle
when dealing with certain problem domains such as diagnosis (see section 1.1.3.3).
Combining rule and case-based reasoning can broaden the domain knowledge and in turn,
improve the accuracy of diagnostic knowledge-based systems [Golding and Rosenbloom,
1995]. The following sections describe two natural applications for the integration of

rules with case-based reasoning in diagnosis.
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3.4.1 Adaptation

In the past few years, two classes of case-based reasoners have emerged: the
precedent case-based reasoner, and the problem solving case-based reasoner [Portinale et
al 1993]. In the precedent case-based reasoner, previous solutions of cases similar to the
current one are used as justification for the solution of the current case with very little or
no adaptation. The problem solving case-based reasoner retrieves solutions to previous
similar cases, but the solutions need to be adapted to fit the current situation. In the first
case, pure case-based reasoning seems an adequate solution, but in the second area
another problem solving approach, such as rule-based reasoning, needs to be combined
with case-based reasoning. The diagnostic problem domain falls into the problem solving
category of case-based reasoner, and would therefore benefit frém the integration of
adaptation rules.

In a diagnostic case-based reasoner, the adaption process must be able to find gaps
in the diagnosis explanation and fill in the missing problem causes. The adaptation rules
act as mini-problem solvers in this process using domain and task specific knowledge to
produce a more correct diagnosis than was available from the case base,

The advantage of case-based reasoning using adaptation, is that the rules can be
much simpler than those required by a strictly rule-based system if a strong enough case
base is supplied [Hammond, 1989]. An analogy will help to explain how a bigger case
~ library allows the use of significantly weaker adaptation rules in case-based reasoning
and still obtain strong results [Riesbeck and Schank, 1989]. The process by which most
people learned to calculate logarithms (before calculators) was to look up the number in a
table of logarithms. If the number was in the table the process was complete. If the
number was not in the taBle, the logarithms of the two numbers closest to the target
number were used to approximate the logarithm by applying a ratio formula.

In this analogy the table of logarithms represents the case library, and looking up

the closest numbers is case retrieval. Applying the ratio formulia is the adaptation rule.

50




The rule is much simpler and more efficient that calculating the logarithm from scratch,
but is only effective if the table is complete enough to have two numbers close 1o the
target number. If the table is incomplete, bad results are obtained. Thus we see that the
adaptation process, in domains such as diagnosis, is made much simpler and more

effective with a strong case library.

3.4.2 Answering Questions
One approach to implementing the case-based reasoning in a diagnostic system is
to allow the user to enter symptoms of the problem in natural language, and have the

system ask the user questions about diagnostic case features to continue to narrow down

the list of similar cases. This concept is especially prevalent in some commercial
applications. A clear and natural extension to this concept is touse rules to help the user

answer questions during a case-base search [Tierney, 1995]. Rules can be used to extract

implied information from the symptom description, by matching on specific words or
phrases, and apply this information to pending questions. The rules serve to augment and

magnify the information in the symptom description, moving the diagnostic session along

to a conclusion very rapidly.

Rules can also be used to enforce logical links between answered questions and
unanswered ones, by having low-level questions imply information about context and
domain to higher-level, more general questions. The knowledge that defines these
- implications is contained in rules.

The effect of rules on a diagnostic case-based reasoner when applied to question
answering, is to augment the search criteria automatically by making explicit the
implications of the user's description and answers [Tierney, 1995]. This obviously speeds
up the diagnosis process, and cuts down the number of iterative searches required to reach
a conclusion, because it supplies the early searches with more explicit criteria. In effect,
rules implemented in this way accelerate the process of searching, but do not alter the

outcome. The user can get to the same conclusion without rules, just not as quickly.
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3.5 Trouble Diagnosis Rule Base

The rules included in the trouble diagnosis knowledge base are used to control the
three primary processes of the case-based reasoner (i.e. case-base creation, dynamic
weight, and matching and retrieval)(see section 4.4.3.1). This is done by triggering
subsequent rules, as well as calling the ART-IM user defined functions associated with
each process. For details of the trouble diagnosis rule base see section 4.4.3.1.

The applications for integrating rule and case-based reasoning described above

have not been implemented in the trouble diagnosis knowledge base. Adaptation rules

could be useful in improving the accuracy of fault diagnosis, and is suggested as future

work (see section 5.2).
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4.0 IMPLEMENTATION

4.1 A Prototype Diagnostic Aid Tool |

The customer reported network troubles at NBTel are currently screened by a repair
clerk, whose first objective is to diagnose where the trouble is in the network; i.e. in the
customer premise equipment, the customer's wiring, the cable facilities, or the central
office (i.e. the switch, or frame). The primary tool for determining this is trouble
characteristics and previous experience of the diagnostic expert. If it is determined that
the problem is with the subscriber loop, the trouble can be referred to a tester who will
perform a metallic test to acquire an electrical profile of the wire pair. Once the diagnosis
is complete, the troubles are then dispatched to technicians in the field or in the central
office.

The TElephone Trouble Analysts Assistant (TETAA) prototype system was
implemented as a tool to aid in this process, as well as evaluate the feasibility of the use
of case-based reasoning for fault diagnosis. TETAA was designed to assist in analysis
and diagnosis of customer reported fault reports in a telecommunications network,
specifically in the outside plant and customer premise areas. The prototype was
developed and evaluated with the assistance of the New Brunswick Telephone Company
Limited (NBTel), who provided the access to their fault diagnosis experts, the trouble

case library, and a real-world testing ground for evaluation of the tool.

| 4.2 Functional Architecture
The functional architecture of a system defines, and describes the interaction
between the processes and data entities that make up an application. Figure 4.1 gives an
overview of the TETAA architecture. This diagram describes the input GUI processes
and how they interact with the case data and other components of the knowledge base.
This interaction through the case-based reasoner facilitates the retrieval of matching cases

and triggers the output GUI processes. The diagram also describes how the GUI interacts
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directly with the match weights entity of the case base for user adaptation to specific
search situations. This is shown in the diagram by an arrow passing through the match

welghts component.

Graphical User Interface

Presented
Case

- Modify
Weights

__________________

Case Base

Retrieve
Matching
Cases

Description
Look up

Explanation Facility

Figure 4.1 Overview of TETAA Functional Architecture

The TETAA functional architecture was designed to provide a template for

implementing diagnostic case-based reasoners that could apply to any problem domain.
The design includes the basic required functions for any diagnostic case-based reasoner,
These include the ability to modify match weights, to specify the diagnostic case features
of the current case, and to retrieve a matching case summary and detailed individual case

information. The TETAA architecture does include some domain specific functionality,
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such as the cable fault summary, and is not meant to be a complete architecture for all
problem domains, but it can serve as a generic framework for implementing diagnostic

case-based reasoning systers.

4.3 Technical Architecture

The technical architecture of a system describes the applications physical
configuration as well as the technical design. Figure 4.2 illustrates an overview of the
technical architecture for the TETAA prototype.
4.3.1 TETAA Technical Design

The technical aspects of the TETAA system were designed to provide a generic
framework for implementing diagnosis aid tools in other problem domains. To provide
this flexibility, the technical design is made up of three layers: the presentation layer, the
knowledge access layer, and the knowledge layer. These layers are described in Figure
4.2, by the Graphical User Interface, the Diagnosis Application Programming Interface
(API), and the Expert System Shell, respectively. The layered approach to technical
design and implementation minimizes the impacts of changes in any one of the layers on |
the other two layers. For example, if changes are required to an application screen, only
changes to the presentation layer are needed, unless the changes require additional
diagnostic information. If no additional information is needed on the screen, the other
two layers of the application are not affected. If additional information is required, the
changes in the other layers are minimal, as the changes can be followed logically from
layer to layer. This characteristic of the TETAA design makes maintenance of the
application less complex and therefore less expensive, as well as making the application
much easier to adapt to other diagnosis domains.

Another advantage to the three layer design approach is that it lends itself naturally
to a distributed three-tier client/server configuration. If it were beneficial to have the

TETAA application available to multiple users on a network, the layered design approach
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could be easily implemented with the presentation layer running on the client, the
knowledge access layer running on an application server, and the knowledge layer
running on a knowledge base server. This would require the development of
communication mechanisms between the GUI and knowledge access level, and the

knowledge base, and probably the porting of some of the application code to another

platform. To improve performance, it would also require that the expert system shell be
supported on another platform (e.g. UNIX) for the knowledge base server. The detailed

design and implementation of this architecture is suggested as future work (see section

5.2)
Microsoft Visual Basic Microsoft CH-DLL : ART-hvt
Graphical Diagnosis " Expert System Shell
User API Knowledge Base
Interface .
. Facts. User-Defined Functions
F‘II £
netion Calls 3 Knowled Function Calls N
Interface nowledge — ™ F .
Screens Base E Explanation Knowledge
Inicrface R
Function
E Rule | |Case
2 Base | | Base
Event *
Driven . E rule 1 case 1
Logic Diagnostic Retrieved Case
Information . Information E . .
P EE——
[ . N . .
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Variables Base N . .
and Interface E len
Libraries Function rule casen

Figure 4.2 Overview of TETAA Three-Layer Technical Architecture

4.3.2 TETAA Physical Configuration

The TETAA prototype was developed, tested, and run on an Intel 486/DX based
PC with 16 MB of RAM which ran the Windows 3.1 operating environment.
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The software configuration required a different sofiware platform to support each of |
the three layers. The Graphical User Interface (GUT) was developed using Microsoft
Visual Basic 3.0. Visual Basic provides a graphical development environment which
allows the user to develop applications using the event driven programming paradigm.
Visual Basic allows rapid application development with and flexibility in interfaces to
 external libraries, such as the diagnosis API, systems and databases.

When completed, the TETAA GUI consisted of approximately 4200 lines of Visual
Basic code.

The Application Programming Interface (API) that provides interaction between the
GUI and the knowledge base, was developed using Microsoft C++ compiled into a
Dynamic Link Library (DLL). The DLL is made up of knowledge base interface
funcﬁons that can be called from the GUI. When completed, the Diagnosis API was
made up of approximately 600 lines of C code.

The knowledge layer was implemented using the inference engine, case-based
reasoner and supporting logic representation and data structures of the ART-IM expert
system shell, version 2.5 (see section 3.1). Upon completion the ART-IM rules and

functions contained approximately 650 lines of ART-IM code.

4.4 Implementing the Architecture
Developing the TETAA prototype involved developing the three layers described
“in the technical design (see section 4.3.1) to deliver the functionality described by the
functional architecture (see section 4.2). The following sections describe the details of
the implementation.
4.4.1 The Graphical User Interface
The Graphtcal User Interface (GUI) is a very important component of any

application. The GUI provides the interaction layer between the user and application.
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The usability of the interface will greatly affect the acceptance and success of the
application, no matter how beneficial the underlying functionality may be.
In the TETAA prototype, the GUI was based on consultations with trouble

diagnosis experts as to the interaction flow for retrieval and presentation of diagnostic

information that wounld be the most natural and beneficial to them. The TETAA interface

provides the user with a number of options for diagnosis and analysis of trouble reports.

These include allowing for modification of match weights for retrieval of specific
situations, and summaries of reports on specified cable and pair ranges.

Upon entering the TETAA application, the user is presented with the initial screen,
shown in Figure 4.3, which allows them to launch the specific actions or modules of the
prototype. The additional screens and their functionality are described in the following

sections.

TETAA Beta Protolype Version 1.5

Action Help

Figure 4.3 TETAA Initial Screen
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4.4.1.1 Dynamic Match Weight

The Dynamic Match Weight screen, shown in Figure 4.4, allows the user to define
the value hierarchy or relative importance of the specified diagnostic case features for
subsequent retrievals of matching cases. This screen can be accessed and the match
weights changed at any time during the diagnostic session to reflect different diagnostic

situations where certain features are more or less important in the diagnostic process.

DYNAMIC MATCH WEIGHT

Figure 4.4 TETAA Dypamic Match Weight Screen

The Dynamic Match Weight screen allows the user to turn the matching for
individual features on or off, and provides controls to allow the match weights to be set

with values ranging from 0-100. In this example, the match weights were chosen as

follows: 0 for Telephone No., 80 for GSA, 80 for WC, 50 for Feeder Cable, 30 for Feeder
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Pairs, 40 for Dist. Cable, 20 for Dist. Pairs, 0 for Subscriber Addr., and 0 for Subscriber
Name. Match results shown in the following sections are based on these match weights.

4.4.1.2 Presented Case

The presented case input screen, seen in Figure 4.3, allows the user to enter the
known symptoms of the current case, and to search on these symptoms. The interface
provides flexibility to allow the user to enter any number of features, and utilizes
applicable matching to allow for misspellings or missing words.

The current case shown in Figure 4.5 represents the typical diagnostic case features
that méy be used to diagnose an outside plant trouble. Other features or combinations of

features may be used in different diagnosis situations,

Figure 4.5 TETAA Presented Case Screen
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4.4.1.3 Output Summary

The Output Summary screen, shown in Figure 4.6, provides the primary tool for
diagnosis in the TETAA system. After the search, initiated from the Presented Case
screen, has been completed, the Output Summary screen is displayed containing the 15
cases that most closely match the parameters entered by the user their corresponding
diagnostic information. Each matching case listed has a relative score indicating the
degree of matching between it and the presented case (see section 3.2.2.5). A screen
containing complete details for each of the retrieved cases is made available upon
selection of a specific case. The user is also provided with the option of returning to the

Presented Case screen to enter new values for the diagnostic case features of the

presented case.

Action Help

Outside Plant

Station Wiring
S tation Wiring

2
2
2
2
2
2
2
2
z
2
Z
2
2
2
2

Figure 4.6 TETAA Output Summary Screen
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4.4.1.4 Output Detail
The Output Detail screen, shown in Figure 4.7, displays the detailed information

describing a specific case. The Output Detail screen is accessed by selecting one of the

cases displayed in the matching cases list on the Qutput Summary screen.

An important field used in diagnosing the current trouble is the “Trouble Found

Remarks” field, which is entered by the repair personnel, and describes the diagnosis of
the trouble that was found to closely match the current trouble. This field may provide
the diagnosis for the current trouble.

The Output Detail screen gives the user the option of returning to the matching

cases list to select another case on the list or begin a new search.

rvi
rouble ye ]

Subscoriber Name ;

Figure 4.7 TETAA Output Detail Screen
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4.4.1.5 Cable Trouble Search

The Cable Trouble Search screen, shown in Figure 4.8, allows the user to initiate a
search that will return results describing the number of troubles on specific cable pair
ranges. This functionality is used to identify faulty plant by examining recent trends in
cable troubles. To accomplish this, the user identifies a specific feeder or distribution

cable, the number of pairs to be reported on, and the range of the cable pair groupings.

Figure 4.8 TETAA Cable Trouble Search Screen

4.4.1.6 Cable Trouble Search Results
The Cable Trouble Search Results screen, shown in Figure 4.9, provides the user
with the results of the cable trouble search that was defined on the Cable Trouble Search

screen. The results inform the user of the number of troubles that have recently been
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reported and resolved on pair ranges for the specified cable. This information allows the
user to identify trends in cable faults, and helps to pinpoint faulty cables that may need to
be repaired or replaced. This feature of the system helps to eliminate troubles that may
have occurred if the faulty cable has not been found and repaired.

This screen gives the user the option of printing the trouble report, or returning to

the Cable Trouble Search screen.

Help

Troubles Cahle Pair Ranges

Figure 4.9 TETAA Cable Trouble Summary Screen

4.4.1.7 Save Search Results

The Save Search Results screen, shown in Figure 4.10, allows the user to save

search results for future reference, as well as record any comments about the results that
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they may want to save. In testing of the prototype, the users were encouraged to record
any comments on the usefulness of the system in resolving the current trouble.
The user is presented with this screen after each search, and is given the option of

saving the results, initiating a new search, or returning to the initial TETAA screen.

[=lc: [M5-DOS_B]

Figure 4.10 TETAA Save Search Results and Comments Screen

4.4.2 The Diagnosis API

The diagnosis API provides the mechanism to allow the GUI to communicate with
ART-IM. The API takes the input received from the user through the GUIL and triggers
knowledge manipulation in ART-IM in the form of rules or user defined functjons (see
section 4.4.3). This allows matching on presented case features, and the update of feature
match weights. The API then makes the results of the knowledge manipulation available
to the GUI to complete the diagnostic process.

The diagnosis API is implemented as a Dynamic Link Library (DLL) using

Microsoft C++ and contains a number-of functions that can be called from the Visual
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Basic GUI code. A list of the API functions and their deseription is presented in Table

4.1.

The C code that is used to generate the DLL is contained in the CBRADD.C file

while the DLL itself is contained in a file called CBRCALL.DLL. Under Microsoft

Windows, the DLL file should be placed in the Windows System directory, where it will

automatically be found by the TETAA application.

Table 4.1 Diagnosis API Functions and Descriptions

Function Description

ArtUpdate Updates the match and mismatch weights of the diagnostic case features
by using the ART-IM function a_modify _schema value and asserting the
ART-IM fact start-dwr. -

Artwtinfo Retrieves the current match weights of the djagnostic case features for
display from the match weight storage schema using the ART-IM
function a_get schema_value.

TCUpdate Initiates a trouble search by specifying search parameters using the ART-
IM function a_modify schema_value and asserting the ART-IM fact
stari-cbr,

GetCase Retrieves summary case information for a specific case using the ART-
IM function a gef schema value.

GetClnfo Retrieves detailed case information for a specific case using the ART-IM
function ¢ get schema value.

GetMnum Retrieves the case number key for a specific matched case using the ART-
IM function a_get schema value.

GetMCNum | Retrieves individual values contained in the multi-purpose MCSIRBAN
field for a specific case by calling the ART-IM user defined function
split-up-mc.

GetMC Retrieves description information for the MCSIRBAN field values for a
specific case by using the ART-IM function a_ger schema value.

SUMUpdate | Specifies the values of the regular diagnostic case features for a cable
trouble summary search by using the ART-IM function
a_modify schema_value.

RNGSrch Initiates a cable pair range search by specifying the pair range and calling

the ART-IM user defined function range-search.
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4.4.3 Development in ART-IM

In the ART-IM environment, there are three files that are essential for the initial

startup and operation of the TETAA prototype. These files are FDCBR.ART,

MWEIGHTS.ART, and EXPSCH.ART. The primary ART-IM file is FDCBR.ART

which contains the rule base and user defined functions which provide the knowledge

manipulation within ART-IM. The MWEIGHTS.ART file contains a schema which is

used to store the current match-weight values of the diagnostic case features, and some

state information about the values, such as whether they have been changed in the GUI

since the last reset. The EXPSCH.ART file contains the schemas which provide the

description knowledge for the explanation facility.

Once these files have been loaded on initial startup of the system, a file called

SCHEMAL.ART contains all of the necessary schema information, including all case

schemas and explanation schemas, so that only this file and FDCBR.ART need to be

loaded in the future. A sample trouble schema from the SCHEMA.ART file is shown in

Figure 4.11.

(DEFSCHEMA case2(2
{INSTANCE-OF TROUBLE)
(ACC-INFO" ™
{ADDRESS "P202 RL290"}
{APP-DATE "01251200™)
{AFPPNTMT"YY ™)
{AUX-LINE "0000000")
{BATCH-DATE "$30125")
(CABCMT-REM " '}
{CABLE-LOC"™)
{(CABLE-NUM " ™)
(CAT"Y"™)

(CARRIER "Y ")
({CATEGORY 0)

(CAUSE "5")
(CAUSE-SUB"")
{(CLASS-OF-SERVICE "G3")
(CLOSE-DATE "01251126")
(CLOSED-BY "1")
(CO-EQUIP 101319)
(CO-GROUP "P202 RL290 ™)
(COS-3UB" ")

(DIS-DATE "0125™)
(DIS-TIME "0823")
(DISP-SUB " ")

(DISPOSITION "09")
(DIST" C1")

(DPAIR "106")
(DPATR25 "101")
(DPAIRS0 "101")
(EQUIP-TYP "4")
(EST-DATE “0000")
(EST-TIME "0000")
(EXTEN " ")

(FCI " ||l)

(FEEDER " DM11")
(GSA "HVS")
(MCSIRBAN "NNN YYYNNY ")
(NET-NUM " ™)
{NTR_I'ND "N")
(NUMBER-KEY 202}
{OP-INIT "ABC")

(PATR "17"}

(PATR25 "1")

(PAIRS0 "1")
(PHONE-REM " %)
(PRITY-IND "2")
(REC-BY "9")
(REC-DATE "01250616")

67

(REF-DATE "0000")
(REF-IND "N")
(REF-ORG-IND " "}
(REF-TIME "6000")
(RPM-INIT "ATD"}
(SR-CNT “000")
(SR-IND "Y*)
(SRI"N")
(STUDY "00")
(SUB-NAME "KEIRSTEAD F*)
(TC-REM "UNKNOWN ")
{TEL-NUMBER "5553069")
(TESTED-BY "1")
{TF-REM "FOK ")
{TI-REM "3RD REPORT ON CARR ")
{TRBL-REM "NOISY CUTS OUT")
{TROUBLE-TYPE ¥1")
{(TSTR-INIT "BCL")
(TT-CODE "R")
(TT-DATE "0125")
{TT-IND " ")
(TT-TIME "0709")
(WEC M HVS™Y)

Figure 4.11 Trouble Schema from SCHEMA.ART




The file and process interaction described above is illustrated in Figure 4.12. In the
diagram, the boxes represent physical ASCII files that store logic or knowledge, the
ellipses represent processes, and the arrows represent the flow of data between to and

from processes.

Weight Definitions
(e.g. MWEIGHTS.ART),

Explanation
Knowledge
(e.g. EXPSCH.ART)

ART-IM Functions
and Rulcs
{e.g. FDCBR.ART)

TRACE Trouble
File
(e.g. TRACE.TXT)

Y

TETAA Case-Base
Creation Process

Trouble Case Base
Binary File
(e.g. TROUBLE.CBR)

Y

Trouble and Explanation|
Schema Information
{c.£.SCHEMA.ART)

User Interface
User Input and Case
Display

TETAA Dynamic Weight,
Match and Retrieval
Process

Figure 4.12 TETAA File and Process Interaction

4.4.3.1 The Rule Base

The ART-IM rule base contains 8 rules that manage the three basic processes of the

TETAA system. For a description of these rules, see Table 4.2.
The rules BEGIN-CBR and WRITE-TBASE are used to create the initial case base

by reading the TRACE.TXT input file, computing derived features, assigning default
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match weights, and adding the cases to the case base. Once this is complete, the case
base is saved in a binary file called TROUBLE.CBR and all schema information that is
currently in the knowledge base is written to the SCHEMAL.ART file mentioned in the
previous section (see Figure 4.12). These rules are only fired when creating a new case
base.

The rules BEGIN-DWR, CHANGE-WEIGHTS-DWR, and BASE-TERM-DWR
perform the function of managing the dynamic weight process. These rules are fired if
the user has changed the value hierarchy of the diagnostic case features, and updates the

attributes of the case base accordingly.

(defrule CASE-MATCH-CBR
(start-cbr t)
=
{(init-case-base-cbr)
{(send read trouble-case-base)
{send set trouble-case-base :threshold 0)
(send set trouble-case-base :max-matches 15)
(send set trouble-case-base :default-match-type :string)
(bind ?*match-num* (send match trouble-case-base trouble-case))
(modify-schema-value match-num num-match (sprintf "%d" ?*match-num*))
(bind ?*ret-num* 0)
(assert (get-cases t)))

Figure 4.13 CASE-MATCH-CBR Rule
The rules CASE-MATCH-CBR (shown in Figure 4.13), CASE-FIND, and BASE-

TERM-CBR provide the match and retrieval functionality of the TETAA system. These

rules are fired if a user has initiated a search on a current case.
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Table 4.2 ART-IM Rules and Descriptions

Rule

Deseription

BEGIN-CBR

Creates a new case base from the TRACE input file.
Reads the file, determines derived features and adds the
cases to the case base. This rule calls the ART-IM user
defined functions init-case-base-chbr, add-slots-dwr, and
find-range and also triggers the WRITE-TBASE rule.

WRITE-TBASE

Saves the just created case base , terminates the case
base, and dumps all of the schemas currently in the
knowledge base to an output file to be used at next start-

up.

BEGIN-DWR

Initiates the dynamic weight process. This rule calls the
ART-IM user defined function irit-case-base-dwr and
triggers the CHANGE-WEIGHTS-DWR rule.

CHANGE-WEIGHTS-DWR

Updates the match and mismatch weights of the
diagnostic case features. This rule calls the ART-IM user
defined function sef-sum-weights and triggers the BASE-
TERM-DWR rule.

BASE-TERM-DWR

Completes the dynamic weight process by terminating
the case base. '

CASE-MATCH-CBR

Initiates the case-based reasoning match process and
performs the match on the current diagnostic case
features. This rule calls the ART-IM user defined
function init-case-base-cbr, and triggers the CASE-FIND
rule.

CASE-FIND

Retrieves the individual cases specified by the match and
their associated features. This rule calls the ART-IM user
defined function getf-values, and triggers the BASE-
TERM-CBR rule.

BASE-TERM-CBR

Completes the case-based reasoning process by
terminating the case base

4.4.3.2 User Defined Functions

The ART-IM user defined functions implemented in the TETAA system are

described in Table 4.3. These functions are convenient for implementing knowledge

manipulation as they can be called from either the Diagnosis API, individual rules, or

another function, thus making them very flexible. These functions are also useful as they
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can be used to modularize the sometimes cryptic ART-IM logic and create functions that

can be reused across ART-IM implementations.

Table 4.3 ART-IM User Defined Functions and Descriptions

Function

Description

add-slots-dwr

Initializes the diagnostic case feature slot match types and default
match and mismatch weights.

cal-mmwt

Calculates the mismatch weight bases on the specified match
weight.

init-case-base-dwr

Initializes the case base in the dynamic weight process.

init-case-base-cbr

Initializes the case base in the case-based reasoning process.

split-up-~mc

Splits up the MCSIRBAN fields for a specified case into individual
values.

look-up-desc

Facilitates explanation by matching on the description schema for a
specified case feature.

get-values

Manages all of the description look-ups for a specified case. This
function call the look-up-desc function,

print-schema

Prints a specified schema to a specified print stream

find-range

Calculates the derived value to store in the range features when a
case is being added to the case base.

set-sum-wghts

Updates the match and mismatch weights of diagnostic case
features based on user specification. This function calls the cal-
mmwt function.,

Range-search

Performs the cable pair range matching on the specified pair range.

4.5 The Experiment

To evaluate the feasibility of the cased-based approach to fault diagnosis, a trial in a

real-world situation was proposed. NBTel agreed, and a beta version of the TETAA

prototype was installed in the Fredericton test and repair center at 11:00 am, on January

12,1993. The Fredericton center is responsible for isolating, testing, diagnosing and

dispatching all trouble reports for approximately one quarter of the NBTel

telecommunications network in New Brunswick.
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The tool was evaluated over a two month period by repair personnel experienced in
isolating and diagnosing telecommunication network troubles. Experiments were
conducted on a number of Geographical Serving Areas (GSA’s), which define specific
phystcal network locations, ﬁthin New Brunswick. The GSA’s were selected based on a
recent increase in the number of trouble reports in these areas that were proving difficult
to diagnose. The selected GSA’s included Harvey Station, Boiestown, Doaktown,
Chipman and Hoyt, which combined, average approximately 4000 trouble reports per
year. This represents about three percent of the total annual trouble rate for the province,
which is approximatety 140,000 troubles.

The case bases were created using 90 days of accumulated trouble data, taken from
the NBTel TRACE system. The tool was evaluated on two Intel 486DX based
computers. For performance reasons, separate case bases were created for each GSA,
with an average of 200 cases for each test area.

The prototype was used in a number of ways by the evaluators, including (1) to aid
in the isolation of the disposition of troubles in the test areas so that line testing could be
done, (2) to analyze trouble report trends to aid in fault detection and reduction,
specifically in the outside plant component of the network, and (3) to retrieve specific
diagnosis information for similar trouble reports to aid in dispatch and repair.

Two mechanisms were implemented to receive feedback and results from the

- evaluators. A feed back summary form was developed and distributed to the test center
personnel (see Appendix II), who were encouraged to provide any comments on the
prototype that they felt would be useful. As well, the Save Search Results screen (see
section 4.4.1.7) was implemented as part of the tool. This gave the evaluators a chance to
save results for future use, but was also useful in collecting comments and resuits for
enhancement and evaluation of the tool.

Three repair centre personnel filled out the feedback questionnaires and Save

Search Results comments as they thought necessary. The comments field was used on

72




most occasions to describe problems encountered during a search, while the feedback
forms were mainly used to document suggested enhancements to the system.. In all, 7
feedback forms and 11 documented comments were collected over the two month period.

During the course of the evaluation, six versions of the prototype were instalied.
Various upgrades were used to fix application bugs, as well as provide new finctionality
as requested by the evaluators. The case bases were also updated regularly as new

trouble history became available for the selected GSA’s from the TRACE system.

4.6 Results

Over the two month evaluation period the TETAA tool was used to aid in the
isolation and diagnosis of over 150 troubles that were reported in the areas under
consideration. It was also used to analyze over 1000 recently résolved troubles. The
trouble diagnosis personnel were asked to provide evaluation information in three main
areas. The following sections summarize their feedback.
4.6.1 Usefulness

At the beginning of the evaluation, the repair personnel were courteous but
skeptical as they were trained in the operation of the tool. They thought the tool was a
novel idea, and were open to its use, but were somewhat doubtful as to if it would provide
them with any useful information over what they currently had. As they began to use the
tool, limited success in aiding in the isolation and diagnosis of the reported troubles was
observed. The tool provided useful isolation or diagnosis information for approximately
one out of every eight troubles. This level of success was observed throughout the
remainder of the evaluation.

As the evaluation continued, the repair personnel began to see potential for the tool
in an area that had not been expected or addressed by the developer. The tool had the
capability to match on specific diagnostic case features, some of which described specific

outside plant facilities, and it could also be used to provide information on the recent
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trouble history of these outside plant facilities. This information would allow the repair
personnel to identify faulty plant (e.g. cables and pair ranges), thus allowing this plaat to
be repaired or replaced and reduce trouble report rates through preventative maintenance.

The Cable Trouble Search and results (see sections 4.4.1.5 and 4.4.1.6) were
mmplemented based on this feed back. Although the tool contimued to be used for trouble
isolation and diagnosis, throughout the second half of the evaluation period the major use
of the application was to indicate potentially faulty plant.
4.6.2 Problems

Many technical problems were reported during the evaluation of the TETAA
system. Most of these were due to programming errors that were not detected during
testing, or problems with the users PC’s. The one major recurring problem was the slow
performance of the application during matching. This problem was also encountered
during testing, and was partially solved by dividing the cases into separate case bases for
individual GSA’s. Even with relatively small case bases (the average was 200 cases), the
matching times still ranged from 30 to 45 seconds. Although not totally unacceptable by
the users, this does seems to be a long time for such a small number of cases.

The slow performance of ART-IM for large case bases has also been reported in
other work [Taylor, 1994], and is not specific to this implementation. ART-IM uses a
memory intensive matching algorithm which maintains a tree-like structure in memory
- for the case base, which can result in slow performance, especiaily for machines with
limited or slow memory. The resolution of this issue is important to the acceptance and
success of the TETAA tool in a commercial environment. Some suggestions for
advancement in this area are included in a later section that discusses future work (see
section 5.2).
4.6.3 Suggested Improvements

Throughout the course of the evaluation many improvements were suggested for

the TETAA system. Many of these were cosmetic in nature, or required minor
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development to implement such as additional fields on certain screens, the ability to print
and save results, or sort matched cases by a certain feature on the Matching Cases List if
they had the same score.

Other suggested improvements were more major in nature and have much more
effect on the usefulness of the tool. One of these improvements, whose implementation
was described in previous sections, was the addition of the Cable Trouble Search. This
addition added an entirely new dimension to the tool, and proved to be the most useful
feature in the final evaluation.

The repair personnel also suggested further development to increase the anaiytical
and diagnostic potential of the tool. They observed that the addition of diagnostic case
features, such as line test results, would be very beneficial in indicating trouble cases with

the same diagnosis. This information is currently not available as part of the trouble

profile, but should be added in the future (see section 5.2).
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5.0 CONCLUSIONS

5.1 Summary

Research in the field of case-based reasoning has progressed rapidly in recent years.
This growth has fueled the adaptation of case-based reasoning for practical applications
in commercial domains. This thesis provides justification and a framework for
mmplementing case-based reasoning in commercial fault diagnosis domains.

The telecommunication fault diagnosis categorization model provides an important
analytical tool for fault reduction. Its structure is applicable to many other fault diagnosis
situations, and can be adapted to categorize faults in any diagnosis domain that utilizes a
distributed system and provides a maintenance service (e.g. cable television networks,
power distribution networks, computer hardware service).

The TETAA diagnostic aid tool was implemented using Microsoft Visual Basic for
the GUI, Microsoft C++ for the diagnosis AP, the expert system shell ART-IM, and an
IBM Intel 486/DX based PC. This system provides the basis for a diagnostic case-based
reasoner but can be evolved to provide improved analytical and diagnostic performance. |
For example, enhanced explanation, adaptation, and additionally, more applicable
diagnostic case features.

The generic design of the TETAA functional and technical architecture makes the
software and knowledge base structure readily adaptable to many other case-based
reasoning applications, and therefore useful as a template when beginning development
of other case-based reasoning systems.

Case-based reasoning is applicable to the fault diagnosis problem, as is indicated by
the demonstrated potential of the TETAA prototype during the NBTel evaluation.
TETAA was successfully used to analyze over 1000 fault cases in an existing

telecommunication network. The feedback on TETAA has been very positive and further
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development of the tool will allow for diagnosis resuits based on more in-depth network
information.

The TETAA prototype is a functioning diagnostic case-based reasoning tool that
has benefited {rom feedback coliected from a practical evaluation, and a conference
presentation [Cookson and Nickerson, 1993]. The refinement of this system based on
this feedback has allowed the TETAA tool to evolve to a point where it can function as a
useful commercial application, and also serve as a basis for further research in addressing

the fault diagnosis problem using case-based reasoning.

5.2 Future Work

Throughout the course of this research, the functionality and performance of the
TETAA diagnostic aid tool has consistently been improved ba'séd on system testing,
evaluation feedback, and speed optimization. This work has allowed the TETAA system
to evolve to its current state, but there are still many improvements to be made to allow it

to reach its full potential. Following are some suggestions for future work:

1. Continued testing and optimization of the TETAA. code.

2. The addition of the trouble found field to the TRS extract and the case base
structure. This will allow for complete categorization of the troubles using the
trouble diagnosis model.

3. Investigate the design and implementation of adaptation rules to improve
diagnostic performance.

4. Add more detailed network information that will contribute diagnostic value to
the case base (e.g. the line test results obtained during the trouble diagnosis

process).
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. Implement learning by adapting the logic that is used to create a case base to
allow the addition of an individual current cases if a satisfactory match is not
found.

. Design and implement an enhanced explanation facility that will determine why
a match score was generated, and communicate how each diagnostic case
feature contributed to the score.

. Implement retrieval of case information from a database rather than schemas
stored in memory. This will reduce the memory requirements of the TETAA
application and provide considerable speed improvements.

. Further address the speed problem by taking advantage of technical
advancements, both in case-based reasoning technology as well as
improvements in microprocessor and memory technology.

. Investigate a distributed implementation for the TETAA system (see section
4.3.1). This will make it more attractive in commercial applications, as well as
improve the speed, as this will allow for more powerful UNIX processors to be

used.
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APPENDIX 1 A Trouble Diagnosis Model

| Trouble Category |

Trouble Type (Symptom)

| Cannot Call - No Dial Tone |

{ Cannot Call - Other |

| Transmission Noise |

| Cannot Be Called |

| Memory Service Failure |

| Data Failure |

| Physical Condition |

| Miscellaneous |

|
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Trouble Disposition

[ Outside Plant |

' G

| P |

| Station Set

—— |__Station Wiring l

| Other Station Equip. |

———— [No Problem Found ____]

(D
D
(D

| Test OK

| Found OK In

| Found OK Qut

| Referred Out |
l

[ Subscriber Carrier|

| Customer Action |

I

Customer Provided Equipment

000

| Authorized

0

| Unauthorized
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Outside Plant Trouble Found Categories

()

Defective Cable Pair

Open Cable Pair

Incorrect Cable Pair Assignment

Defective Cable

Open Jumber in Jumper Wired Interface (JWI)

Defective Binding Post Lead

Binding Post Lead Open

Defective NEZ Wire
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Inside Plant Trouble Found Categories

&)

Defective Jumper

Open Jumper

Defective LLE

Defective SLR

Switch Hardware Problem

Switch Software Problem

Incorrect Cable Pair Assignment

DPefective Carbons

Open Carbons
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Station Set Trouble Found Categories

Defective Receiver Cord

Defective Hand Set

Defective Dial / Touchtone Pad

Defective Set

Defective Base Cord

Defective Receiver Unit

Defective Transmitter Unit
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Station Wiring Trouble Found Categories

Defective Jack

Corroded Wiring

Defective Outside Wiring

Ground In Wiring

Defective Connecting Block

Defective Inside Wiring

Defective Protector

Defective Carbons

Defective Protector

Ground Not Connected

Defective Ground Clamp
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Other Station Equipment Trouble Found Categories

O,

Defective SX200 Equipment

Defective Norstar Equipment

Defective SP1 Equipment

Defective V12 Equipment

Defective Tye Equipment

Defective Button / Buzzer

Defective Transformer

Defective Extension Ringer
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&

Referred Out Trouble Found Categories

Referred To Assigning

Referred To Central Office

Reffered to Technical Assistance Centre

Referred To Business Office

Referred To Engineering

Referred To Data

Referred To Construction
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Subscriber Carrier Trouble Found Categories

Defective Subscriber Carrier
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Customer Action Trouble Found Categories

)

Receiver Off Hook

Calling Party Hold

Damage By Customer
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Authorized Customer Provided Equipment Trouble Found Categories

(10)

Defective Fax Machine

Defective Modem

Defective Set
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Unauthorized Customer Provided Equipment Trouble Found Categories

Defective Unauthorized Customer Provided Equipment
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APPENDIX IT TETAA Feedback Form

Summary of Feedback on TETAA Version 1.x

Performance\Usefulness :

Problems:

Suggested Improvements:

Further Comments:
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APPENDIX III TETAA Explanation Facility Look-Up Schemas

{DEFSCHEMA look-up
(field-name)
{field-code)

{desc))

{DEFSCHEMA psc-fld1
(instance~of look-up)
(field-name "psc'")
{field-code "1")

(desc "Newecastle"))

(DEFSCHEMA pse-f1d2
(instance-of look-up)
(field-name "psc")
(field-code "2™)

(desc "Moncton™))

(DEFSCHEMA psc-fld3
(instance-of look-up)
{(field-name "psc")
(field-code "3™)

(desc "Saint John™))

(DEFSCHEMA psc-fld4
(instance-of look-up)
(field-name "psc”)
(field-code "4™)

(desc "Fredericton"))

(DEFSCHEMA cat-fld0
(instance-of look-up)
{(field-name "cat™)
(field-code 0)

{desc "Customer - Direct™))

(DEFSCHEMA cat-fld1
(instance-of look-up)
(field-name "cat™)
(field-code 1)

{(desc "Customer - Relayed"))
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(DEFSCHEMA cat-fld2
(instance-of look-up)
(field-name "cat™)
(field-code 2)

(desc "Customer - RAC"))

(DEFSCHEMA cat-f1d3
(instance-of look-up)
{field-name "cat")
(field-code 3)

{(desc "Employee™))

(DEFSCHEMA cat-fld4
(instance-of look-up)
(field-name "cat™)
(field-code 4)

(desc "Referred In™))

{(DEFSCHEMA cat-fld>
(instance-of look-up)
(field-name "cat™)

(field-code 5)
(desc "Customer - Excluded™))

(DEFSCHEMA cat-fldé
(instance-of look-up)
(field-name "cat")
(field-code 6)

(desc "LIT"Y)

(DEFSCHEMA cat-f1d7
(instance-of look-up)
(field-name "cat")
(field-code 7)

(desc "LIT Cancel"))

(DEFSCHEMA mcsirban-fld1
{instance-of look-up)
(field-name "mesirban™)
(field-code "1")

(desc "Work Comment™))
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(DEFSCHEMA mcsirban-fid2
(instance-of look-up)
(field-name "mcsirban'")
(field-code "2™)
(desc "Appointment Comment™))

(DEFSCHEMA mcsirban-fld3
(instance-of look-up)
(field-name "mcsirban™)
(field-code "3")

(desc "Subsequent Report"))

(DEFSCHEMA mcsirban-fld4
(instance-of look-up)
(field-name "mcsirban™)
{field-code "4™
(desc "I Report™))

(DEESCHEMA mcsirban-fld5
(instance-of look-up)
(field-name "mcsirban")
(field-code "5™)

(desc "Repeat Report™))

(DEFSCHEMA mcsirban-fid6é
(instance-of look-up)
(field-name "mcsirban")
(field-code "6")

(desc "Displayed Outside™))

(DEFSCHEMA mcsirban-fld7
(instance-of look-up)
(field-name "mecsirban™)
(field-code "7™)

(desc "Out of Service"))

(DEFSCHEMA mcsirban-fld8
(instance-of look-up)
(field-name "mesirban")
(field-code "8")

(desc "Repaired Phone Centre"))
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(DEFSCHEMA mcsirban-fld9
(instance-of look-up)
(field-name "mesirban')
(field-code "9")

(desc "No Access™))

(DEFSCHEMA mgcsirban-fld0
(instance-of look-up)
(field-pame "mesirban")
(field-code "0'")

(desc "Missed Appointment™))

(DEFSCHEMA mcsirban-flda
(instance-of look-up)
(field-name "mesirban')
(field-code "A™)

{desc "Received After 5 PM™)

(DEFSCHEMA mcsirban-flde
(instance-of look-up)
(field-name "mesirban™)
(field-code "C™)

(desc "Carried Over"))

(DEFSCHEMA class-fld0
(instance-of look-up)
(field-name "class™)
(field~code "00"™)

{desc "Spare™))

(DEFSCHEMA class-fld1
(instance-of look-up)
(field-name "class™)
(field-code "01")

(desc "Spare"))

(DEFSCHEMA class-f1d2
(instance-of look-up)
(field-name "class™)
({field-code "02™)

(desc "WATS"))
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(DEFSCHEMA class-fld3
(instance-of look-up)
(field-name "class")
(field-code "03™)

(desc "Residence"))

(DEFSCHEMA class-fld4
(instance-of look-up)
(field-name "class")
(field-code "04™)

{desc "Business"))

(DEFSCHEMA class-fld5
(instance-of look-up)
(tield-name "class™)
(field-code "05™)

(desc "PBX™)

(DEFSCHEMA class-fldé
(instance-of look-up)
(field-namte "class")
(field-code "06™)

(desc "Centrex"))

(DEFSCHEMA class-fld7
(instance-of look-up)
(field-name "class™
(field-code "07™)

{desc "Coin"))

(DEFSCHEMA class-fld8
(instance-of look-up)

- (field-name "class")
(field-code "08")
(desc "Spare"))

(DEFSCHEMA class-fld9
(instance-of look-up)
(field-name "class™)
(field-code "09")

(desc "Spare"))
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(DEFSCHEMA class-fld10
(instance-of look-up)
(field-name "class™)
(field~code "10™)

(desc "Spare"))

(DEFSCHEMA class-fld11
(instance-of look-up)
(field-name "class")
(field-code "11")

(desc "Rural™))

(DEFSCHEMA class-fld12
(instance-of look-up)
(field-name "class")
(field-code "12")

{desc "Joint Service™"))

(DEFSCHEMA class-fld13
(instance-of look-up)
(field-name "class™)
(field-code "13™)

(desc "JET"))

(DEFSCHEMA class-fld14
(instance-of look-up)
(field-name "class™)
(field-code "14")

{desc "Unclassified"))

(DEFSCHEMA class-fld15
(instance-of look-up)
- (field-name "class")
(field-code "15")
(desc "Private Line - Telegraph™)

(DEFSCHEMA class-fld16
(instance-of look-up)
(field-name "class")
(field-code "16™)
(desc "Private Line - Telephone™))
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(DEFSCHEMA class-fid17
(instance-of look-up)
(field-name "class")
(field-code "17™)

(desc "4 Party"))

(DEFSCHEMA class-f1d18
(instance-of look-up)
{(field-name "class™)
(field-code "18")

(desc "Spare™))

(DEFSCHEMA class-f1d19
(instance-of look-up)
(field-name "class™)
(field-code "19™)

(desc "Spare"))

(DEFSCHEMA type-fld0
(instance-of look-up)
(field-name "type")
(field-code "0™)
(desc "Cannot Call - No Dial Tone™))

(DEFSCHEMA type-fld1
(instance-of look-up)
(field-name "type")
(field-code "1™)

(desc "Cannot Call - Other™))

(DEFSCHEMA type-fld2
(1nstance-of look-up)
_ (field-name "type™)
(field-code "2™)
- (desc "Transmission Noise"))

(DEFSCHEMA type-fld3
(instance-of look-up)
(field-name "type")
(field-code "3™)

(desc "Cannot be Called"))
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(DEFSCHEMA type-fld4
(instance-of look-up)
{(field-name "type™)
(field-code "4")
(desc "Memory Service Failure™))

(DEFSCHEMA type-fld5s
(instance-of look-up)
(field-name "type™)
(field-code "5™)

(desc "Data Failure™))

(DEFSCHEMA type-fld6
(instance-of look-up)
(field-name "type")
(field-code "6")

{desc "Physical Condition"))

(DEFSCHEMA type-fld7
(instance-of look-up)
(field-name "type™)
(field-code "7")

(desc "Miscellaneous™))

(DEFSCHEMA disp-f1d0
(instance-of look-up)
(field-name "disp")
(freld-code "00™)

(desc "Referred Out™))

(DEFSCHEMA disp-fldil
{(instance-of look-up)
(field-name "disp")
(field-code "01")

(desc "Station Set"))

(DEFSCHEMA disp-fld2
(instance-of look-up)
(field-name "disp")
(field-code "02")
(desc "Other Station Equipment"))
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(DEFSCHEMA disp-fld3
(instance-of look-up)
(field-name "disp™)
(field-code "03™)

(desc "Station Wiring™))

(DEFSCHEMA disp-fld4
(instance-of look-up)
(field-name "disp™)
(field-code "04")

(desc "Outside Plant™))

(DEFSCHEMA disp-fld5
{(instance-of look-up)
(field-name "disp™)
(field-code "05™)

{desc "Central Office™))

(DEFSCHEMA disp-fld6
(instance-of look-up)
(field-name "disp")
(field-code "06™)

(desc "Customer Action”))

(DEFSCHEMA disp-fld7
(instance-of look-up)
(field-name "disp")
{field-code "07")

{desc "Test OK"))

(DEFSCHEMA disp-fld8
(instance-of look-up)
(field-name "disp™)
(field-code "08")

{(desc "Found OK - In"))

{DEFSCHEMA disp-fld9
(instance-of look-up)
(field-name "disp")
(field-code "09™)

(desc "Found OK - Out™))
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(DEFSCHEMA disp-fld10
(instance-of look-up)
(field-name "disp™)
(field-code "10™)

(desc "Subscriber Carrier”))

(DEFSCHEMA disp-fldi1
(instance-of look-up)
{field-name "disp™)
(field-code "11™)
{desc "Customer Provided Equipment - Authorized"))

{DEFSCHEMA disp-f1d12
(instance-of look-up)
(field-name "disp")
(field-code "12™)
(desc "Customer Provided Equipment - Unauthorized"))

(DEFSCHEMA cause-f1d0
{(instance-of look-up)
(field-name "cause™)
(field-code "0™)
(desc "Man Made - Telephone Company™))

(DEFSCHEMA. cause-fld1
(instance-of look-up)
(field-name "cause™)
(field-code "1')

{desc "Man Made Other"))

{DEFSCHEMA cause-fld2
(instance-of look-up)
(field-name "cause")
(field-code "2™)

(desc "Plant Equipment™))

(DEFSCHEMA cause-fld3
{(instance-of look-up)
(field-name "cause”

(field-code "3")
(desc "Weather™)
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{DEFSCHEMA cause-fld4
(1nstance-of look-up)
(field-name "cause"
(held-code "4™)

{desc "Other"))

(DEFSCHEMA cause-fld5
(instance-of look-up)
(field-name "cause"
(field-code "5™)

(desc "Unknown™))

(DEFSCHEMA time-fld0
(instance-of look-up)
(field-name "time")
(field-code "0")

(desc "Under 1/2 Hour"))

(DEESCHEMA time-fld1
(instance-of look-up)
(field-name "time™)
(field-code "1")

(desc "1/2 - 1 Hour"))

(DEFSCHEMA time-fld2
(instance-of look-up)
(field-name "time")
(field-code "2")

(desc "1 - 2 Hours"))

(DEFSCHEMA time-f1d3
(instance-of look-up)
. (field-name "time")
(field-code "3™)
(desc "2 - 4 Hours™))

(DEFSCHEMA time-fld4
(instance-of look-up)
(field-name "time")
(field-code "4")

(desc "4 - 8 Hours"))

107




(DEFSCHEMA time-fldS
(instance-of look-up)
(field-name "time")
(field-code "5")

{desc "8 - 12 Hours™))

(DEFSCHEMA time-fld6
(instance-of look-up)
(field-name "time")
(field-code "6™)

(desc "12 - 24 Hours"))

{(DEFSCHEMA time-fid7
(instance-of look-up)
(field-name "time")
(field-code "7")

(desc "Over 24 Hours™))

(DEFSCHEMA time-fld8
(instance-of look-up)
(field-name "time")
(field-code "8")

(desc "Over 48 Hours™))

(DEFSCHEMA time-f1d9
(instance-of look-up)
(field-name "time")
(field-code "9™)
(desc "Over 48 Hours No Access"))
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