BOTTOM UP PROCEDURES TO CONSTRUCT
EACH MINIMAL CLAUSE TREE ONCE

by
J.D. Horton and Bruce Spencer

TR97-115, July 1997

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 4563-4566
Fax: (506) 453-3566

E-mail: fcs@unb.ca

www: http//www.cs.unb.ca

Bottom up Procedures to Construct each
Minimal Clause Tree Once

J. D. Horton and Bruce Spencer

Facalty of Computer Science, University of New Brunswick
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
Jjdh@unb.ca, bspencer@unb.ca, hitp:/ www.cs.unb.ca

Ahstract. Bottom up procedures are introduced for constructing only
minimal clause trees. T'wo general methods are proposed. The first per-
forms surgery on each non-minimal clause tree; the second ignores non-
minimal clause trees and retains only minimal ones. By ranking open
leaves and activating/deactivating leaves according to the ranking, the
second method constructs each minimal clause tree exactly once. Meth-
ods for incorporating subsumption are described and a protetype system
for propositional logic is compared against OTTER.

1 Introduction

Clause trees, introduced in [4], provide a framework for understanding the in-
ternal structure of binary resolution proofs, and a data structure that leads to
implementations that exploit the new ideas. The important notion of a minimal
clause tree extends the usual restrictions for a resolution derivation: specifically
to avoid tautological clauses and to merge (factor} identical literals in a clause.
In a non-minimal clause tree, tautologies or missed opportunities for merging
that are hidden, can be identified easily (efficient algorithms exist). Given a
non-minimal clause tree, the operation of surgery takes the tree apart and puts
some of the pieces back together to form a new, smaller clause tree that does
not contain the tautology, or does the merge that was missed. Alternately, since
a minimal clause tree must exist, a clause tree procedure can avoid deriving any
non-minimal trees. Many derivations correspond to one clause tree, so this aliows
a procedure to avoid many derivations.

Top down procedures for building (minimal) clause trees are presented in
[3,4]. Bottom up procedures are described in this paper. Section 2 informally
introduces clause trees, merge paths, tautology paths, derivations of clauge trees,
and the noticn of & hidden tautology or missed merge. The formal definitions
follow in Sections 3 and 4.

Section 5 describes resolution procedures in terms of the sequence of clauses
they generate. One procedure is said to subsume another if each clause generated
by the first subsumes some clause generated by the other. For every binary
resolution procedure there exists a clause tree procedure that subsumes it — one
that converts any non-minimal trees it constructs, into minimal trees. Surgery
is not used in the implementations reported in this paper.

The implementation we describe retains only minimal clause trees. Minimal-
ity is combined with another strong restriction, based on rank and activity of
nodes in the clause tree. This restriction is new, but bears a resemblance to a
well-known ordering restriction of resolutionf5]. The new restriction combined
with minimality guarantees not only completeness; it also guarantees that each
minimal clause tree is constructed ezactly once.

When the minimality and the rank/activity restrictions are combined with
subsumption, completeness is lost. A new variant of subsumption for clause trees,
contracting subsumption, can be used safely with the new restrictions, but it in-
troduces redundancy. So we provide sirict increasing subsumption which works
with rank/activity and minimality, and still avoids redundancy. Experiments
with a procedure that combines minimality, rank and activity, with strict in-
creasing subsumption and contracting subsumption, reveal that it often requires
fewer inferences than OTTER. 3.0[6].

2 An intuitive exposition of clause trees

When one uses binary resolution, one starts with a set of clauses, each of which
is the disjunction of & set of literals, and applies resolution to them until the
clause that one wants is found. This clause is the empty clause if one is looking
for a contradiction. Usually a clause is represented as a set of literals, but in this
paper a clause is represented by a tree in graph theory ferms. An input clause is
represented by a clause node connected to atom nodes each of which is labeled
by an atom. A +(—) sign labels the edge joining the atom node to the clause
node if the atom appears positively (negatively) in the clause. Figure 1{A) shows
the tree representing the clause {a, b, -c,~d}. Such a tree is called a clause tree.

Clauses can be combined using resolution. For example, the clause {—b, —d, e}
can resolve with the clause {a,bd,—c,~d} on the atom b to form the clause
{a, ¢, —d, e}. Clause trees are resolved by identifying the nodes that represent
complementary literals from two different clauses, ag shown in Figure 1(B). The
leaves of the resulting tree are the literals of the resulting clause. But in this
case two of the leaves are labeled by —d. The merging of the two literals =d that
occurs in resolution is not handled automatically by the clause trees. Instead
the two atom nodes that correspond to the same literal can be joined with a
merge path as in Figure 1(C). The literal at the tail of a merge path is no longer
considered to be a literal of the corresponding clause. The operation of resclving
two clause trees followed by the insertion of all leaf to leaf merge paths is anal-
ogous the usual binary resolution on clauses. A resolution between Figure 1(C)
with the clause tree for the clause {d} is done, resulting in the clause tree in
Figure 1{D) whose clause is {a, ¢, e}. Next {&, —e} is resolved with Figure 1{D)
to obtain the clause tree Figure 1(E), with clause {a, b, —¢}.

a)

i‘%\ - :Q/\&o§/o\’
o

Fig. 1. Example Clause trees

Possibly many binary resolution proofs correspond to a single clause tree.
The clause tree in Figure 1{(E) also corresponds to the following two derivations:

1. {a, b, —¢, =d} 1.{a,b, —¢,~d}

2. {—b,—d, e} 2.{-b,~d, e}

3. {d} 34{d}

4. {—e, b} 4 {-e, b} '
5. {a,m¢,~d, e} 1. res 2, on b 5.{b,—b,—d} 2.resd. one
6. {a,b,—c,~d} 5. res 4. on e 6.{a,b,~¢,~d} 5.res 1. on b
7. {a,b, ¢} Gres3 ond 7{a,b,m¢} B.res3.ond

Note that these two derivations are essentially the same, in that they com-
pute same results and resolve the same pairs of literals in the input clauses.
The only difference is the order in which the resolutions are done. The second
derivation contains a tautology, clause 5. In a sense, the first derivation contains
a “hidden tautology”. The clause tree in Figure 1(E) represents this tautology
by the existence of a legal path between the two b atom nodes, which starts and
ends with edges of different signs. We call this a tautology path. Similarly the
resolution on d might have been done before the merge on d was done. Then
the resulting clause tree would have contained an unchosen legal merge path, a
“missed merge.” Such tautologies and missed merges can be avoided, or can be
removed by surgery.

3 Definitions

We use standard definitions from first order clausal logic [1] and graph theory[2].

The definition of clause tree in this paper differs from that in [4]. There the
definition is procedural, in that operations that construct clause trees are given.
Here, as in (3] the definition is structural.

Definition 1 {Clause Tree). T = (N, E,L, M} is a clause tree on a set S of
input clauses if

—

. {N, E} is an unroocted tree,

2. L is alabeling of the nodes and edges of the tree. I : NUE — SUAU{+, -},
where A is the set of instances of atoms in S. Each node is labeled either
by a clause in S and called a clause node, or by an atom in A and called an
atom node. Each edge is labeled + or —,

. No atom node is incident with two edges labeled the same.

. Each edge e = {a, ¢} joins an atom node a and a clause node ¢; it is associated
with the literal L{e)L(a).

5. For each clause node ¢, {L(a,c)L{a}|{a,c¢} € E} is an instance of L{c). A

path (vo,e1,v1,...,6n,0,) where 0 < 4 < m, v, € N and ¢; € E where
1 < § < nis a merge path if L{e1)L{vo) = L(e,)L{vy,). Path {vo,...,vn)
precedes (<) path (wy,...,wy) f v, =w; forsomei=1,...,m — 1.

6. M is the set of merge paths called chosen merge paths such that:

(a) the tail of each is a leaf {called a closed leaf),

(b) the tails are all distinct and different from the heads, and

{c) the relation < on M can be extended to a partial crder.

]

A set M of paths in a clause tree is legal if the < relation__bn M can be
extended to a partial order. A path P is legal in T = (N, B, L, M) if MU{P} is
legal. If the path joining ¢ to ki is legal in T, we say that h is visible from t. A path
{(Vo,€1,V1,-..,8n,vn) where v; € N and ¢; € E is a tautology path if L{vg) =
L{vn) and L{ey) # L{en). A path is a unifieble tautology path if L{ey) # L{es)
and there exists a substitution # such that L(vg)¢ = L{v,)8. A path is a unifiable
merge path if there exists a substitution 8 such that L{e;) L{vo)}8 = L{e,) L(vy)6.

A clause free with a single clause node is said to be elementary. An open
leaf is an atom node leaf that is not the tail of any chosen merge path. The
disjunction of the literals at the open leaves of a clause tree T is called the
clause of T', cl{T).

Definition 2 (Minimal clause tree). A clause tree (N, E, L, M) is minimal
if it contains no legal merge path not in A and no legal tautology path.

There are varicus operations on clause trees: creating an elementary clause
tree from an input clause, resolving two clause trees, adding a merge path to
the set of chosen paths and instantiation. Each of these operations results in a
clause tree. ' :

Operation 3 (Creating an elementary clause tree).
Given a clause € in § and a substitution é for variables in C, the elementary
clause tree T' = (N, E, L, ¢} representing C6 = {a;,...,a} is the following:

1. N consists of a clause node and n atom nodes, where L labels the atom
nodes with ay,...,a, and labels the clause node with C.

2. E consists of n undirected edges, each of which joins the clause node to one
of the atom nodes and is labeled by L positively or negatively according to
whether the atom is positive or negative in the clause.

Operation 4 (Resolving two mergeless clause trees).

Let T} = (N]_,El,'LI,Ml) and Ts = (NQ,EQ,Lg,MQ) be two clause trees with
no nodes in common such that n; is an atom node leaf of 7} and ns is an atom
node leaf of T3. No variable may occur in a label of both an atom node in T
and an atom node in Tp. Let I, label n; with some atom a; and label the
edge {n1,m,} negatively, and Ly label ny with the atom ay but label the edge
{ny,ms} positively. Further let @; and @z be unifiable with a substitution 8.
Let N = Ny UN; — {nl}. Let B = FE, UFE; — {{nl,ml}} L {{n2,m1}} where
{n9,m1} is a new edge. Let L be a new labeling relation that results from two
modifications to Ly U Ly: the new edge {ng,mq} is labeled negatively, and 8
is applied to the label of each atom node. Let M be the set of merge paths
that results from replacing in M; U M, each occurrence of ny with n5. Then
T ={(N,E,L M) is a clause tree.

We write T res Ty to refer to the clause tree that results. We use a similar
notation for resolving two clauses together.

Operation 5 (Adding a leaf to leaf unifiable merge path).

Let T = {N,E,L, M} and let ny and ns be two open leaves in T such that
P = path{ni,ns) is a unifiable merge path of {N, E, L, ¢}, with ng not being the
tail of any chosen merge path in M and n; not being the head or tail of any
chosen merge path. Let § be a substitution such that L{n;)d = L(ns)8. Let L8
be the labeling relation that results from applying € to the label of each atom
node, and otherwise leaving I. the same. Then T} = (N, E, L8, M U {P}} is a
clause tree.

Operation 6 (Instance of a clause tree).

A clause tree TV = (N, E, L', M) is an instance of & clause tree T' = (N, E, L, M)
if L' and L are identical on the clause nodes and edges, and there is a substitution
such that for each atom node n, L'(n) = L(n)é.

Theorem 7 {Closure of Clause Tree Operations). Fach of Operations 3, 4,
5 and 6 generates a clause tree.

4 Clause Tree Derivations

Definition 8 (Derivation of a clause tree). Given aset S of clauses, a deriva-
tion of Tn from S is a sequence (T7,...,T,) of clause trees such that each 7 for
i=1,...,n (exactly) one of 1(a)}, 1(b), 1(c) or 1{d) holds and 2 holds.

1. {a) T; is an elementary clause tree from an input clause C in $
(b) T; is the result of resolving T; and T; where § < i and % < 4. In this case
T; depends on T; and Tj.
(¢) T; is the result of choosing a leaf to leaf merge path in T; where j < i.
In this case T; depends on Tj.
(d) T; is an instance of T; for § < 4. In this case T; depends on Tj.

2. T, transitively dependson T fori =1,...,n

Because T, depends on all previcus 7; a derivation must not have unused
clause trees. This condition does not change the essential nature of clause trees,
but is added in order to make certain conditions easier to ensure.

Definition 9 (Admissible derivation). A derivation (T1,...,T,) where T} =
{Ny, By, Ly, M;} is admissible if for each P € M, such that P is a path in T} but
P & M;, then P € M; for some j >¢{andforalli < £ <j T} depends on Tk 1
and T} is the not the result, of resolving clause trees.

Thus a derivation is admissible if all leaf to leaf paths that appear in T}, are
chosen as soon as possible in the derivation and hefore the next resolution step.

Theorem 10 (Existence of an admissible derivation). Bvery clause tree has
an admissible derivation.

Proof. Let T = {N,E,L, M) be a clause tree with n, atom nodes, n, clause
nodes, n,, merge paths and no open leaf atom nodes. For each clause node ¢
in 7', construct an elementary clause tree with atom nodes labeled the same as
the atom nodes adjacent to ¢ in 7. Place these as the first n, clause trees in the
derivation. Thus all remaining clause trees in the derivation will be the result
of applications of Operation 4 or 5. Extend < to a total order on M. Process
the paths Fi,..., F,,, in this order. For each internal atom node of the path F;
not already conSLdered construct the clause tree corresponding to the resolution
step involving this atom node on the two clause trees already in the derivation,
and insert the result next into the derivation. After every step if any path P; for
J > i1is In the current clause tree but is unchosen, then insert a clause tree with
that path chosen into the derivation before the next resolution step. Continue
until all paths are processed and then do all remaining resolutions. The resulting
derivation is admissible. O

Definition 11 (Minimal derivation). A derivation (7y,...,7T,) is minimal
if, for any ¢ = 1,...,n,T; has two open leaves with the same label then a merge
path joining these leaves is among the chosen merge paths in T}, and for any
other pair of atom nodes of T; labeled the same, neither node is a leaf.

In particular, a derivation is minimal if it does not contain any clause tree
T; such that ¢l(T3) is a tautology. Also, if a leaf to leaf merge path appears, it is
chosen.

Theorem 12 (Characterization of Minimal Clause Trees). A clause free
is mingmal if and only if all admissible derivations of it are minimal.

Proof. Let clause tree T, have a derivation {T1,...,T,) which is admissible but
not minimal, where T; = (N, By, L;, M;). Then there is a clause tree T; which has
two identically labeled leaves n; and ns but the path P joining these leaves is not
in M,. Construct the derivation that chooses P after step 1 as follows. Let 7] =

(N, E;, L;, M?:U{P}}, andfork =1i,...,n,let T.{- = (Ny, Ey, Ly, MpU{P}) if T},
depends on T3, and Ty = T} otherwise. Then the sequence {1}, ..., T3, T/, ..., T.)
is a derivation. But T, has M,, U {P} as its set of chosen paths, which implies
that P is legal in T5,.

Conversely, assume that T = (N,E,L, M} is non-minimal. Then there is
a legal path P ¢ M between atom nodes in 7. Let Py,...,P;, P, Piy1,..., Py
be an ordering of M U {P} that is an extension of the precedes relation. Then
construct an admissible derivation as follows. Build a derivation of T as in the
construction in Theorem 10 according to this sequence except do not insert the
path P. Note that the tree in the derivation in which P could be first added as
a merge path breaks the minimality condition on the admissible derivation. O

5 Comparing resolution-based procedures

Consider any binary resolution-procedure, A, working with a set I of input
clauses. A produces the clauses C' = {Cy,(s,...,C;,...} where

1. Cs & I,
2. C5=C;res Cp where j <iand k < i, or
3. 0 C C; where § < ¢ and 8 is a substitution.

This sequence is called the generated clause sequence of A on input I. A
refutation procedure A stops with success if C; = ¢ for some i. Note that the
generated sequences determine the procedure if they are known for all inputs. -

Let the generated clause sequence of the procedure B on input clauses I he
D ={(D1,Dy,...,D;,...%. Bis said to subsume 4 on I if for all i there is an
F(8), F(4) < i and Dy(; subsumes €. Procedure B strictly subsumes procedure
A if B subsumes A and A does not subsume B,

Lemma 13. Let C = (C1,Cy,...,Cm,...) be a generated clause sequence. If
D={D,Ds,...,D,) is a generated clause sequence on the same input clauses,
of finite length, n < m and D subsumes {1, ...,Cpn) then D can be extended to
a sequence which subsumes C and this extension is either an infinite sequence or
containg ¢.

Proof. Suppose Dy ;) subsumes C;, f{i) < ¢. Then for each Cy, k > m,

1. if C) an input clause, it can be replaced in D hy itself.

2. if Cy = C}8, §j < k, Gy is subsumed by Dy,

3. if Cy = C; res G, then C}, is subsumed by one of Dgisy, Dypeyy or (Dysy res Dy)
when the resolution is on the instance of the literal resolved upon in Cj res C;.
O

Thus there is no need to ever consider a generated clause sequence C in
which step 3 (substitution} of the definition is used, since omitting from £ the
clause tree Cy, which is an instance of C; for j < ¢, leaves a sequence ' and an

extension of (' subsumes C. Similarly it is pointless ever to do a resolution that
does not use a most general unifier of the literals being resolved. From now on
we consider only procedures that use most general unifiers and do not generate
clause sequence using the substitution step.

Any resolution based procedure can be considered to be a clause tree based
procedure, by substituting for each resolution of clauses, the equivalent resolu-
tion of clause trees. Thus we can define a clause tree based procedure on the set
of input clauses I as the admissible derivation {T1,Ts, ..., T}, ...} in which 3(sub-
stitution) is not used. {cl(T}),cl(T2),...,cl(T}),...,} is an equivalent resolution
based procedure.

Clause trees also allow the operations of surgery, including inserting merge
paths. Thus we can replace step 2 in the definition of the generated clause
sequence with:

2. T; = T; res Ty, where § < ¢ and &k < 4. If T} is non-minimal then generate
some minimal clause tree that results from surgery step on 7.

If the surgery step in 2' is ever performed and removes an open leaf, then the
resulting sequence of clauses strictly subsumes the original sequence of clanses.
However the sequence of clauses may no longer be a resolution based sequence,
because the clause resulting from surgery may not be derivable from the preced-
ing sequence in one step.

Theorem 14 (A subsuming minimal clause tree procedure exists). Any
resolution based procedure can be subsumed by a clause tree based procedure that
performs surgery. Moreover the subsumption can be made sirict unless the equiv-
alent clause trees are all minimal.

6 Procedures that retain only minimal clause trees

We need to produce only minimal clanse trees, which can be produced using
minimal derivations {Theorem 12). But a minimal clause tree is more restrictive
than one which has a minimal derivation ~ e/l admissible derivations of it must
he minimal. Although this condition seems to be computationally expensive, in
fact one does not need to generate and test all derivations. When two minimal
clause trees T1 and T are resolved, the resulting tree T' can be non-minimal
only if there is a merge or tautology path going from I to I%, or from T to
Ti. The only allowable merge/tautology paths are leaf to leal merge paths. Any
tautology path causes T' to be non-minimal, as does any new legal merge path
from an internal node to a leaf, or from an internal node to an internal node.

To implement the minimality check, one needs to construct the following for
any clause tree T'. Each of these can be done with an algorithm which is linear
in the size of the node set of T'.

1. The literais at the open leaves, ¢l(T"), and the corresponding set of atoms,
atom(T).

2. The atoms labeling internal nodes, iné(T).

3. The atoms visible from (outside) a given open leaf L, vig(T, L).

For Ty and T3 to be resolved on open leaves Ly of Ti and Ls of Ty, such that-

a minimal clause tree results, the following are necessary, sufficient and easily
checked.

1. (atom(Ty) Uvis(Ty, In)) Nint(Ty) = &;
2. (atom(Ty) Uvis(Ts, Ly)) N int(T1) = ¢
3. cl(Th res T3) is not a tautology.

The procedures retain only the clause trees that pass this test.

7 Completeness and uniqueness

It ig well known that resolution can be refined by imposing a preference ordering
on the literals, and selecting only the most preferred literal from a clause as the
literal to be resolved upon[5]. This restriction can greatly enhance the efficiency
of resolution. It is natural to ask if this restriction interferes with the minimal
restriction of resolution. In fact it does, as the following example shows,

Suppose the clanse set {{-p}, {p, ~a}{p,a}} is given, and p is preferred over
a. Then the only refutation will resolve the first clause against the second, re-
sulting in {—a} and the first against the third resulting in {a}, and finally resolve
these two results to give {}. However the corresponding clause tree is not mini-
mal, as there is a unchosen merge path between the g atom nodes.

We introduce the renk/activity restriction. For each clause tree, each leaf is
given a rank. For an elementary clause tree with n edges, the ranks are from 1
to n. Consider two clause trees T} and 7% to be resolved. The rank ordering on
the leaves of T; res T3 must agree with the rank orderings of 77 and of 75. One
way to do this follows. Assurme, without loss of generality, that 73 resolves on a
positive literal. For an atom node of T} res T which is an open leaf in T}, its
rank in Ty res 75 is the same as its rank in 7;. For an atom node in 7%, its rank
in 77 res T3 is its rank in Th increased by the number of edges in 7). Thus the
open leaves of any clause tree have ranks between 1 and the number of edges of
that clause tree.

All open leaves of elementary clause trees are active. When two clause trees
Ty and Th are resolved, then for i = 1,2 the leaves of T; that have rank lower
than the leaf resolved in T; are deactivated or become inactive. An inactive leaf
is not allowed to be resolved upon. It is reactivated only if it is the head of a
chosen leaf to leaf merge path. Note that if all open leaves of a clause tree become
inactive, then the clause tree can never be used in a future resolution. Hence it
does not need to be retained, except perhaps to be used in subsumption. It is,
however, still a minimal clause tree on the set of input clauses.

The following two theorems assume that the proof procedure has a fairness
criterion: if some pair of retained clause trees can he resolved on some atom, then
that resclution will be done after only a finite number of intervening resolutions
— it is not delayed indefinitely. Furthermore, that resolution will be done only
once by the procedure. Such a procedure is gaid to have a fair selection strategy.

A further assumption is made to accommodate first-order logic. For any
clause tree that is retained, including the input clauses, for each unifiable leaf
to Jeaf merge path whose substitution is non-empty, two clause trees must be
retained. One clause tree has the substitution applied and the merge path cho-
sen, while the other has the merge path not chosen. Such a procedure is said
t0 non-deterministically choose unifiable leaf to leaf merge paths. In fact an im-
plementation might not need this redundancy, but we defer discussing alternate
strategies for implementing this non-deterministism until we complete experi-
ments involving first-order problems.

Theorem 15 (Completeness). Any minimal clause tree procedure that has o
fair selection strategy, non-determistically chooses unifiable leaf to leaf merge
paths, and uses the rank/activity restriction is refutationally complete.

Proof. Let T be any minimal clause tree on the set I of input clauses. If T
is an elementary clause tree, it is produced by the procedure at initialization.
Otherwise assume that T has n clause nodes. Assume as an induction hypothesis
that any minimal clause tree with fewer than n nodes on any set of input clauses
is constructed by the procedure given that set of input clauses.

Now T has n ~ 1 internal atom nodes. At each clause node v define p(v) to
be the internal atom node adjacent to v that is not the head of a merge path
that passes over v, and is of lowest rank in the elementary clause tree of v. The
clause node v is said to point at p(v). The node p(v) must exist for if all of the
atom nodes adjacent to v were the heads of chosen merge paths passing over v,
each would be preceded by some other nodes adjacent to v which would imply a
cycle in the precedes relation. Because there are n clause nodes and only n — 1
internal atom nodes, some atom node w is pointed at by both of its neighbouring
clause nodes, say v and u. Let T, be the elementary clause tree consisting of v
and its adjacent atom nodes, and similarly let 7., consist of u and its adjacent
atom nodes. Let T} = T res T, on node w. 7} is constructed by the procedure
because of the fair selection strategy. _

Let I U {cl(T1)} be a new set of input clauses in which the ranks of the ele-
mentary clause trees for I are the same as were derived from the procedure when
1) is produced. There may be more than one elementary clause tree to choose for
T because there can be leaf to leaf merge paths produced non-deterministically
when T, and T, are resolved, but recall that all of these are included among the
initial elementary clause trees. Let T be the clause tree T with the nodes u,v
and w replaced by the appropriate elementary clause tree for ¢i(7}). Then T'
is constructed by the procedure on the input clauses I U {el(7})}. Now if one
removes all the resolutions in which elementary clause tree from ci(7}) or its de-
scendants are resolved, one gets exactly the clauses produced by the procedure
acting on I, and T is among these. O

All the above proof shows is that at any stage in the construction of T there
is always one more resolution that can be done towards the construction of 7.

10

Theorem 16 (Uniqueness). Any clause tree procedure that has o fair selec-
tion strategqy and nondetermistically chooses unifiable leaf to leaf merge paths,
and uses the rank/activity restriction produces each minimal clause tree exactly
once.

Proof. Let T be any minimal clause tree on a set T of input clauses. If T were
an elementary clause tree, then it is produced only at the initial stage. Thus we
can assume T is not elementary.

We show by induction that 7' must contain a unique interior atom node which
must be resolved after all other interior atom nodes in T'. This is clearly true
if T has only one interior atom node. As in the proof of Theorem 15 for each
clause node v in T define p{v) as the atom node adjacent to v with the lowest
rank in the clause of v that is not the head of a chosen merge path that passes
over o.

We argue that p{v) must be resolved before any other node z adjacent to .
If z is not the head of a merge path that includes v, then rank(x) > rank(p(v)).
Then p(v) must be resolved first because if x were resolved first, p(v) would
become inactive. Since p(v} could never be reactivated it would remain inactive
and could never be resolved. If z is the head of a merge path, then it is preceded
by some of the other nodes adjacent to ». At least one of these nodes, ¥, must
not be the head of a merge path, for otherwise some subset of these nodes would
precede each other. Naturally y must be resolved hefore z because it precedes
x. But either p{v) = y or p(v) must be resolved before ¥ as previously argued.
Hence p{v) must be resolved before z. As in the proof of Theorem 15, let w be an
atom node pointed at by each of its neighbours, v and . Let Ty = T, res T,,, and
let 7% be T with u,v and w replaced by a single clause node corresponding to
cl{T1). Then T' is a minimal clause tree on I U {cl(T})}, with one fewer interior
atom node than T'. By the induction hypothesis, T has a unique interior atom
node z which must be resolved later than any other interior atom node in 77,
The only node that is different in 7¥ from T is w. But w must be resolved before
any of the leaves of T, which themselves must be resolved before z.

Therefore T can be produced by the procedure only when the atom node 2
is resoived. Hence T = T3 res T3. By another induction, on the size of the clause
tree for example, both T; and T3 are constructed exactly once by the procedure.
Hence T is also constructed exactly once by the procedure. O

8 Subsumption

Non-minimality and activity both are properties that prevent the construction
of clause trees that would be removed by subsumption. Subsumption can be an
expensive check because it depends on the set of retained clauses, which may be
large. Wos|[8] refers to this:

If a strategy could be found whose use prevented a reasoning program
from deducing redundant clauses, we would have a solution far preferable
{0 our current one of using subsumption.

i1

Minimality and rank/activity provide a partial solution, but do not remove
every subsumed clause. For instance there may be redundancy in the input clause
set, s0 that the same clause is derived from different input clauses. The question
is, can the restrictions of minimality and rank/activity be used in conjunction
with subsumption? The answer is only partially. These different techniques in-
terfere with each other, and lose completeness. In Figure 2, the fair selection
strategy is guaranteed by constructing all clause trees of one clause node, of two
clause nodes, et cetera. Ranks are indicated by numbers in superscript, and an
inactive node is denoted by *.

L pte

2. el —e—p input clause subsumed by 7,
3. e —pt input clause subsumed by 6.
4, bt +e—pt input clause subsumed by 5.
5. b3+.—p+o 1. res 4.

6. a®t+e—p+e 1. res 3.

7. & —e—bte—pte 2. res 5. inactive

&, bs—o—a+¢—p+o 2, res 6. -

No more minimal resolutions are possible.

Fig. 2. Subsumption interacts with minimality and rank/activity

We can extend any bottom up clause tree procedure to use subsumption
fully and maintain completeness, at the cost of losing some of the advantages
of minimality and activity. Whenever a clause tree T subsumes a clause tree
T', remove both 7" and 7", and replace both with the elementary clause tree
of a new input clause ¢/(T"). The ranks of the leaves of this clause tree are
assigned as for any inpuf clause. All of these leaves must be deemed active.
We call such elementary clause trees contrected and we call this subsumption
contracting subsumption. Figure 3 shows the same example as Figure 2, but
using contracting subsumption.

1. p*4+e input clanse

2. gl ~e—b? input clause subsumed by 8.
3. a®+e—p' input clause subsumed by 6.
4. b+ e-—p' input clause subsumed by 5.

5.5°+e—p+e 1.1es4. becomes b + e, subsumes 4.

6.a°+e—p+e 1.res3 becomes a' + o, subsumes 3.
7.a*—e—b+e 2 resh, inactive, can be ignored
8 0°—e—a+e 2 res6 becomes b — o, subsumes 2.
9 s—bte . res 8. Done.

Fig. 8. Contracting subsumption works with minimality and rank/activity

12

Contracting subsumption retains completeness, but each contracted clause
tree it introduces has lost the internal structure that allows non-minimality to
be detected, and all leaves in the new clauses are active. Thus the derivations are
no longer unique. However, we can avoid some of this redundancy, because not
all subsumptions need a contracting clause. We compute a size for each clause
tree. If the subsumed clause is bigger than the subsuming clause, the subsumed
clause can be safely rejected, just as the usual form of subsumption. Oaly if the
subsumed clause is the same size or smaller, do we replace it by a contracted
clause.

Definition 17 (Strict Increasing Subsumption). A clause tree T subsumes
a clause tree T if cl(T") subsumes l(T*). It is called strict increasing subsump-
tion if size(T} < size(T*).

There are various size functions that could be used: the number of clause
nodes, the number of edges, the height of the tree, the total size where each
clause node is given a weight, et cetera. For a given problem and selection strat-
egy, different weight functions would give different proportions of contracting
subsumptions. -

Definition 18 (Properties of size functions). A size function is consistent
if size(T1) < size(T3) implies that size(Ty res T) < size(Ts res T). We say
that a size function is sigble if, for each clause tree T, all admissible derivations
of T agree on the size of 7. A size function is increasing if size(T} res Ty) >
maz(size(I1), size(T2}). It is additive if size(Ty res To) = size(Ty) + size(Th).

Theorem 19 (Completeness with all properties). A minimal clause tree
procedure is given that uses a fair selection strategy, nondeterministically chooses
unifiable leaf to leaf merge paths, uses the rank/activity restriction, uses increas-
ing subsumption and contracting subsumption otherwise, where the size function
is increasing, consistent end stable. Then this procedure is refutationally com-
plete.

Proof. We prove that for any minimal clause tree T, there exists a minimal
clause tree T” that is constructed by the procedure such that

1. ct(T") subsumes el (1)

2. size(T") < size(T)

3. I size(T') = size(T) then the open leaves of T correspond to open leaves
of T and the rank orderings on these leaves agree. Moreover, if an open leaf
of T is active and corresponds to an open leaf of 7", that leaf of 7" is active.

We assume here that the rank ordering is the example given in Section 7. Let 7' be
the smallest minimal clause tree for which such a T has not been constructed
by the procedure. Assume that the input clauses do not subsume each other.
Then T is not elementary. By Theorem 15, T = A res B on atom a where a
is active in both 4 and B. As the size function is increasing, both size(A) and

13

size(B) are less then size(T"). Thus the procedure constructs clause trees 4’ and
B’ which satisfy the three induction conditions. If 4 is not in c/{4’) then A’ will
fulfill the role of I". Similarly for B’. Thus we can assume that a is in ¢/(A’) and
in ¢l(B'). Consider 7" = A’ res B'. If size(A') < size(A) or size(B') < size(B)
then size(T") < size(T') by consistency of the size function. Then by induction
there exists 7' which satisfles the three conditions for T and hence will satisfy
them for 7. Assume size(A') = size(A) and size(B’) = size(B). Then since
@ is active in 4 and in B, a is active in A’ and B’ by the third condition.
Then A’ res B’ is either constructed because of the fair selection strategy, or
not constructed either because it is nonminimal, subsumed by strict increasing
subsumption, or subsumed by a contracted clause. If it is nonminimal, by surgery
there exists a minimal clause tree 7 which subsumes 7" and size(T") < size(4’
res B') = size(T"). The size is strictly less because the function is increasing. If it
is subsumed by strict increasing subsumption then the subsuming clause satisfies
the three conditions. If it subsumed by a contracted clause then that contracted
clause must be defined to satisfy the conditions. The only remaining case is that
T" = A' res B' is constructed. Then T subsumes T and size(T¥) = size(T).
To satisfy the third condition, note that any open leaf z of T must have been
an open leaf # of A or B. Suppose z is a leaf of A. If & corresponds to a leaf
c(x) of A', (=) is a leaf of A’ res B’ and =z as a leaf of 7' corresponds to ¢{x)
as a leaf of 7". This gives a natural correspondence between open leaves of T
and open leaves of 7" if they exist. The rank orderings of the leaves of A’ and
B’ must agree with the rank orderings of the leaves of 4 and B by induction.
Hence the rank orderings of the leaves of 77 must agree with the rank orderings
of the leaves of T' . Moreover, the active leaves of 4 and B correspond to active
leaves of A’ and B’ if they exist, so the active leaves of T must correspond to
active leaves of 7" if they exist. O

9 Experiments

Problem OTTER| Number of/{Problem OTTER: Number of|

inferences|Clause Trees inferences|Clanse Trees
GRAOQ01-1 244 75(|PUZ015-1 143 144
MSC007-1.003 91 45(lPUZ030-2 2258 1669
MSC007-1.004 35820 S5TT[ISYNOO1-1.005 107 160
PUZ013-1 33 S7([SYNO10-1.005:005 216 536
PUZ014-1 79 82||SYN080-1.008 99 149
SYN094-1.005 10091 3591SYN098-1.002 127 85

We have implemented a clause tree procedure for propositional logic com-
bining the properties of Theorem 19 with an OQTTER-like algorithm based on
the set of support strategy. The size function is the number of edges. This is
approximately comparable to OTTER configured for binary resolution, forward
and backward subsumption, and the propositional flag, although the same se-
quence of inferences was not attempted by hoth procedures. We ran each on a

14

number of propositional problems from TPTP[7], and the inference counts are
reported above for the non-trivial problems.

10 Conclusions

Clause trees are an efficient concept to use in a resolution bhased automated
reasoning procedure. Any resolution-based procedure is subsumed by one using
surgery to produce only minimal clause trees (Theorem 14). Complete bottom
up procedures exist that retain only minimal clause trees. By ranking the open
leaves and activating only some of them, a procedure can construct each minimal
clause tree exactly once (Theorem 16).

The concepts of minimality and rank/activity are in one sense only instances
of subsumption, in that they are no more restrictive than subsumption. However,
subsumption is more expensive to check than either minimality or activity. Full
subsumption combined with these concepts in a theorem prover is incomplete.
However a combination of increasing subsumption and contracting subsumption
together with minimality and rank/activity is complete (Theorem 19) In the
near future we expect to have an efficient implementation of a first-order pro-

cedure based on these concepts. A preliminary propositional implementation is

encouraging in that it often uses fewer inferences that OTTER.

Acknowledgments

Joel Burrows wrote the theorem prover; NSERC provided funding.

References

L. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York and London, 1973.

2. F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

3. J. D. Horton and B. Spencer. A top down algorithm to find only mirimal clause
trees. In L. Dreschler-Fischer and 8. Pribbenow, editors, KI-95 Activities: Work-
shops, Posters, Demos, pages T9-80. Gesellschaft f r Informatik e.V. Bonn, Septem-
ber 1995.

4. 1. D. Horton and B. Spencer. Clause trees: a tool for understanding and implement-
ing resolution in automated reasoning., Artificial Intelligence, to appear summer
1997. http : [fwww.cs.unb.cafprofsfbspencer [htm/cavse trees/TRI5 ~ 95.ps.

5. R. Kowalski and P.J. Hayes. Semantic trees in automated thecrem proving. In
Bernard Meltzer and Donald Michie, editors, Machine Infelligence 4. American El-
sevier Publishing Company, Inc., 1969.

6. W. W. McCune., Otter 3.0 users guide. Technical Report ANL-84/6, Mathematics
and Computer Science Division, Argonne National Laboratories, Argonne, IE, 1994,

7. G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In D. Kapur,
editor, Automated Deduction CADE-12, number 814 in Lecture Notes in Artificial
Intelligence, pages 252-266. Springer-Verlag, Berlin, 1994,

8. Larry Wos. Automated Reasoning : 89 Basic Research Problems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1988,

15

