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The Exact Cost of Exploring Streets with a CAB*

Alejandro Lépez-Ortiz' Sven Schuierer?

Abstract

A fundamental problem in robotics is to compute a path for a robot from its current location to a
given target. In this paper we consider the problem of a robot equipped with an on-board vision system
gearching for a target ¢ in an unknown environment.

We assume that the robot is located at a point 5 in a polygon that belongs to the well investigated
class of polygons called streets. A street is a simple polygon where s and £ are located on the polygon
boundary and the part of the polygon boundary from s to ¢ is weakly visible to the part from £ to s and
vice versa. -

We are interested in the ratio of the length of the path traveled by the robot to the length of the
shortest path from s to ¢ which is called the competitive ratio of the strategy. In this work we present the
first exact analysis of the continuous angular bisector (CAB) strategy, which has been considered several
times before, and show that it has a competitive ratio of = 1.6837 in the worst case.

1 Introduction

Finding a path from a starting location to a target within a given scene is an important problem in robotics. A
natural and realistic setting is to assume that the robot has only a partial knowledge of its surroundings and
that the amount of information available to the robot increases as it travels and discovers its suroundings.
For this purpose, the robot is equipped with an on-board vision system that provides the visibility map of its
local environment. The robot uses this information to devise a search path for a visually identifiable target
located outside the current visibility region. The quality of a search strategy is then evaluated under the
framework of competitive analysis for on-line searches, as introduced by Sleator and Tarjan [27]. A search
strategy is called c-competitive if the path traveled by the robot to find the target is at most ¢ times longer
than a shortest path. The parameter ¢ is called the competitive ratio of the strategy.

As can easily be seen, there is no strategy with a competitive ratio of o(n) for scenes with arbitrary
obstacles having a total of »n vertices [4] even if we restrict ourselves to searching in a simple polygon.
Therefore, the on-line search problem has been studied previously in various contexts where the geometry
of the obstacles is restricted such as searching in special classes of simple polygons [7, 8, 13, 22, 23], among
rectangles [2, 3, 4, 5, 24, 25], convex polygons [14], and on the real line [1, 9, 10].

In this paper we study a competitive strategy to search in streef polygons. In a street P the starting point
s and the target ¢ are located on the boundary of P and all points in P are visible from some point on the
shortest path from s to .
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Figure 1: A lower bound for searching in rectilinear streets.

The class of street polygons was first introduced by Klein, and he was also the first to present a search
strategy for streets [15]. His strategy lad is based on the idea of minimizing the Jocal absolute detour. He
gives an upper bound on its competitive ratio of 1+ 3/2x(~ 5.71). The upper bound on the competitive
factor was later improved by Icking to 1 +7/2+ /1 +72/4 (~ 4.44) [11].

A number of other strategies have been presented since by Kleinberg [16], Ldpez-Ortiz and
Schuierer [19, 20, 211, Semrau [26], Dasgupta et al. [6], and Kranakis and Spatharis [17]. Unfortunately,
the analyses of the last two results turned out to be erroneous. The currently best known competitive ratio is
r 1.51 [12].

Due to the simple lower bound example shown in Figure 1 there is no strategy with a competitive ratio
less than +/2 [15]. If a strategy moves to the left or right before seeing ¢, then ¢ can be placed on the
opposite side, thus forcing the robot to travel more than /2 times the diagonal. Interestingly, this example
also provides a lower bound for randomized strategics. To see this consider the expected distance of a
randomized strategy to the left possible location of ¢ once the robot reaches the dashed line segment. If the
expected distance is less than one we place the target on the right side, otherwise on the left. Clearly, the
expecied length of the path generated the randomized strategy is also at least 2.! Curiously enough, this is
the only known lower bound even for arbitrarily oriented streets, It remains an open question whether there
is an optitnal competitive strategy, that is, a strategy whose competitive ratio matches the lower bound,

In this paper we present an exact analysis the strategy continuous angular bisector (CAB) which has
been considered independently by several authors [6, 18, 21]. We show that the competitive ratio of CAB is
s 1.6837. The previously best known upper bound on the competitive ratio is 2.03 [21]. Lépez-Ortiz shows
a lower bound of & 1.6837 on the competitive ratio of CAB if only triangles are considered [18]. We show
that CAR is no worse even in general streets.

CARB is a very natural strategy where the robot walks on a curve such that, at any moment, the direction
it is facing always bisects its visibility angle.? It is somewhat surprising that C4B can be analysed exactly
as CAB consists of hyperbolic arcs whose length cannot always be expressed in a closed form.,

The importance of CAB is threefold: '

¢ it compares favourably to most other strategies proposed [13, 16, 19, 20, 21],

o itis a Cl-comtinuous strategy in large parts of the polygon, as opposed to all others which may contain
many more bends; thus, a robot may follow a C4B path without having to stop as often, and

IThe same observation also holds for biased strategies as introduced in [22].
2The visibility angle is defined below.




Figure 2: A street polygon.

- o is used as a component of hybrid strategies for searching in streets as well as other domains, such as,
for example, to search for the kernel of a polygon [13].

2 Searching for a goal in a street

We assume that the robot can be modeled by a point that is contained in a simple polygon P in the plane.
Its start position is s and the position of the target is denoted by . We assume that both of them are vertices
of P. For clarity, we repeat the definition of a street.

Definition 2.1 A simple polygon P in the plane with two distinguished vertices s and t on its boundary is
called a street if every point in P is visible from some point on the shortest path from s to t.

We briefly summarize the facts about searching in streets that are revelant for us (see also [15, 19, 26]).

The competitive ratio of most strategies—and, in particular, CA8—depends only on the competitive
ratio achieved in funnels. A finnel is a street which consists of two reflex chains and one line segment. A
reflex chain is a polygonal chain all of whose vertices have an interior angle larger than 180°. The point
common to both reflex chains is called the apex of the funnel and denoted by s, see Figure 3 for an example.
We denote the other end points of the two reflex chains by »; and u,; the target is hidden at one of #; or
at u#,. A robot searching in a funnel will know which case applies latest when it reaches the line segment
connecting #; and #,. In the analysis of a strategy, both cases have to be considered and the maximum. of
them determines the competitive ratio.

Klein shows that if a strategy achieves a competitive factor of ¢ in funnels, then it can easily be extended
to a c-competitive strategy for searching in streets [15}].

While a strategy proceeds, we always denote the most advanced visible point on the left chain with v;
and the most advanced visible point on the right chain with v,.. Both vy and v, are vertices of P. Furthermore,
let d; and d, denote the distances from the actual position to vy and v,, resp., cf. Figure 3.

We define the visibility angle of a point p to be the angle between the line segments from p to v; and to
v, and denote it by 7y, see Figure 3. The visibility angle of s is called the opening angle of the funnel.

Suppose that the robot moves from the point p to a point ¢ in the triangle formed by v;, p, and v, Let o
be the angle Zpv;q and 3 be the angle Zgv,.p.

Observation 2.1 The new visibility angle Y, at q is given by ¥, = 1, + 0+ P.
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Figure 3: A funnel polygon.

'3 Walking on Angular Bisectors

A very natural idea for a strategy is the following [6, 13, 18].

Strategy CAB (continuous angular bisector):
The robot walks along the curve C such that, for all points p on C, the direction of the motion
of the robot (that is the tangent to C in p) bisects the angle Zv;pw,.

Note that one of the points v; and v, changes when the path of the robot intersects a line that is collinear
with one of the edges of the funnel. However, the visibility angle does not change. Hence, the curve
generated by CAB is Cl-continuous.

The path described by Strategy CAB consists of hyperbolic arcs with foci a v; and v,. Let d(p,q) is the
length of the shortest path from p to ¢ in P and |pg] the length of the line segment from p to ¢. The points
p that lie on the path generated by CAB satisfy the equation

|pvil —1pve| = d(s,v) — d(s,vr)

where s is again the apex of the funnel. It is interesting to note that this is the same equation that is obtained
for the Strategy clad [21]. As mentioned before, Lopez-Ortiz and Schuierer show that the competitive ratio
of clad (and, thus, CAB) is 2.03. Dasgupta ef al. also investigate the competitive ratio of CAB and claim
a competitive ratio of 1.7 [6]. Unfortunately, their analysis contains a flaw. In this paper we make use
of their approach and correct the error in their analysis which leads to a competitive ratio of =2 2.38. We,
furthermore, refine their analysis to achieve a competitive ratio of a2 1.6837 which is the exact competitive
ratio of CAR as there is a funnel for which the competitive ratio of CAB achieves this value.

3.1 Analysis of the Strategy CAB

In this section we analyse the competitive ratio of C4B. Without loss of generality we assume in the follow-
ing that the target ¢ is located at 2;. We first observe that the shortest path from the current robot position p
to ¢ consists of the line segment from p to v; and the left boundary chain from v; to #;. Since it can be shown
that the distance from p to v; decreases as the robot follows the curve C generated by CAB [6, 21}, so does
the distance from the robot to ¢ as long as the v; does not change. If v; changes at the point p, then p can be
regarded as the new apex of the funnel and the distance to the target again decreases monotonically.
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In the following we analyse how much the detour increases as the robot follows C. We follow closely
the approach of Dasgupta ef al. [6]. The detour of a strategy is defined as the additional distance that the
robot travels by following the path of C4B instead of the shortest path; in other words, if C{p,q) is the
length of C from p to g, then the detour def{p, g) between p and ¢ is defined as

det(p,q) = C(p,q) —d{(p,q).

We are interested in the detour det(s,#) between s and ¢. Note that competitive ratio ¢ of CAB is given

by
det(s,t)

d{s,t)

Qur analysis is incremental, Assame that the robot moves from a point p to a point ¢ and that v; does
not change on the part of C from p to ¢. How much does the detour increase? The detour up to the point p
is given by dez,(s,t) from s to £ via p is

detp(s?t) = C(S,p) +d(p, t) - d(S,t) = C(S,p) + [Pvll —d(é‘, v:')‘

c=1+4+

For the last equality we have made use of the observation that the shortest path from s to ¢ and the shortest
path from p to ¢ both go through v;. The detour increase Adet{p, ¢) by going from p to ¢ is therefore

Adet(p,q) = dety(s,t)—dety(s,t)
= C(S, '?)_1' quI[ - d(s!vl) - (C(s,p) + Ipv¢'| - d(s!vl))
= C(p,q)+lqvil - [pvil.

Hengce, if the robot moves from p to g, then the detour increases by C(p,q) + |qvi| — |pvi|. Note that
the above analysis is independent of the strategy we have chosen.. In the following we consider a strategy
which slightly differs from CAB. In the new strategy the robot moves along the angular bisector of its current
visibility angle in a straight line for some (short) distance. Then, it computes the angular bisector of its new
position and follows it for some distance and so on.

To be more precise, let p be a point on € at which vy or v, changes and g a point at which v; or v, changes
the next time so that along the part of C from p to ¢ the points v; and v, remain the same. Let o be the angle
Lpvq. We divide o into n parts and the new strategy now starts at po = p and moves along the bisector of
the visibility angle of pg to a point p; such that the angle £pgv;p: equals do = o/n. At p; it moves along
the bisecior of the visibility angle of p; to a point p; such that the angle /pv;p» again equals dor and so on.
It finally reaches the line through v; and ¢ in a point p, which is different from ¢. 1t is easy to sec that if »
goes to infinity, then the curve G, described by the new strategy converges to the part of C from p to g. In
the following we calculate an upper bound on the increase in detour incurred by C,. We denote the visibility
angle of point p; by v; and the distance between p; and v; by d;. Furthermore, let 6; = v;/2.

Using the law of sines we can see that the increase in the detour for G, if we move from p; to py is
(see Figure 4)

I

[P:‘PHI | +dj+1 - di d: (sm(da) +Sln(ef) _ 1)

’ sin(m — 6; — dow)
_ sin(dor) -+ sin(6;) — sin{0; + dot)
- (O )
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Figure 4; The computation of the increase in the detour when moving from p; to piy .

_ 4 (sm(da)-{—sm(ﬁl)—sm( ;) cos(dor) — cos(B)sm(doc))

sin{6; + dot)
= 4 (—Ms:n_((:ﬁ?g) sin(do) + —Slj(sénf d)) 2(a'0£/2))

Hence, the total increase 7, in detour from pg to p,, is given by

ol 1—cos(8) 2sin(0;) .
I, = 4=2{lj d; (m sin{dot) + m sz(da/z)) ‘

Let 7,, denote the increase in detour of CAB if the robot goes from p to g. Since the path of the new strategy
converges to the path of CAB, I, converges to I, as n goes to infinity. Hence, the detour of the CAB strategy
1s given by

Ly = }}g{l:z"]d (Qﬁ(&% in(do) 4 ;mz(s;:l—-% sinz(da/Z))
Y ] cos(6;) 25in(8;)
= lim ; d; (W(mm O(da)) + W(du/z - O(doc3))2)

~ i a (i) = jin S (arsthao)
= }}ﬂg‘dtan(g)da

In order to calculate the above sum we need to determine how 6,,; depends on 9; and da.> By Observa-
tion 2.1 we have that

Yir1 =Y+ do+dP;
where dp; is the angle /p;1vyp;. Hence, 8,11 = 8;+do/2+d;/2, for 0 <i <n— 1. By a simple induction
wehave 0, =0, 1 +do/2+dB,_1/2=- - =0;+(n— i)doz/Z—I—Z;?;,-l dB;/2 and, therefore, ;= 6, — (n—

3 At this point Dasgupta ef o/, assume that By = 8; + de: [6] which is not true in general. In this way they arrive at a detour that
is bounded by d(s,2) [, T:"‘ 2 tan{@/2)d0 = d{s,t} In{1 4 cos(y,/2)) which is too low by a factor of two (sec also Equation 3).
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ida/2 — E:f.;.l dB;/2=0,—o/24ido/2—B;/2 where B; = 2?;1-1 dp;, for 0 < i < r— 1. Since tan increases
monotonically on [0,7/2],

= 0,—o/2 do P
Ipq = ?}mz‘dgtm’l( 5 -I-"z——z) do (1)
0,-o/2 du
| < A%den(T+ —)doc. 2

If we now observe that C4B approaches the target # monotonically, that is d; < dp, for 1 < i< n— 1, then
we obtain

Le < 11md02t (9”_“/2+d°‘)doc

n-yeo 2
Since lim,—y.. 9, = ¥;/2, the above limit equals the integral
: Y, ¥, '
; | dof“‘ tanedﬂ dof" tangdﬂgdofqtangdﬁ.
: Ye—ot Yot+B 4 Yr 4
Recall that v, is the visibility angle of p and Y, is the visibility angle of 4.

If we consider the total detour, then we just need to take into account that dy < d(s, ). Now we can sum
over the integrals between the points where v; or v, changes. This leads to the bound

e ©
det(s,t) < dfs,t) f tan de
Ve

where ; is the opening angle of the funnel and v, is the visibility angle at which ¢ is seen. Since ¥, < %,

i1 9 'YS
det(s,f) < d(.s',t)f tan — 49 d(s,t)2In (1 + cos -—) 3)
Yo 4 2

< 202 d(s,8) = 1.3863 d(s,t)

Since d{s, t) is the length of the shortest path from s to ¢, we obtain a competitive ratio of 1 +21n2 < 2.3863.

3.2 Improving the Analysis

The above analysis gives a very coarse bound on the competitive ratio of C4B which is even worse than the
bound 2.03 obtained by Lépez-Ortiz and Schuierer who use a completely different approach [21]. The slack
| in the above analysis is due to the fact that we have neglected the decrease in the distance d The distance
d; is given by the following recurrence equation®

: ;s do B
gy = S0®) T sin(€;) _ _ 1 Sm( ”_%"'"J’Ta_‘zi) .
= e = T e ey = 11 - R
sin(6; + dot) 70 sin(9; + dor) j=OSln( n"%+17°‘—7"—|—d0t)

4 A similar equation for the special case 8;,.1 = 0; + d0./2, that is B; = 0 is given by Lopez-Ortiz [18].




3.2.1 An Example

For didactic purposes, let us analyze the case of an isoceles triangle. In this case, the CAB strategy produces
a straight line up the bisector of the initial angle. From basic trigonometry it follows that the detour is given
by do(cos(1,/2) — 1+ (1 - cos(1,/2)) sin(y,/2)/ sin(1/2)).

If, on the other hand, we use Equation 1 and Equation 4 we first notice that, in this case dow = dfj; for all
0 < i < n— 1. This implies that B; = 37" jl dBi = (n— j)do.= o.— jdo. Thus, Equation 4 becomes

o i sin(0, — o+ jdo)
i1 @Il sin(0, — o+ jdo+ do)

=0
Notice that this is a telescopic product and we obtain

sin(9, — o)
Osin(8, — o.— (i+1)do)’

di+1 =
Now, substituing in Equation 1 gives

n=1  sin(6, — o) tan (gﬁzig + idz—“)

L, = 1 d
P4 ,,‘_‘El;,d‘) Sin(0, —at G+ Dda) -
n=l tan(9=2L“ -f-;'i‘»’g'-‘)

= dysin(6,— ) 151;% (0, — ot (i1 Ndo)

%l2  tan{@/2)
_ d
Y/2—a 5in(6)

_ , sin(y,/4)  sin(y,/4)
= dosin(6:—0) (cos(viﬂ) - cos(«zp/4)) ‘

A sequence of trigonomeiric transformations shows that this value indeed matches the one computed pre-
viously, In particular, if we consider the “funnel” in Figure 1 where ¥, = n/2 and v, = &, then we obtain
a detour of +/2 — 1, as expected. This indicates that by using Equation 4 we may, in fact, obtain the exact
detour of CAB.

= dyp Sin(eﬂ — 0()

3.2.2 The General Case

Now we consider the general case. Note that sin(9;)/sin(6; + do) is monotonically increasing in 8;, for
0 < 8;+da < ®/2, and, hence, we obtain from Equation 4

i sin(8,— $479)
disy < d 2 22/
o= Ggsin(e,,-—%Jrj%“eroc)

Once again, this is a telescopic product, in which the denominator of the jth term cancels with numerator of
the (7 + 2)nd term of the above product and we obtain

< dy sin (0,, - %) sin (0,, — %+ %"‘) -
- sin(9n~%+(f—1_)d2—“+d0c) sin (8, — $+i% +da)

diy1 (%)
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Figure 5: The vertex v; changes.

We can now plug in the upper bound for d; into Equation 2, which gives

-1 sin (8, — £) sin (8, - §+ &) tan (e"—';—’g—l—f%“)
g < lim Yy do= o d - d
e S8 T sin (0, — § + (- 2) ¥ 4 da) sin (0, — $+ (i~ 1) Z +do)
n—1  sin® (9,,— %) tan (-9”—_222 —I—I"i—a)
= lim Y d—
e T sin? (8, — 34 (- 2) L +da)

Since again lim,_,., 8, = ¥,/2, the above limit equals the integtal

.o f Vg — O ] tan(9/4)
dy sin (—2 ) fg_umsinz(e/z)de‘ ©)

In order to obtain an upper bound on the total detour of C in P we consider all the points ¢;, 0 <i < k, at
which the most advanced visible point on the left or right chain changes. We start with gg = 5 and end with
the point ¢, at which the target becomes visible. Let §; be the visibility angle of ¢; and v; the most advanced
visible point for ¢; on the left chain. Moreover, let ¢; be the distance from g; to v; and ¢; the angle at v;
between g; and ¢;41. By Expression 6 the total detour is bounded by the sum

k-1 iy 14— Y 5; 4

Y e; sin? (ﬁiﬁ_ﬂ) f T 7Y G
Purd 2 8:11—0; sin“(6/2)

By Inequality 5 the distance ¢;, for 1 < i < k— 1, is bounded by (see Figure 5)

. sinz((ﬁ,-—a,-_l)ﬁ)
= T in? (8:/2)

with ey = |vgv]. If we solve the above recurrence, we obtain that

+ |vivig 1l

€

PR e RV

5 [vvel
1=0 j=i11 sin“(8,/2) ’
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for 0 <i < k- 1. If we plug the expression for ¢; into (7) and extract all the terms that are multiplied by
[v1vie1 |, then we obtain the sum

kL sin?((8; - —0-1)/2) o (81— 0 St tan(0/4)
Y e
= v EJI;IH sin(3;/2) ( 2 ) [a,.+._a,. sin?(8/2)

We see as before that §; < &, — Zf,?;} o; = ¢;. Since §; < w, and the function sin{(&; — o;_1)/2)/ sin(8;/2)
is monotone in §;, if 0 < 8; < =, §; is bounded by

S 000/ g =) oo e
Sl S IVIVI+1| ;}gl s1n2(¢}/2) gin T) £i+1_ai Wﬂ'@ (8)

Note that the function
sin® (841 — 04)/2) tan((Bi41 — 04 +8) /4)

sin?({8y4.1 — 0y +9)/2)

is also increasing in 8;,1 and, therefore,

Sin2(¢'i+l“"ai) f et tan(6/4) 49
¢

. 5 8;’+l‘“05;‘) i tan(8/4)
Sm( 2 f s os s (0/2) 0 S 2 o1—co SIT2(8)2)
_ 20 it tan(8/4)
= sin > f.p “in (9/2) d0 (9)

since ;1 — o = &;. Using this equality and Inequality (9) in (8) we obtain

” =l i gin (¢j 1/2) 28 bt tan(6/4)
[vivigl E}Hl si?(0;/2) ftbs sin?(0/2) do
_ ! sin?(¢;/ 2) ¢= b1 tan(6/4)

|WVI-+-1| Z 2(¢:/2) 2 & 51n2(9/2) 49

k=1 pdyy

= D sin? Ef@ :3((99//?)
¢; [ tan(B/4)
2, o

™ tan(0/4)
< 2% f 1and/4) go
S bmalsicny f S2072)

S

IA

= |vvpg] i

The total detour is now bounded by

k=1 ki tan(0/4)
5 < 2¢1/
2.5 < I:z;,)|vzvz+1|51 o 50 (9/2)

I=0

20 [ tan(6/4) )
= o<esn (Sl 2 Jo sin’(6/2) @9 Zf) vzl
= max (sng (l .— Intan %) —l+4cos= )d(s t). (10)
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Figure 6: A triangle for which the lower bound for CAB3 is achieved.

From the derivative it can be seen that the above function has a unique maximum in the interval {0, n]
at Pmar =2 1.86973 and with a value of less than 0.68372. Finally, we note that all of the above inequalities
change into equalities if the consider a triangle with opening angle ¢,,,y, the distance |su;] = 1, and u,
placed infinitely far away (see Figure 6). The lower bound is also shown in {18]. Hence, we have proven the
following theorem.

Theorem 3.1 The competitive ratio of CAB is ~ 1.6837.

The expression in Equation 10 gives an upper bound on the detour in terms of the starting aperture angle
of a funnel. The plot in Figure 7 shows that CAB has worst case performance for initial apperture angles
slightly larger than 7/2.

4 Conclusions

We have analysed the strategy CAB to search in streets. The strategy CAB follows a path such that the
direction of movement always bisects the current visibility angle. The resulting path is a concatenation of
hyperbolic arcs. Although the length of a hyperbolic arc cannot be expressed in a closed form, the maximal
competitive ratio of CAB can be analysed exactly—as opposed to many other strategies. We show that the
competitive ratio of CAB is ~ 1.6837 and we also show that there is a polygon for which this competitive
ratio is assumed. CARB is a very natural strategy that is also considered in several other contexts. In addition,
CAR has the advantage of being C'-continuous in a funnel.

One of the most interesting and tantalizing open problems in the area of on-line geometric searchlng
remains the question whether it is possible to design an optimal competitive strategy to search in streets.
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Figure 7: Upper bound on the competitive ratio of CAB.
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