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Abstract

We consider the problem of searching on m current rays for a target of unknown location.
If no upper bound on the distance to the target is known in advance, then the optimal
competitive ratio is 1 + 2m™/(m — 1)™~, We show that if an upper bound of D on
the distance to the target is known in advance, then the competitive ratio of any search
strategy is at least 1+ 2m™/(m — 1)~ — O(1/log? D) which is also optimal—but in a
stricter sense.

We construct a search strategy that achieves this ratio. Qur strategy works equally
as well for the unbounded case, and produces a strategy where the point is found at a
competitive distance of 1+ 2m™/(m — 1)™~! — O(1/log® D), for unknown, unbounded D,
that 1s, it 1s not necessary for our strategy to know an upper bound on the distance D in
advance.



1 Introduction

Searching for a target is an important and well studied problem in robotics. In many
realistic situations the robot does not possess complete knowledge about its environment,
for instance, the robot may not have a map of its surroundings, or the location of the target
may be unknown {BRS93, CL93, DHS95, DI94, IK95, Kle92, Kle94, 1.OS95, MI94, PY89].

Since the robot has to make decisions about the search based only on the part of
its environment that it has explored before, the search of the robot can be viewed as
an on-line problem. One way to judge the performance of an on-line search strategy is
to compare the distance traveled by the robot to the length of the shortest path from
its starting point s to the target ¢. The ratio of the distance traveled by the robot to
the optimal distance from s to { over all possible locations of the target is called the
competitive ratio of the search strategy [STS85].

We are interested in obtaining upper and lower bounds for the competztwe ratio of
searching on m concurrent rays. Here a point robot is imagined to stand at the origin of
m rays and one of the rays contains the target ¢ whose distance to the origin is unknown.
The robot can only detect ¢ if it stands on top of it. It can be shown that an optimal
strategy visits the rays in cyclic order and increases the step length each time by a factor
of m/(m — 1) starting with a step length of 1. The competitive ratio C,, achieved by this
strategy 1s given by .

m

m
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One of the earliest references to this problem dates back to 1963 to a problem posed by
Richard Bellman which assumes a probabilistic setting rather than a game theoretic one
[Bel63). Since then numerous results have been obtained [Bec64, Bec65, BNT0, BW72,
Gal72, Gal74, GCT76] culminating in a monograph by S. Gal in 1980 [Gal80]. This mono-
graph contains, among many other results, an optimal deterministic as well as an optimal
randomized strategy to search on m rays and the corresponding lower bounds. The opti-
mal deterministic and randomized strategies were later rediscovered [BYCR93, KRT93].

The lower bound for searching in m rays has proven to be a very useful tool for proving
lower bounds for searching in a number of classes of simple polygons, such as star-shaped
polygons [LO96}, generalized streets [DI94, LOS96], HV-streets [DHS95], and -streets
[DHS95, Hip94).

However, the lower bound proven for the m way ray searching problem relies on the
unboundedness of the rays, that is, on the fact that the target can be placed arbitrarily far
away from the starting point of the ray. But, if we consider polygons, then it is possible
for the robot to obtain an upper bound I on the distance to the target. In this paper we
‘investigate the question if the knowledge of an upper bound on the distance to the target
provides an advantage for the robot. If C2 is the optimal competitive ratio to search on
m rays where the distance to the target is at most D, then it can be expected that C?
approaches C,, as D goes to infinity; yet, there is only a proof for the case m = 2 by
Lépez-Ortiz who shows that

—0(1/log D)
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is a lower bound for the competitive ratio of searching on two rays [LO96|. In a similar
vein Icking et al. investigate the maximal reach of a strategy to search on the line if the
competitive ratio of the strategy is given [IKL97]. Here, the reach of a strategy X is the
maximum distance d such that a target placed somewhere in the interval [1, d] on the left
or right hand side of the origin is detected by a robot using d. Given the competitive
ratio C an expression for the reach is derived and it is shown that the reach is monotone
[IKL97].
In this paper we prove that
m™ 1

142 - Ol

(m — 1)1 )

is a lower bound for the competitive ratio of searching on m rays which also improves
Lépez-Ortiz’ bound for m = 2. Moreover, we present a strategy that achieves a competi-
tive ratio of

m" 1

1+2 ' -0
+ (m — 1yt (log2 D

)

if the target is discovered at distance D. Astonishingly, our strategy achieves this com-
petitive ratio without knowing an upper bound on the distance to the target in advance.
The two results imply that knowing an upper bound on the distance in advance does
not improve the competitive ratio significantly. Note that all previously known strategies
have a competitive ratio of

m™ 1
1 +2(m Ty O(D)
if the target is detected at distance D,

The paper is organized as follows. In the next section we introduce some definitions
and give some introductory examples in order to motivate our approach. In Section 3 we
introduce the problem of searching on m rays if a bound on the maximum distance to
the target is given. In Section 4 we first consider searching on two rays to introduce our
approach. In Section § we generalize the ideas of the case of searching on two rays to
m rays and also prove a lower bound. Finally, in Section 6 we present a strategy whose
competitive ratio converges asymptotically as fast to 1 + 2m™/(m — 1™~ as the lower
bound we have shown.

2 Definitions

Let X be a strategy to search on m rays. We model X as a sequence of positive real
numbers, that is, X = (2o, 21, 22,...) with 2, > 0, for all 0 < k < co. We illustrate this
for the case of a point robot searching on the real line, that is, m = 2.

In the beginning the position of the robot is a point s on the real line; it has to find
a target ¢ that is located somewhere to its left or right. It can only detect ¢ if it stands
on top of it. The robot starts at the origin s and travels to one side, say to the left.
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Figure 1: Searching on the real line.

At some point, say at a distance of zg to s,-it decides that it has traveled far enough to
the left and turns around. Since the target is not between its turn point and s, the only
reasonable strategy for the robot is to return to the origin and explore some part of the
line to the right of s. After having traveled a distance of z; to the right, the robot turns
around again and returns to s to explore the left side again and so on. For illustration see
Figure 1. Obviously, the values z; which denote the distance that the robot travels to the
left or to the right of s—depending on whether ¢ is even or odd—suffice to characterize a
search strategy completely.

The Competitive Ratio

Assume that the target is discovered in Step k + 2, say to the left of the origin. Clearly,
the ray to the left of the origin was visited the last time before Step k + 2 in Step %.
Hence, the distance d to the target is greater than @;. The distance traveled by the robot

to discover ¢t is d + 2 Zkfol z;. Hence, the competitive ratio of Step % is

d42% 0wy o2ilow
d - d

with d > zp. Since d can be placed arbitrarily close to @ by an adversary, the hlghest
lower bound on the competitive ratio of Step % is given by the expression

k+1 E+1
Supl_i_in:O 3%31_1_223 0-’3; :
d>my d T

Note that the above expression only depends on elements of X.

The First Step

If we consider searching on the line, then the first step is a special case that we have not
considered yet. If no information about the target is available, then one false move in the
beginning may lead to an arbitrarily large competitive ratio since no matter how small
zg is chosen, we can always place the target at a distance of ez, to s on the opposite
side, for some ¢ > 0. The competitive ratio 1 + 2zg/czq = 1+ 2/¢ can become arbitrarily
large in this way. In order to avoid this problem we assume that a lower bound da;, for
the distance to the target ¢ is known in advance. In applications such a lower bound is
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Figure 2: Searching on m rays.

usually known or can easily be computed. Hence, the competitive ratio Cx of strategy X
for searching on the real line is given by

2 o @
Cx = max{l—i— $°,sup1+2~2ﬂ}. (0.1)

in k>0 Tk

We can assume in the following that d,:, = 1 since if we multiply both the sequence X
and the initial lower bound d.;, by a positive number, then the competitive ratio of X
does not change. '

3 Searching on m Rays

L

Searching on the real line can be viewed as searching on the rays to the left and right of s.
Hence, it is natural to allow more than two rays to meet at s. So consider m concurrent
rays meeting at s, one of which contains the target ¢ (see Figure 2). It can be shown that
the strategy that increases the step length each time a new ray is visited by a factor of
m/(m — 1) is optimal [Gal80, BYCR93]. Its competitive ratio C,, is given by

m

Ca=1+2

We are interested in the case that an upper bound D on the maximum distance of the
target to the origin is known. The target may be placed on any of the m rays somewhere
in the interval [1, D] where we again assume that the lower bound on the distance to the
target is one. We now model a strategy X as a finite sequence of positive numbers, that is,
X = (29,... ,2,), for some n > 0. We are interested in a lower bound on the competitive
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ratio a strategy searching m rays. We denote the competitive ratio of searching on m-rays
for a target that is placed at a distance of at most D from the origin by C2.

3.1 Periodicity

In order to prove lower bounds on the competitive ratio, we investigate properties of
optimal strategies, that is, strategies with minimal competitive ratio. If we denote the
ray that the robot visits in Step %k by ry, then a strategy is periodic if vy, = 7y, for all
0 <k < n—m. In the following we show that there is an optimal strategy that is periodic.
In order to do this. we first show that there is an optimal strategy that is monotone. A
strategy i1s monotone if x;y > z;, forall 0 <¢ < n — 1.

Lemma 3.1 There is an optimal strategy that is monotone up to the last step.

Proof: The proof is analogous to the proof for the unbounded case D = oo (see [Gal80]).
Let X = (z;) be a strategy to search m rays and r; the ray that is explored by X in the
ith step. We define J; = min{j > ¢ | r; = »;}. If there is no j > ¢ with r; = =;, then we
define J; = i. We represent X by the sequence of pairs (z;, J;). If J; does not equal 1,
then the competitive ratio in Step ¢ of strategy X is given by 1+ 2F;(X) where

Ji-1

z
Fi(X) = L’

Z;
which can be seen as in the case of searching on two rays. If J; equals %, that is, ; = D
and Step ¢ is the last step on ray r;, then the competltlve ratio in Step ¢ of strategy X i is
bounded by _

2 i+ d Yiso®i

<142

=1+ 2F;-(X)
where J is the index of the last visit of ray r; before 7, that is, J g = ¢ and J3! 5 =15
d > z;-1 is the distance from the origin to the target.

Assume that there is a Step k, 0 €< £ < n — 1 such that mk+1 < z;. Let X' be the
search strategy which is equal to X except that for all steps ¢ > k the role of vy and i1y
is exchanged as are z; and #z;3. This can be achieved by setting (=}, Jk) (Zr+1, Jot1)
and (2341, Jr4a) = (2k, Ji). For all other Steps ¢, (2}, J]) = (z;, J;). If 2}, = D, then we
set Ji,; = k+1 (and not equal to k as is implied by the rule above). }, = 21 = D is not
possible since zp11 < zx < D. We want to show that maxocicn Fi(X) < maxocicn Fi{X).
F(X} and Fi(X') differ at most for the indices J;*, J '}, k, k + 1.

First we assume that Step k is not the last step on ray r;. (Note that Step & + 1 is
not the last step on ray rxi1 as @41 < 2 < D.) It is easy to see that in this case

Jp—1 *_fk+1 1 ’
Fk(X) — Ei:o 4 — Ez:ﬂ T — Fk.{.l(X’) a.nd
Lk Tt

EJHI 1 E“’rl '
f= L3 i=0  %§
Fra(X) = =0 = 0 = F(X").

tif W | .'B;c




Here the equalities follow from the fact that Ji; = Ji > k+2 and J} = Jyyy > k+2, that
is, the exchange of #; and 34, does not play a role in the summation. Next we consider
Steps Ji;, and Jot. Since Jji—1=k—1and Jot = g0y, Fy(X) = Fy-1,(X'). This
leaves us with Step Ji;. We have

k k
FJ—I (X) = Ei:o T > Ei:o Ly~ Tp + Thil

k41 -1 - =1
Jk—i-l Jk+1
k—1
: . +z
= —E‘ Dr k FJk—l ,(X )
2, +1

k41

Now assume that Step k is the last step on ray v, and D = z; > z34;. Then,
Fr(X) < FJ;J:i,(X'). As above we obtain Fi(X'} = F..(X), Fpa(X') = F (X) and
FJ’;:I,(X") < FJ;J:I {X). Hence, the competitive ratio of Strategy X’ is no more than the
competitive ratio of strategy X.

By performing bubble-sort on strategy X we see that there is a monotone strategy
that has a competitive ratio no more than X. If we choose X to be an optimal strategy,
then this implies the claim. : O

By Lemma 3.1 it suffices to consider monotone strategies in the following. Note that if
X is monotone, then the last m steps of X all have length D, that is, there is an optimal
strategy with &, 41 =-+-2,, = D.

Lemma 3.2 There is an optimal strateqy that is periodic.

Proof: Let X be an optimal strategy that is monotone which exists by Lemma 3.1. We
follow the proof idea of Yin [Yin94]. Let X™ consist of the same sequence of numbers
except that X™ is now considered a periodic strategy. We consider the competitive ratios
Ci of X and C}, of X™ in Step k. It suffices to show that, for every 0 < k < n—m, there is
a0 < j < n—mwith C; < ;. We do not need to consider the indicesn—m+1 < k<n
since zr = D, if n —m + 1<k <n,and C; <C}_,.. So consider

k-1

C;: =1 + 225:0 Li
Ty

7

for some 0 < k < n —m. For each ray »;, 1 < j < m, let k; be the first time X explores
ray r; after Step k. Since z; < D, forall 0 < j <n—m, k; exists, forall 1 <7 <n-—-m.
Note that there is one ray r; such that k; > k 4+ m. If r; is explored before Step k, then
let j; < k be the index of the last exploration; otherwise let j; = —1 and z; = 1. In both
cases z; < &y since X is monotone and '

ktm—1 . {c{—l .
Cp=14228=0 % gy gduso ®_ o
L L

which implies that the competitive ratio of X is at least as large as the competitive ratio
of X*. O




3.2 A Recurrence Equation

In the following we assume that X is an optimal periodic strategy. The competitive ratio
of X in Step k is again given by 1 + 2F;(X) where

k+m-1 .
Fk(X)=E"=° ”%a

A3
for k=0,... ,n —~m+ 1. Let cx = maxocicn—m+1 Fi(X).

Lemma 3.3 ([KPY96]) If X is an optimal strategy, then Fi(X) = cx, for all 0 < k <
n—m-+1.

Proof: The proof is by contradiction. It is based on the observation that Fj, is the only
function which is decreasing in z; and all other functions F; with 7 > k are increasing in
zx [KPY96]. So if thereis an index k with Fi(X) < cx, then there is an ¢ > 0 such that
if z is decreased by e, then Fi,(X’) = ex if X’ is the sequence where z;, is replaced by
zr, — €. The decrease in z, also implies that Fi(X') < cx,foralk<i£k<n—m+ 1.

Assume there is no optimal sequence X with Fi(X) = cx,forall 0 <k <n-m+ 1.
Then, there is a maximal [ and a sequence X such that Fi,(X) =cx,forall 0 < k <<
n —m + 1. In particular, Fi;1(X) < cx. If we apply the above arguement, then we can
construct a sequence X' from X with Fi(X’) = cx, for all 0 < k < I+ 1—a contradiction
to the maximality of 1. ' (|

Note that if X is an optimal strategy, then 1 + 2cx = CZ. Lemma 3.3 implies that
there is a recurrence equation for X.

Corollary 3.4 If X is an optimal strategy, then
Thim_1 — CaTk + CoTp-1 =0, (0.2)
foral0 <k <n—m, where ¢2 =(C2 ~1)/2 and x_, = 1.

Proof: Let X be an optimal stfategy. By Lemma 3.3 we have

Z{c+m-1 2 ktm-—-1
'——Ei—-——‘ = ¢ = Z x; = cDxy, (0.3)
k ‘
=0

for 1 < k < n — m. The same equation also holds for £ — 1. Hence,

k4+m—1 ktm—2
g x; = cﬁ:ck and E T; = cﬂmk_l.
=0 =0

By subtracting the second equation from the first we obtain the following recurrence
equation

D D
Thim-1 — CpTh + €Tk == U,
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for all 1 < k < n —m, as claimed.

Note that the robot visits the ray r; in Step k—m+1; hence, 21 = D and Fy iy
does not exist.

The first time ray m is visited, the competltwe ratio is given by

Tt
1 =
H 2 dmin

=1+2c2

where dpin = 1 is the lower bound on the distance to the target. If we set 21 =1, then
the above equation can be rewritten as

m—~1
Z r;=cCh®y
i=0
If we substract this equation from the equation for k = 0, the claim follows. O

It is interesting to note that if we define s = E?:o z;, then Equation 0.3 can be written
as
Sk+m—1 -
—I =l = Sgemer — ok + By =0,
Sk — 8h—1

that is, the values s; satisfy the same recurrence as the values x;. However, we only deal
with Equation 0.2 in the following since we do not know any boundary values for s;.

Equation 0.2 defines the sequence X = (z[—1],2z¢,21,... ,2,) if we are given any
starting values ®p,... ,%m—3. Unfortunately, we do not know the values of zq,... , Zm_1;
however, we know the values of Z,—mq1,... ,Zp since z; = D in the last m steps. However,

only m — I of these are relevant since z,, does not appear in Equations defined by (0.2).
The m-th boundary value of Equation 0.2 is given by z_; = 1.

We now transform the problem such that we obtain a recurrence equation for which m -
consecutive starting values are given and which still yields a lower bound for ¢5,. Consider
the element z,_,,. We have

= =g L D i=n-m41 Lt m
Tn-m = _s_cg_ or (1 - 1/Cm)mn—m > C}?; > C,‘?‘ D
or
-1
T > D> mi2p D
b — em 2e
So we have as initial conditions
Tn-m > D/2e
Lo-mt1r — D
Tp-1 = D.



Now let X = (g, 21, ..., ) be an optimal strategy that satisfies the recurrence equation
and the above initial conditions. If we cut off the last m values to

Tn-m = Df2e
Ep—m4+1 D/ZC

En-1 = D/2€,
then the new strategy does not fulfill Equation 0.2 anymore but only
Tipm-1 — Tk — Zr—1) <0,

for all 1 < k < n—m, where ¢ = ¢c2. As in Lemma 3.3 we can now argue that there is an
optimal strategy (one with minimal ¢) such that

Brtm—i — Tk — T4-1) =0,

for all &, as z in only negative in the equation for zpy,—1. Since we are only interested
in the asymptotic behaviour of m™/(m — 1)™! — ¢ we neglect the division by 2e in the
following and assume that we are given

Tn-m = D
Tr—m+1 = D
Tp-1 = D

as initial values for Equation 0.2. As it turns out this does not influence the asymptotic
behaviour of m™/(m~1)""!~c2. So we are now given the last m values of Equation 0.2.

In order to make use of this information we consider the sequence Y of the values of
X In reverse order, that is, y; = #,-;—1, for ¢ = —1,... ;n — 1. For simplicity we write ¢
instead of ¢2 in the following. The values y; satisfy the following recurrence

1
Yk — Ykime1 F Ykgm = 0 O Yogm ~ Yhdm—1 + =0, (0.4)

for 0 < k < n —m with starting values yo = + -+ = yp—1 = D. The initial steps again have
to be considered sepa.rately The competitive ratio the first time the ray r,, is visited is
bounded by 1 + 2 E‘_B z;. Therefore, 1 4 2 Ea—ﬂ z; < 14 2¢ since otherwise X does
not have a competitive ratio of 1+ 2c. Hence, the value of 37" . ; also has to be at
most ¢. Moreover, all the values yo,... ,y, have to be positive.

We assume in the following that Equation 0.4 defines an mﬁmte sequence Y some of
whose elements may be negative.

In order to prove a lower bound on the competitive ratio 1+ 2¢ we show the following
theorem.




Theorem 3.5 Ifc < m™/(m—1)""'—0O(1/log? D), then there is no sequence Y and no
n 2 0 such that Y satisfies Equation 0.4, 37 4 < ¢ Yo =y1 = -+ = yp_1 = D,
and Ym, ... yYn 2 0.

By the construction of Y we also obtain that there is no .strategy X with a competitive
ratio of 1 + 2¢ to search on m rays in the interval [1, D).

Lemma 3.6 If there is no sequence Y and no n > 0 such that Y satisfies Equation 0.4,
?xn—m+2 ¥ < ¢ and yo = Yo = <" = Ym-1 = D, and ym,... 40 = 0, then there is
no strategy X with a competitive ratio of 1 + 2¢ that searches on m rays for a target of

distance at most D to the origin.

Proof: The proof is by contradiction. Assume there is a strategy X with a competitive
ratio of 14 2¢ that searches on m rays for a target of distance at most D to the origin. By
Lemma 3.2 and the above considerations we can assume that X is periodic and satisfies
Equation 0.2. Obviously, we can cut off the last m + 1 steps of X to D/2e. Let X' be
the new sequence with 2’| = 1. Define the sequence Y by y; = 2/ _, |, for 0 < i < n,
where n is the length of X. The values of Y satisfy Equation 0.4 and E‘ cnemy2 ¥ < cin
contradiction to the assumption that no such Y exists. O

3.3 The Characteristic Equation

We only consider the sequence Y in the following. Equation 0.4 has the characteristic
equation

m m 1 1
A AT 4 p 0 or ¢= 5 T (0.5)

We first note that since A™~*(1—A) < 0, for A > 1, there is no positive real root larger than
one. On the other hand, if we set p = 1/, then ¢ = 4™ /(i — 1) and if there is a positive
real root A of Equation 0.5 with A < 1, then ¢ > inf oy g™ /(p—1) = m™/(m —1)™"! and
we are done. Hence, we can assume in the following that there is no positive real root of
Equation 0.5.

So we investigate the complex and negative roots of Equation 0.5 in more detail.

4 Solving the Recurrence Equation for m =2

In order to illustrate our approach we present the case m = 2 in greater detail. We assume
that ¢ is less than 4 in the following. '

4.1 An Explicit Solution

For m = 2 Equation 0.5 reduces to

A2~ A41/c=0 (0.6)

10




with the solutions

A = —1~(1+i 4_‘:) and X:1(1~z‘ 4“‘"‘).
2 ¢ 2 ¢

Here, X denotes the conjugate of A, Hence, the solution to Equation 0.4 in the case m = 2
is given by :

Yi = aA® + ax = 2Re(a)¥)

where Re denotes the real part of a complex number. a and @ are the solutions of the
equation system

¢ + a = ‘yo=D
aA + @\ = y;=D.
We obtain as solutions for ¢ and @
D ¢ D ¢
= —[1—12 a = — i
a 2( Yy and i=3 (1-1—?, g

4.2 Polar Coordinates

If we consider the polar-coordinates of A and X, that is, A = pe*? and X = pei{~%), then
p = +/1/c and ¢ = arctan(+/(4 — ¢)/c). Similarly, for a = se? and @ = ¢¢*~% we obtain
o = D/+/4 —cand § = —arctan(/¢/(4 — ¢)). Hence,

yr = (I/\k + a:\"k — o,pkei{kqo-{»G} + o_pke—i(kw-}-e)
= 20p" cos(kp + )

2D 4—c¢ ( C
= ——————cos | karctan — arctan .
Fd —¢) _ c 4—c

If we visualize the above equation in the complex plane, then y; is the projection of
the vector of 2a\* onto the z-axis. If we multiply two complex numbers, then the radi
are multiplied and the angles are added. Hence, the sequence 2aX* turns by an angle of
 towards the second quadrant with each iteration. Once 2aA* is in the second quadrant,
2Re(a)¥) is negative. This is illustrated in Figure 3 (see also [Hip94, IKL.97, Kle97)).

Hence, y1, becomes negative as soon as there is an integer { > 0 with

karctan 4/ (4 —c)/c — arctan \/¢/(4 — ¢) € (/2 + l?'r,. 3n/2 + Ix).

Note that since arctan(z) < m/2, we can choose I = 0 in the above expression and there
is a k with

karctan /(4 — ¢)/c — a.rcta.p c/(4—c) € (n/2,3n/2).

11




Re(ad®) < 0 5

Figure 3: The sequence 2aA* turns by an angle of ¢ towards the second quadrant with
each iteration.

We show that D can be chosen large enough such that y,.; < 0 and y, > ¢ or
Yn—-1/Yn > c. In the first case Lemma 3.6 implies that there is no strategy to search on
the real line for a target at a distance at most D with a competitive ratio of 1+ 2¢. In the
second case we note that the competitive ratio in the second step of strategy X is given
by 1+ 2(y. + Yn— 1)/% > 14 2¢ and the same claim follows.

Of course, we are interested in the smallest D for which the above inequalities holds.
In the following we assume that ¢ > 3.

Let ng be the first index such that y,, < 0, that is,

4—c c
cos (no arctan ( ) — arctan ( ) <0
c 4—-c

arctan ( ﬁ) + ’—;

or

g = _
arctan ( t=e
We make two observations about ng.
1. If ¢ >> 3, then we have
arctan ( ic) +Z
1 2| o 724+ w/2 <47r c 9 (0.7)

Nnp = _ il < .
" a;rcta.n( 4-c T 3/4/(4—c)fc T 3 Vd—cT Vi-¢
The first inequality stems from the fact that

(a) ¢ > 3, that is, 1/(4 ~ ¢}/c £ 1/+/3 and

12



(b} arctan(z)’ = 1/(1 + «?), that is, arctan(z) > z/(1 4 =2) since arcus tangens is
concave on the positive axis. Hence, arctan(/(4 — ¢)/c} > /(4 —¢)/c/(1 +

VI73).

2. Since ng is the smallest k such that y;, < 0,

‘ 4-—c c s 4—c
(n0—2)arcta.n( " )uarcta.n( ygup Sa—arctan( . ) (0.8)

W.lo.g. we assume that y,, belongs to ray r;. Since the search alternates between the
two rays, the last point visited on ray r; has a distance of

= 2D cos | {ng — 2) arctan izc arctan ¢
yﬂ0_2 - Cno___z(4__c) 0 o 4—C
(0.8) - '
> 2D cos | = — arctan t-c (0.9)
24 — ¢) 2 ¢ :

to the origin. Since

cos (Ebarctan( 4_6) =sin(arctan( i-c )= (4—oe
2 c V) T ira-an

\f 4 : e 42- c, (0.10)
we have _
(09,010) 9D Vi—e¢ D (0.7) D
Yng—2 = T = e > =i

Proposition 4.1 If3 < ¢ <4 —81/log’(D/16), then D/v V< > 2,

Proof: We have

4_ 81 - 4—¢ > 81 (_log;;(z}
log?(D/16) log®(D/16)

logD > (\/:"E,TC+2)log_c = 2333’1) > (\MgTC-!-ﬁl)logc =

c <

Dt 9//A—c+4 2
e = m———m > ¢

a

Let 3 < ¢ < 4 — 81/log?(D/16). Proposition 4.1 implies that ¢,,.5 > ¢ and yn, < 0 .
Hence, if yng—1 < ¢, then (yny—1 + Yng—2)/Yno-1 > ¢; otherwise yn,—1 > ¢. Therefore, Y
satisfies Theorem 3.5. '

13



Finally, we also consider the case that ¢ € [1,3); then, ny < m/arctan(1/3) = 6 and
Equations 0.9 and 0.10 still hold. Hence,

_ 2D 5 ¢ 4—c ; e \
Yup—2 = mcos (no — 2) arctan " — arctan g
2D \/4—c> D D

> =
= Jeiioe 2 CVAZ9

Hence, if D > 81, then y,,_5 > 9 and y,, < 0 and there is no strategy with a competitive
ratio of less than or equal to 1+2-3 = 7. Note that this also holds for strategies to m > 2
rays since any such strategy can be used to search on two rays and the competitive ratio
only improves.

5 Solving the Recurrence Equation for the General
Case

We now return to the general case. As for the case m = 2 we want to show that if there are
only complex or negative solutions to Equation 0.5, then the angle of the polar coordinates
of the solutions turn towards a negative solution. However, the details are much more
complicated than in the case m = 2 since we have many roots of Equation 0.5 and the
solutions cannot be computed explicitly. One possibility to get around this problem is to
use estimates on the angles and radii of the roots. We show that there is one root A which
has the largest radius among all roots of Equation 0.5. After a sufficiently large number
of steps the contribution of A dominates the contribution of all other solutions.

Let Ao,..., Am—1 be the roots of Equation 0.5. The solution of the recurrence is given

by _
Yk = GoA§ + apdl + oo D LA

We first investigate the structure of the roots X;, 0 <¢ < m — L.
Let A bea complex root of Equation 0.5. We consider the polar coordmates of A, that
is, we set A = pe’®,

Lemma 5.1 If A = pe® is o complez root of Equation 0.5, then p = sin(m — 1)p/ sin mep.

Proof: Let A = pe“*’ be a complex root of Equation 0.5. We have A™~! = pm-1gim-l)e
and

AMHA=1) = p™ ! (cos(m — L) +isin(m — 1)g) (pcosp — 1 + ipsin @)
= p™ 1 (cos(m —1)p(pcos ¢ ~ 1) —sin(m — 1)ppsin p +

i(cos(m — 1)ppsin ¢ + sin{m — L)p(pcos o — 1)))

= p™1 (cos(m — 1)ppcos ¢ — sin{m — L)ppsin ¢ — cos(m — 1) +

i(cos(m — L)ppsin ¢ + sin(m — 1)ppcos ¢ — sin(m — 1)p))

Ti—

= p™ ' (pcosmep — cos(m — 1) + i(psin myp — sin(m — 1)p)).
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Since A" 1(A — 1) = —1/¢c € IR, we obtain

0 sin{m — 1)¢ '_ (0.11)

psinmp — sin{m — 1)p = or  p=—b
sin my

as claimed. . a

Lemma 5.1 has the following consequence,

Corollary 5.2 If A = pe* is a complez root of Equation 0.5, then A is solely determined
by .

5.1 The Polar Angle of a Root

We first concentrate on the polar angle of a root A of Equation 0.5.

Lemma 5.3 If A = pe""“' s a complea: root of Equation 0.5, then € [2kn /(m —1), (2k +

Dy [m].

Proof: Let A = pe'* be a complex root of Equation 0.5. Equation 0.11 implies that me
and (m— 1)y either both belong to [2kx, (2k+1)=] or to [(2k-|—1)1r, (2k+2)7] as p > 0 and,
therefore, both sin me and sin(m — 1) have the same sign. Since —1/c =A™ 1A -1) =

p™ 2 (p cos(mp) —cos(m— 1)) < 0 and p™ ! > 0, we also need X™=L® ¢4 mip — cos(m —

sinmy

e <0asp= S‘zfnmmi}" If o € (2kn /(m—1), (2k+1)w /m], that is, sin{m— 1) > 0, then
cot(m — 1jp > cotmep and the above inequality holds. If ¢ € ((2k + 1)x/(m — 1), (2k +
2)w /m], that is, sin{m — 1) < 0, then we need cot(m — 1) < cot mp which is impossible

since cotangens decreases monotonely over [, 27]. Hence, ¢ € [2kn/(m—1), (2k+1)7/m],
for 0 < £ < |m/2] as claimed. 0
We first show that there is exactly one root Ay for each interval [2kﬂ‘/ (m—1),(2k +

ljmw/m] with 0 < k < |m/2].

Lemma 5.4 For each interval [2kn /(m — 1), (2k + L)w/m] with 0 < k < |m/2], there is
ezactly one root M, = ppe’?* of Equation 0.5 with ¢, € [2kn/(m — 1), (2k + 1)7/m)].

Proof: Since Ais a function of ¢ by Corollary 5.2, it suffices to show that 1/(A™}(A—1))
is monotone in ¢ and that 1/(X™"1(1 — X)) assumes a value less than and greater than
¢, for each interval [2kn/(m — 1), (2k + 1)w/m] with 0 < k < |m/2]|. We first show that
1/(A™1(\ — 1)) is monotone in .

0 1 @ sin™ ! myp

dp X1 —1) ~  Besin™(m — 1)p(cot(m — 1} — cot mep)
sin™ 1 mp  m2sin® + sin? mp — 2msin  sin my cos(m — 1)

ﬁsinm(m —-1)p sin® ¢

0

IA
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since

m?sin® o + sin® myp — 2m sin @ sin mep cos(m — 1)p

> m?sin® ¢ + sin® mp — 2m| sin p|| sin me|
= {(m]sin¢p| — |sinme|)? > 0.

Hence, there is at most one root of Equation 0.5 for every interval [2kx/(m — 1), (2k+
L)w/m], for 0 < k < |m/2] — 1. Since sin™ " me/(sin™(m — L)p(cot(m — 1)p ~ cot mp))
is continuous over [2kn/(m — 1), {2k + 1)w/m] and its values range from oo to 0, there is
also at least one root of of Equation 0.5 with a polar angle in [2kx /{(m —1), (2k+ 1)7/m),
for 0 <k < |m/2] - 1. ]

The above roots account for [m/2] roots of Equation 0.5. If m is odd, then there
15 one root A|m/z With @(me = 2|m/2|x/(m —1) = (2|m/2] + 1)n/m = =, that is,
Alm/2) 15 2 negative real root. The remaining |m/2) roots are given by the conjugates
Ar = pre”* of Ay as in the case m = 2 since we have that if ) is a root of Equation 0.5,
then ' '

Xm_l(/\ . 1) — pm—le—émw(pe——irp — 1)
" (p cos(—mip) — cos(~(m — 1)p)
+i(p sin{—mep) — sin(—(m - 1)p)))

= p™ " {pcosmp — cos(m — L)p + i(sin(m — 1) — psin mep))
1
= p™ {pcosmp — cos(m — 1)) = s

since sin{m - 1) — psinmep = 0. Hence, if A is a root of Equation 0.5, then X is also a

root of Equation 0.5.
Let ¢ be the angle of the root in [2kw/(m — 1), (2k + 1)a/m]. In the following we
calculate a lower bound on the size of ¢g if ¢ < m™/(m —~ 1)™~1,

Lemma 5.5

> mi 1 m™ e L
mi — ¢y .
7o = T mare (m—-1"1 7 /3m
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Proof: We assume that o € [0, 7/+/3m] since if @o > 7/+/3m, then the claim trivially
holds.

. 1 _ ( sin mpp )m"l 1 1
A1 = Xo) sin(m — 1)pq sin{m — 1) cot(m — 1)pe — cot myg
_ sinmp, \™! 1 sin mepp sin{m — 1)pg
~ \sin(m — I)(po) sin{m — 1)pe sin g

Y

(1 4 (m=meg/ 6)%)’"'1 s Mo
(m — 1)pq sin g

m — mPel 6\ ™" mepo — (mpo)*/6
2 (1 T mo) ) v0
> (1 + 2 ’Fm“f 1()1 8””2))%'1 = ;T“’”s/ © tpo<n/VBm)
> (m23) ()

> (1- ™% mt__
6 (m — 1)m-1

Here we use that by the Taylor-expansion of sin z — 2*/6 < sin{z) < z if £ > 0. Since
m™[(m — 1)™" ! < em, we have

) B(m™/(m —1)"1 —~¢) 1 ) 1 mm™ 1
S%_me{\/ emd ,\/?—’m} me{m&’z'\/(m—él)m—l —c,m}
(0.12)

as claimed. ]

5.2 The Radius of a Root

We now constder the radius of a root of Equation 0.5. Let pr be the radius of Ag. In the
following we show that pg > pry1, for all 0 < &k < [m/2] - 1.

Lemma 5.6 For oll0 <k < [m/2] =1, pr > prsa-

Proof: We first observe that

XPHL = M) = NPT - )| = oty ok — 2 cos on + 1.

We show that pJ*~'4/pf — 2ps cos pr, + 1 is monotonely increasing in py.
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We consider the derivative of p™*4/p? - 2pcos ¢ + 1 with respect to p and obtain

d M2 2 _ : 1)
G ot S —peon(p) 41 = L mle” = (@m = L)/mpoosg + (m—1)/m)
dp VP —2pcosp+ 1

Hence, p™14/p? — 2pcosp + 1 has an extremum greater than zero with respect to p if

PP ~2pcosp+1—(1—pcosp)/m = 0,

that is, if
p = _1“(2m —2)cosp £+ 4/1— ({(2m — 1) sin tp)z. (0".13)
2 m
The above equation implies that
. < il
S om 1

or ¢ < arcsin(1/2m — 1) < 2/(m — 1) < 2x/{m — 1), for m > 3, as sin(z) > 1/(2z),
for 0 < 2 < n/3. Therefore, the root of Equation 0.13 is outside the interval [2kx/(m —
1), (2k-+ 1)w/m] and p*~*/p2 — 2pi cos py + 1 is monotonely increasing in pg, for all 1 <
k < fm/2], but not for k = 0. We now show that this implies that po > p; >+« > prnsa)-
Let 0 < k < [m/2] — 1. Since @g41 > @i, we have, for 0 < k < [m/2] — 1,

p:‘_l\/pi —2ppcosp + 1 < PI:HI\/PE — 2pp cos pp+r + 1

and as Pf:r_il \/p?cH - 2,0;,,_.,_1 €08 pp+1 -+ 1 18 monotone in pgr1, prs1 has to be decreased in
order to obtain equality. : O
In the following we investigate the ratio po/pr.-

Lemma 5.7 po/pr, > 1+ 1/(4m®), for all 1 < k < [m/2].

Proof: Since by Lemma 5.6 p1 > py, for all for all 2 < k < [m/2], it suffices to show
that po/p1 > 14 1/(4m®). Let f be the function

Flpp) = A1 = X)| = p*m V(0 — 2pc0s  + 1),
Note that f(po,po) = f(p1,p1) = 1/c* and, therefore,
Fle1,p0) — Fleo,p0) = fle1,p0) — Fl1, 1)
Now
21

Flp1,00) — flpo, po) = 2p5" " (cospo — cos 1)

and

Po 8 6
 flpr,p0) — fler,p1) = fm ggf(ﬂﬁlaﬂ)dpﬁ(m“m)pefﬁ?ﬁo}a—p (01, p)-
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If we consider the derivative of f with respect to p, then

0
gy lep) = 2mp™™ " = 2(om — 1)p*" Y cos g + 2Am — 1)

- 2m—1 2(m—~1)
= 2mp¥ 32 =2 T Y.
: e (p 2m peosp+ 2m
Hence,
_ 2m —1 2(m —1)
, _ \ < _ et | p2 — A A
Fler,p0) — Flonp) < (po pl)pg[}ga] mp (p TP OOS P

If we add (24 (2m — 1)/m)pcosp + 1 — (2m — 1)/(2m) to the term in the paranthesis,
then

fle1,p0) = flor, 1) < (po — p1)2mpi™ % (po + 1)2

and
200" (cospo —cospr) < {po — p1)2mpl" P (po + 1) =
p_opo(cos Vo — COS (py) < @~1 '
pr mipy+ 1) T om
or .
po > 1 . > 1+_pg(cosnpg—c08tp1)
P 1 — po(cos o — cos @1 }/(m(po + 1)?) m{po +1)?

In order to bound po(cospo — cosp;)/(mlps + 1)?) from below, we need upper and
lower bounds for py. We first give an upper bound. Observe that

A1 = ) = sin(m — 1)po ™1 sin pq _ {sin(m — L}pp\™ sin g
B sin mepg . sinmpy sin mpg sinfm —L)pg ¢
(sin(m -1 ™ sin(m — 1 —1
o = (sm(?n )(,oo) _ sm('r.n Jeo cm=1
sin mipg sin @qc c

Hence, pog < %/(m —1)/c <1 since ¢ > 3.

Now note that |1 — Ag| is the distance between the point (1,0) and the point X; in
the complex plane. Since Ag belongs to the wedge Sy of numbers whose polar angle is in
[0,7/3] and whose radius is less than one, it is easy to see that the origin is the furthest
point in So from (1,0) and [1 — Xo| < 1. Hence, pg > ™%/1/(|1 = Xolc} > ™3/1/c. Since
we assume that ¢ < m™/(m — 1)™1 < em, we obtain, py > ™1/1/(em) > 1/3.

Next we give a lower bound for cos o —cos ¢;. Since g € [0,7/m] and ¢, € [2r/(m—
1), 3w /m] both of which are contained in [0, 7], for m > 3, cos e — cospy > cosm/m —
cos 2% /(m — 1). Moreover, since cosine is concave over [0,7/2] and 27 /(m — 1) < n/2, for
m > 95,

2

2m?’

7 2 .m 2n
CO8 (g — CO8(P1 > COS — — COS T 2s1n—( —2)2—7&—

>
m m — mi\m—1 m 2mm

g~
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for m > 5. On the other hand, if m = 3, then cos(7/3) — cos(2r/2) > 1 > #%/18 and if
m = 4, then cos(w/4)—cos(2r/3) > 1/+/2 > n%/32, s0 that the inequality cos po—cos ¢; >
%% /(2m?) holds for all m > 3.

Hence, for 1 <k < [m/2],

2
Po - Po ‘fT 1
—2— > 14+—>14+ —-:.
Pe — P1 * 6m3(14+1)* — 4m?

5.3 The Coefficients

We finally give an upper bound on the radius of the coefficients. Recall that the solution
of Recurrence Equation 0.5 is given by

Yr = GD}\IS + Gl/\}f + -4 Gm—v\fn_l-

The coefficients a; are the solution of the linear equation system

1 1 1 ag D
Ao A1 Amet oy B D
Al pmed Nl A D
Let
1 1 1
A Ao /\'1 Am_1
AP AP e A

and A;(z) the matrix A where the ith column is replaced by the vector (z,...,2)¥. By
Cramer’s rule g; 1s given as
a; = det(4;(D))/det(A) = Ddet(Ai(1))/ det(4)
[ oisel = %)
oz = A5)

J=0#i

(0.14)

since both A and A;(1) are Vandermonde matrices with

m—1

det(Ai(1)) = ] =2 JI Oe=2) and
F=0,4#1 J<k gl
m=—1
det(4) = [T =2 ]I (A — A).
F=0,5#4 j<k.gk#i

In order to bound the size of the ratio of |a;/aoe] we have the following lemma.
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s

Figure 4: The sectors that A; and A; belong to.

Lemma 5.8

2 < 42mmm
ap
Proof: We have
ai ll"—)\f H;—o;;eo(/\ﬂ A)
ao 1 - A “‘;_01#3( — ;)
1+ |/\ | Hnlo,#a(l)ml + |)‘5‘D
B |1__.,‘\0[ —"03;&1 |’\ ’\Jl

2 - 9m- 1

<
|1 - ADl Hj =0,j71 |Ai - /\3|

In order to obtain a lower bound for |1 — Ag) we observe that

1 1 1
1—-X = > > .15
| o AT T e T em (0.15)

Finally, we give a lower bound for [A; — A;|. Since |1~ X] <1+ {A] <2, A7 >
1/(2¢) > 1/(2em) or X; > ™/1/(2em) > 1/5.

If we view Ag and A; as two points in the complex plane, then A is contained in the
angular sector of Sy = [2kn/(m — 1),(2k + 1)x/m] and A; is contained in the angular
sector of §; = [2§7/(m —1), (27 + 1)w/m] (see Figure 4). Since [Ax| > 1/5 and [A;] > 1/5,
the distance between Ay and A; is at least the distance between the points of S; and §;
outside the circle with radius 1/5. W.l.o.g. assume that & > j. Let /; be the line with
angle 2kx /(m — 1) through the origin and I, be the line with angle (25 + 1)n/m through
the origin. If p is the point on !; with distance 1/5 to the origin, then the distance of Sy
to 5; outside the circle with radius 1/5 is at most the distance of p to l;. By elementary
geometry we obtain that

sin (2kw/(m — 1) — (27 + L)z /m) T 1

A — X1 > dp, ) = g 2 o~ 2 - (0.16)
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Combining the estimates for |1 — Ao| and |A; — );| we obtain

a; 2m |
— — < 2Mem(4m)™ ! < 42 p™
%o 1= Al Hj:of#s A = Ay
as claimed. O

The following lemma gives a lower bound of the absolute value of ay.

Lemma 5.9

D

|aof = W

Proof: The proof follows easily from Equations 0.14 and 0.15.

m=—1

. 1- X 1 m—1
ool = D=t LS pUem
o1 Ao — Azl zm

Note that the lower bound for |1 — Ag| of Equation 0.15 is also a lower bound for 11— X
and that |Ag — A; < po + p; < 2. =

5.4 Putting it all Together

We now put the estimates we obtained for the radii and the angles of the roots of Equa-
tion 0.5 as well as the coeflicients into use. W.l.o.g. we assume that m is even. If m is
odd an analogous proof works. We start off by proving a lower and an upper bound on
the size of yz. '

Lemma 5.10

42mmm+1 )

yr < 2laolph (003(90 + ko) + 1+ 1/(@m?))

and

42mmm+1 )

yr > 2laolpk (003(90 + ko) — (1+ 1/(4m3))*

Proof: Recall that

[m/2] [m/2]
e = Y e+ @k < apAk -+ Gy + > 2la;Ak.
Jj=0 3=0

If Ay = poe’®® and ag = ope®, then

agz\g + EGX:; = a-opgei{&-l-kiﬂo] + o-opge—i(90+k¢o) = 20’0p§ 008(90 + k(po).
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and

lm/2] .
. < 2laglpk (cos(f?g + kgo) + Z E% )
§=0 0

42 mtl
< 2lao|pk (cos(ﬂo + ko) + (1+ 1/(4m3))k)

by Lemmas 5.7 and 5.8. Similarly,

{m/2] P
ye > 2laolel | cos(fo + ko) — Z 5
=0 p()
42mmmtl
> -
2 2|a9]Pe (cos o -+ ko) — iz l/(4m3))k)
a
We claim that if
m™ 2224, 8 log2 m
¢< -1 2 3
(m - 1)™ log® D

then there is a step k such that y; > ¢ and yg.2 < 0, that is, there is no strategy X such
that the competitive ratio of X is 1+ 2¢ and all the points in [c D) are searched by X for
all rays r;, 0 <5 <m— 1.

In the following let ¢ = 4/m™/(m — 1)m-! — ¢. We assume that ¢ < 1. The case ¢ > 1
can be treated as the case ¢ < 3 in the case m = 2.

Let ko be the first index greater than 4m®(3mlogm — loge) + 1 such that

cos(fo + kowo) > 0 and cos(fo + (ko + 1)po) < 0.

We show the following bounds on 4,1 and i, 42

'Lemma 5.11

_1ﬂ
4

Proof: We first observe that if ko > 4m®(3mlogm —loge) + 1, then

ko+2 PO

and  Yrgrz < —2aolpk R

Yo —1 > zlaﬂlpgﬂ

3mlogm —loge
—1>
Fo =1 2 {4 1/ (dm®))
S (m + 1)log m + log(4m + 2) + log(m®/?/¢)
- -~ log(1+1/(4m?3)) '

Note that since ¢ < 1, e/m®*? < 1/4/3m and ¢y > &/m*? by Lemma 5.5 which implies

that
ko ~1 2m+1,, mtl 2 1
1 4 m 4" m Yo
1+ — > d < Z2
( +4m3) = %0 an (1+ L/dm®yR-1 = 4

(since log(l +2) < =)
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In particular, if % is the first index greater than 4m®(3mlogm — log¢) such that
cos(fo + kowo) > 0 and cos(fp + (ko + 1)iwo) <0, then by Lemma 5.10

Yep—1 ) 42mmm+1
e > co8{fy + (kg — 1 -
gt 2 O+ o= e = e
> cos(7/2 — o) — % = sin{pg) — %
s Po_$o_po
-2 4 4
Similarly,
ykﬂ+2 . 42mmm+1
< cos(fy + (ko + 2 +
2|aolpg*?* (6o + (ko + 2)po) (14 1/(4m?®))*
< cos(m/2 + o) + % = —sin(pg) + %9
Yo , Yo ©o '
< o F _ _IZ
- 2 + 4 4
as claimed. ; -a

We now bound the value of k. Since the distance between two consecutive transitions
from positive to negative values of cosine is at most 27 and ko > 4m®(3mlog m —loge)+1,
we have that k) — 4m3(3mlogm — loge) — 1 < 27/, and by Lemma 5.5

2rm3/?

ko < 4mP(3mlogm —loge) + 1+ (120—71- < 4m*(3mlogm —loge) + 1 + {0.17)
_ 0

With the above preparations we now can prove the main Jemma.
Lemma 5.12 If

m™ _ 22%m8 log?m
(m — 1)1 log? D’

¢ <

then yYr,—1 > ¢ and Yiy42 < 0.

Proof: 1,42 < 0 follows directly from Lemma 5.11. Hence, we only have to show
Yio-1 > €%, '

Step 1 We first show that if

m™ 222m8log® m

(m—1)m-t B log?D

¢ <

then
S 2 (2em)™ 3%
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where again € = /m™/(m — 1)™~1 — ¢. We note that if

m™ B 22%m8log?m
(m — 1)1 log?D '’

c <

then
22m* log m _ 22mtlogm
o T S

4
> (12m*log m — 4m®loge)log 3 + m.lsﬂ (since 1/¢ > —loge)

log D >

3/2

> (4m3(3m10gm —loge) + 21 ) log3 +
(m — 1}log(2em) + 2log(em) + log m™/*

and, therefore,

(em)?(2em )™ 13k —1n3/2 N c(2em )13k 1y 3/2

D 1
- - (0.18)
since by Equation 0.17
3,1'22
ko — 1 < 4m®*(3mlogm —loge) + oo
Step 2 We now show that yi,—; > c*. We have by Lemma 5.11
Yro-1 2 2[00|P’5°_1%
D ko—1%0
Z 2%3;‘1—:{,090 -4— (by Lemma 5.9)
2D bo—1 %o .
2 W(l/?)) 0 *Z‘ (smce Po Z 1/3)
De '
> (emym 135 iyale (by Lemma 5.5)
> ¢ (by Equation 0.18)
as claimed, O
Since yr,+2 < 0, the last step of the strategy is Step ko + 1. If m > 4, then the sum
fi}:)l +1-m42 ¥i includes yr,_; and, hence, is larger than ¢. By Lemma 3.6 this implies

that there is no strategy to search on m rays in the interval (1, D] with a competitive
ratio of ¢. If m = 3 and Eikiz:u-sq-z Yi = Yky T Ykg+1 < €, then yp, 1 /1, > ¢ and as in
Section 4 we see that this also contradicts the existence of a strategy with a competitive
ratio of c. '
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Theorem 5.13 There is no search strategy for a target on m rays which is contained in
the interval [1, D] with a competitive ratio of less than

™m b S .1 2
1+2( m _22m210gm).
(m — 1)m-1 log® D
Proof: The claim follows directly from Lemma 3.6 since if
| m™ 22*m®log® m
c < - 3 b
(m — 1)m-1 log® D _
then we see as in the case m = 2 that Lemma 5.12 implies that there is no strategy
Y and integer n such that o = -+ = y,y = D, all y; are positive for 0 < ¢ < =n,
Yn—m+1s--- 1 ¥n € {13 C]’ and E?:n..m.;.z i <. O

6 An Optimal Strategy

After having proven a lower bound for searching on m rays with an upper bound on the
target distance, one of the questions that remains is whether there actually is an optimal
strategy that achieves a competitive ratio of 1-+2m™/(m—1)""* —0(1/log? D) and what
it looks like. In this section we present a strategy to search on m rays that achieves the
optimal competitive ratio even if the maximum distance D of the target to the starting
point is unknown, that is, being told an upper bound on the distance to the target is
not a big advantage—even if we consider the convergence rate of the competitive ratio to
1+ 2m™/(m — 1)™! as D increases. '

The strategy X = (21,23,...)" that achieves a competitive ratio of 1 4 2m™/(m —
1)™=Y — O(1/log® D) is given by

f i m :
r; = 1+~—-('——-—-—)
m \m-—1

The competitive ratio of Strategy X in Step k + m is bounded by

Bm=l 14 4 (m_ )
. 1 +2EJ-—-1 m (f:—ll)
yi+5GE)

k4m—1 ] j—k
_ m -+ 3 m
= 1+2 ;.-::Zl Vm—l—k(m—l)

k-1 = i—k  ktm-1 ik
1+m m 1+m m
= 2 1/
1+ (; k+m(m—1) + ; k+m(m~—1) )
k-1 = k-  m—1 — ' i
f12+4m fm—1 2 m
1+2(j=1 k-{-m( m ) +Z 1+k+m(m—1))’

=0

i

1For convenience we start with z; instead of zq.
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where we assume for the moment that k > 1. We present an upper bound for the sums
on the right hand side. We first consider the sum

m—1 j‘ m 3
1 .
— +k+m(m—1)

q=

We first observe that

Vit+ze<1l+

x,

B2 =t

for # < 1, and, therefore,

m—1 j 'm i m—1 1 j ) m i
1 < 1+ -
;\‘ +k+m(m—1) . ( +2k+m) (m—l)

3

i
3
0
3
HE:
—
L =9
+
[ SN
A2
M
gl
__+=-.;
3
N
3
| 13
st
~

The first sum is equal to

m—1 3 m
m m
L | ——— (0.19)
; (m - 1) (m —1)m-t
and the second sum is equal
m—1 . i
7 m _ {(m—1)m
Z!’i:—l-m(m—l) T k+m (0-20)

Now we consider the sum

kz_i\/m(m—l)k—j _ k_l‘/m m—1\’
e k4 m m T4 k+m m

Similar to above we observe that

vl—wgl—%mﬁéwz,

for z < 1, and, therefore,.

S (21« B (b L)) (o)
= E+m\ m - 2k+m 8 \k4+m m )

=1
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We again compute the values of the sums on the right hand side separately.

5o s (). o

i=
S (mo1y mim—1) = (b—m— )m (z=1)*
g k+m m - E+m ’ (0.22)
and
k-1 . 2 i
_( 3 )(m—g‘_mmymwm—n
i=1 k+m m B (k +m)?
w?+ﬂﬁn—m+am2—&n+nm(%§ﬁ 0,93
(k +m)? - (0.23)
Hence,
=1 ; k-7 m—1 - j
ZV"Hm( m ) +Z 1+k+m(m—1)
j=1 §=0
k-1 . et ' _
1 7 1 7 m—1%\’ 1 j m \?
< 1—= - = o :
B 521( 2k+m 8(k+m))( m ) +§(1+2k+m m-—1/"

L)) - w e ()

L

Equations 0.20 and 0.22 yield

1 ] k-1 . {
1 g | g m—1Y’
2;k+m( —1) _E:{;mm( m )
= 1) -

l1(m~1)m 1m(m

2 k+m 2 k-+m
_ 1tk=m—-1m fm—1 b
T 2 k+m ( m ) ' (025)
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If we combine Equations 0.23, 0.24, and 0.25, then we obtain,

1 i +m fm—1 k~j
\/ k+m( —1) V‘;-{H ( )
_1m(m 1)(2m—1

. (m—l)m‘ 8 (k +m)?
lk—m—1 1k%*+2k(m—2)+2m? —3m+1 m —1\*
+(§ kim T8 ( (klm)z _l)m( )
m™ 1m(m —1)(2m — 1)
(m—1)™1" 8  (k+m)?

=

since

lk—m—l+'1k2+2k(m-2)+2m2~—3m+1<1
2 kE+m 8 (k+m)? -

There are the two special cases k = 1 and k¥ = 0 that remain to be cons1derecl If
k =1, then we only need to consider

BT ) = e i) ()

m

m

If & = 0, that is the target is detected in the mnitial m iterations, then the competitive
ratio is bounded by

1+2Z\/1+——( _1)5 < 1+2(m ) — (m—1).

Finally, we relate the number of steps k& + m to the distance D to the target.
If the target is detected in Step k -+ m, then the distance D to s is in the interval

[+/1+ %(m/(m — 1), /1+ ’ﬁ,;lﬁ(m/(m — 1))¥+™] and D is bounded from below by
: k
1+ i (L) < D
\/ mi\m-—1

1 1
~2—log(1 + k/m) + klog (1 + m_—l) <logD

or

which 1mplies
| log D

—_— ~ 1)log D.
= log (1+ m_l) < (m }og
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Hence,

D \/?(m-lf +2( mm 2m—1'_1))2)

14 & (m_ (m—1)m1 " 8(log D+ m/(m

m" 2m —1

< 1+2 — .
=T T T Tiog?(3D)

We have shown the following theorem.

Theorem 6.1 There is a strategy X that achieves a competitive ratio of

m" " 2m -1

(m —1)m1 " 410g?(3D)

1+ 2

if the target s placed at distance D > 1 to s.

By Theorem 5.13 the strategy we have presented above is optimal. Note that the
lower bound we have shown in Section 5 is only interesting if log D > 2m*log m.

7 Exact Solutions for m—=—2

To understand the differences between the various searching strategies and bounds pre-
sented in this paper, we have charted them for the case m = 2 and for distances in the
interval [1,10000]. _

In figure 5 we plot the best competitive ratio for a distance D. We used the exact
optimal strategy derived from the recurrence for searching for a point in two rays at
distance of at most D. The z-axis is the distance D plotted in logarithmic scale and the
y-axis represents the best competitive ratio attainable for that distance. This curve is
contrasted with the lower and upper bounds computed in sections 5 and 6. As you can
see, for small values of D the optimal strategy is 5-10% better than the proposed upper
bound. Notice as well that the lower bound is quite conservative in this range.

In figure 6 we present the same curves for larger values of D, Notice that while the
gap between the lower and upper bound has closed somewhat it is still relatively large.
This is due to constant in the second order term being relatively large as compared to the
square of the number of digits of D = 10000.

In figure 7 we compare the competitive ratio attained by the standard doubling strat-
egy, the proposed approximately optimal strategy for unknown D and the exact optimal
strategy.

8 Conclusions

We present a lower bound for the problem of searching on m concurrent rays if an upper
bound D on the maximal distance to the target is given. We show that in this case the
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Figure 5: Competitive ratio for optimal strategy m = 2, with upper and lower bounds.
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competitive ratio of a search strategy is at least 1+ 2m™/(m — 1)~ — O(1/log® D). Our
approach is based on deriving a recursive equation for the step length in each iteration of
an optimal strategy. The recursive equation gives rise to a characteristic equation whose
roots determine the properties of a strategy. By computing upper and lower bound on
the radii and polar angles of the roots we can show that the competitive ratio has to be
sufficiently large if the target is far away.

- We also present a strategy which achieves a competitive ratio of 1+2m™ /(m —1)™"1—
O(1/log? D) if the target is detected at distance D. The strategy does not need to know
an upper bound on D) in advance. Hence, the knowledge of an upper bound on the distance
to the target only provides a marginal advantage to the robot—even the convergence rate
1s not 1mproved. :

An interesting open problem is to prove similar results for randomized strategies. One
of the problems with randomized strategies is that there is no published proof that there
is an optimal periodic strategy. It seems that this is a necessary step before the bounded
distance problem can be attacked.
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