ADAPTIVE SET INTERSECTIONS
by

Erik D. Demaine
Alejandro Lopez-Ortiz
J. lan Munro

TR98-120, July 1998

* : Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3
Canada

Phone: (506)453-4566
Fax: (506)453-3566

E-mail: fcs@unb.ca

www: http://www.cs.unb.ca

Adaptive Set Intersections

Erik D. Demaine” Alejandro Lépez-Ortiz! J. Tan Munro*

Abstract

We introduce a new data structure, corresponding to a fully persistent SET ADT,
motivated by the efficient evaluation of boolean queries in text retrieval systems. We
then focus on a key operation required by the ADT, namely the problem of efficiently
evaluating an intersection expression over a static collection of integer sets. We present
an optimal nondeterministic algorithm for computing the shortest proof of nonintersec-
tion for disjoint sets in the comparison model. Then we propose an adaptive algorithm
for computing such proofs in deterministic fashion. The number of comparisons per-
formed by this algorithm falls within a small multiplicative factor of the theoretical
best. This algorithm is generalized to compute the intersection of nondisjoint collec-
tions of sets with the same competitive factor.

1 Introduction and Motivation

In this paper we consider the problem of evaluating a set expression over a given static
domain composed of a collection of sets of integers. This problem is motivated by queries
to a database such as a search engine. On a text-retrieval system, a standard multiterm
query is composed of strings of terms connected via the boolean operators and, or and not,
for example, "computer” and "science”. Each term represents the set of all documents
containing that term. The boolean operators represent the corresponding operations over
these sets. That is, a sequence of and terms is mapped to the intersection of the sets implicitly
defined by those terms. Similarly a sequence of or operations maps to the union of document
sets.

During the last decade the average size of a text collection has grown exponentially. For
example in the mid 1980s the Oxford English Dictionary was considered a large coliection at
300MB of text. Currently, a large collection, such as the Lexis/Nexis database, holds over
one terabyte of text. Another common example is the World Wide Web, estimated to contain
around 100 gigabytes of text.! For this case, a single query term of a randomly selected word

*Department of Cemputer Science, University of Waterloo, Waterloo, Ontario N2I: 3G1, Canada, email:
{eddemaine, imunro}@uvaterloo.ca

TRaculty of Computer Science, University of New Brunswick, P. O. Box 4400, Fredericton, N. B. E3B
5A3, Canada, email: alepez-o@unb.ca

L All figures are estimates, and rapidly increasing. At time of printing SIGIR Forum estimates Lexis /Nexis
at over seven terabytes of text, and the web at two terabytes [12]. Other sources report more conservative
growth.

from an English dictionary matches anywhere between a few hundred to several millions of
documents. In fact we obtained an average of 37,500 different documents matching a single-
term query, as described above, on the AltaVista search engine. However, the actual average
result size is larger, as users search using a restricted subset of English (as well as other
languages). If we restrict ourselves to a dictionary made from the logs of actual queries to
a web search engine we see that the average query term appears in the order of 1,000,000
documents.

This means that a single query term over a large collection gives result sets of impractical
size. Currently a user must type several terms to narrow the result set to a usable size, as
query logs confirm. Thus the efficient evaluation of an arbitrary boolean query requires fast
algorithms for the evaluation of arbitrary set expressions over sets of millions of elements in
size. If the query is well constructed, the matching set is then likely to consist of a small
number of documents as compared to the sizes of the sets being intersected.

While some “complex” instances will force one to look at all the documents involved, 1t is
sensible to require “simple” instances to be solved more efficiently. For example, computing
the intersection of two ordered sets of size n that interleave perfectly requires £2(n) operations
{essentially the time required to merge them and determine that no two consecutive values
are the same). On the other hand, if all the values in one set are strictly less than all the
values in the other set, we should be able to determine that the intersection is empty in
constant time.

Indeed the latter case is particularty useful when one of the query terms does not occur
as often as the others. For example, consider the query "traincrash” and "Summerview".
The first term is likely to result in evenly distributed occurrences over the index as there
are train crashes all over the world. In contrast the peaceful town of Summerview appears
infrequently on the news. An adaptive algorithim exploits the structure of the sets being
intersected, producing faster results in those cases where the answer can be computed more
efficiently.

For simplicity of exposition we will first analyze and propose algorithms for the case in
which the answer set is empty and then generalize the algorithms for nonempty intersections.
A natural measure of the hardness of the input for an intersection operation, under the
comparison model, is the information-theoretic lower bound, namely, the size of the optimal
encoding of a proof showing that the sets do not intersect.

Usually, operations are performed over a predetermined collection of sets, namely the
word index. Often these sets are represented as B-trees or variations thereof. It is thus
important that the algorithms proposed support these structures. Set operations are an
extension of the dictionary abstract data type (ADT). Moreover, the result of a set operation
is sometimes used for further processing (e.g., ranking or finding similar documents). We
need then to be able to use the result of a set operation as input to another operation of the
same type.>

To summarize, the requirements call for a SET ADT over a collection of integer sets. The
operations allowed are UNION(A, B), INTERSECTION(A, B), and DIFFERENCE(A, B), where
A, B are two integer sets, not necessarily disjoint. The SET ADT is fully persistent in that the

2An example of this concept is the UNION-FIND ADT, in which the set resulting from a union can then
be unioned again with other preexisting sets in an efficient manner.

resulting set can be used in any future set operation. Operations produce “self-replicating”
structures which allow the evaluation of set expressions with parse trees of arbitrary depths.

It is readily apparent that the proposed SET ADT, if efficiently implemented, satisfies
the requirements of a multiterm text retrieval system. In this paper we propose efficient
adaptive algorithms for the set-intersection problem and postpone the union and difference
operations for discussion in a forthcoming paper.

The rest of this paper is outlined as follows. In Section 2, we introduce the problem. In
Sections 3 and 4 we consider optimal nondeterministic algorithms for finding a proof of empty
intersection. In Section 5 we presenf matching upper and lower bounds on deterministic
algorithms for computing the intersection of a collection of sets. Lastly in Section 6 we do
average case analysis for random instances.

2 Problem Statement

Let us give a formal statement of the problem we are concerned with. Suppose we are given
a collection of n sets Al,..., A", where

& & &
A —{011-"3%3}—

Each set is in sorted order; that is, af < af for all i < j. We are interested in computing
the intersection of the sets, that is, A' N --. N A", in an optimal factor away from the
information-theoretic lower bound on the difficulty of the problem.

We will often consider the equivalent problem of proving that the sets are disjoint. The
sets are called disjoint if A1 ---M A" = @. Note that this is different from the sets being
pairwise disjoint, that is, A° N At = @ for all s,¢. In particular, any proof that two of the
sets are disjoint is a proof that all of the sets are disjoint.

A proof is a set of formal comparisons (all strict inequalities), written in parentheses to
denote formality. For example,

{(a} < }), (a} < a})}

is a 2-comparison proof of nothing in particular. The length of a proof P, denoted |P|, is
simply the number of comparisons.

A proof of nonintersection is a proof such that if the stated comparisons were true, then
it must be that the sets are disjoint. In other words, there are no choices of ¢, ..., 4, such
that a},...,a} are pairwise incomparable, where possible comparisons are defined by those

AR

in the proof plus the assumption that every set is in sorted order.

3 General Structure of Proofs of Nonintersection

A natural question at this point is, what do proofs of nonintersection look like? Let us define
the concept of elimination in a proof P, which will essentially represent the elements that
have been proved to be not in the intersection A'M---NA". First, call an element af minimal
[mazimal] if for every j < i [§ >, a? is eliminated. Now define o to be eliminated if either

3

1. there is a j > ¢ such that (aj < b) € P where b is minimal, or

2. there is a j < i such that (af > b) € P where b is maximal.

That is, if (¢ < b} € P and b is minimal, then af is eliminated for all ¢ < j. Similarly, if
(ai > b) € P and b is maximal, then af is eliminated for all ¢ > j. Furthermore, this is a
complete definition of elimination.

The motivation for this definition is the following lemma.

Lemma 1 If a} is eliminated, then it cannot be in Ay N ---N A,. In particular, if ¢ proof
eliminates an entire set, then it is a proof of nonintersection.

Proof: Consider some sequentialization of the “elimination steps,” that is, eliminating
af for all ¢ < j because (a$ < a}) € P and g}, is minimal, or the symmetric case. Assume
that up to some point all eliminated elements are not in the intersection, and consider the
next elimination step. Let af be one of the eliminated elements; we will consider all possible
values it could have. If @f_; < ¢f < af for some j < k, then a; is not in A?, 50 it cannot be
in the intersection. Otherwise, a! = a§ for some j < k. But by the induction hypothesis,
a} (and hence ¢f) is not in the intersection. Therefore, in all cases 4 cannot be in the
intersection, as desired. B O

Indeed, the converse of the second part of this lemma holds. First, we need to show that
elements are eliminated only on either end of a set.

Lemma 2 If a set has uneliminated elements, they are all consecutive.

Proof: Suppose ¢ < j < k is such that «f and o}, are uneliminated, but o is eliminated.
Assume by symmetry that there is an [> j such that (e} < b) € P for some b that is
minimal. Now { > j > 4, 80 «f is also eliminated, a contradiction. O

Now we can show the importance of the idea of elimination.

Theorem 1 Any proof of nonintersection eliminates an entire set, thot is, at least one of
the sets has every element eliminated.

Proof: Suppose for contradiction that every set has at least one uneliminated element.
By Lemma 2, the uneliminated elements in each set are consecutive. Let u, be the index
of the smallest uneliminated element af, in set A°. We claim that a}“, ..., 0y are pairwise
incomparible, and hence P is not a proof of nonintersection.

Suppose P implies that ¢, < af,. In other words, there is some path of comparisons

(af, <ail), {aff <a3), ..., (aff < aﬁkH), € P,

where 2, < Jo, 41 <1, «-vy & S Jry fnb1 < U

Initially, o, and hence af is minimal. Because of the comparison (aj} < af), ajf and

hence a;* is eliminated and minimal. Assume in general that a3 is eliminated and minimal.
Because of the comparison (a;™~} < ai™), a;=~ ! and hence a;""! is eliminated and minimal.

m— Jm—1 me1

By induction, af and hence aj is eliminated, a contradiction. O

!
1
.
;
'y
i
:
;
:

4 Shortest Proofs and Nondeterministic Algorithms

So far, proofs have had no order and hence the effect of a particular comparison, in terms of
elimination, is unclear. In an ordered proof, we say that the kth comparison eliminates an
element if the subproof with the first & comparisons has this element eliminated; it newly
eliminates an element if in addition just the first £ — 1 comparisons do not have this element
eliminated. A basic comparison is a comparison (a < a}) that newly eliminates elements
just in A*® or just in A*. An incremental ordering of a proof P is an ordering such that the
comparisons are basic up to but not including the first comparison that eliminates an entire
set.

Consider the following nondeterministic algorithm for ordering a proof P. First, choose
any comparison left that newly eliminates some elements. Repeat until there are no such
comparisons. Second, choose the remaining comparisons in any order.

Lemma 3 Any execution of this nondeterministic algorithm results in an incremental or-
dering of P.

Proof: Suppose we add the comparison (aj < at) during the first phase. For this to
cause any elimination, it must newly eliminate elements in A® or A®. For elimination to
occur in other sets, it must be because of new elements becoming minimal or maximal. If
both af, was minimal and e} was maximal, then this comparison entirely eliminates set A°
and A*, so we do not have to consider it or future comparisons. Hence, we can assume that
either a} was minimal or a} was maximal, but not both.

Without loss of generality, consider the case where o} was minimal, which causes af
to newly become minimal for all ¢ < j + 1. It is also possible that elements in A* newly .
become maximal, but this only occurs when o was eliminated for all ¢ > j, which means
that the comparison entirely eliminates the set A°, so we do not have to consider this or
future comparisons. For the new minimal elements to cause more new eliminations, there
must have already been a comparison (af < af,) for some m < j + 1. This comparison was
chosen in the first phase (because it was chosen earlier), and hence either a;, was already
minimal or a was already maximal. In the former case, af was already eliminated for all
i < I, and hence there are no new eliminations. In the latter case, af was already eliminated
for ail i > m (and hence for all ¢ > j + 1), which means that the set A° just became entirely
eliminated, so we do not have to consider this or future comparisons.

Next consider a comparison chosen in the second phase. Assume by induction that there
are no remaining comparisons that canse new elimination. Because this comparison did not
newly eliminate any elements and hence did not make any new elements minimal or maximal,
it cannot make any future comparisons cause elimination. Therefore, no comparisons in the
second phase cause any elimination. O

Let P = [e1,...,¢p,...,Cn) De an incremental proof, where ¢, is the first comparison
eliminating an entire set. The comparisons ¢,+1, . . . , ¢m have no purpose in terms of proving
nonintersection, so we call them useless. Consider a useful comparison ¢, = (a < a}). We
call 5 low if o} is minimal, and high if of is maximal, at the time when ¢ is added to the
proof. Because ¢;, newly eliminates elements, it must be either low or high. By definition of

incremental, ¢ is not both low and high for £ < n, so we call it low-only or high-only. Also,
because ¢, entirely eliminates the two sets it compares between, it must be both low and
high, or low-high. : .

First let us show that the low and high comparisons are effectively independent.

Lemma 4 Let P be an incremental proof of nonintersection. Let) be the reordering of P
that puts all the low-only comparisons before the high comparisons, maintaining the relative
order between two low comparisons or two high comparisons. Then Q) is also an incremental
ordering of P.

Proof: Applying bubble sort, we can perform this permutation by a sequence of swaps of
adjacent low-only and high-only comparisons. Consider a low-only comparison ¢ = (af < aj;)
and a high-only comparison d = (af < af). Then g is minimal and a} is maximal; ¢
eliminates af, for m < 7 and d eliminates a}, for m > I. Now consider interchanging the
order of ¢ and d, that is, putting ¢ before d when ¢ used to be after d. This will only affect
¢’s elimination if af is no longer minimal, i.e., if d newly eliminated at, for some m < j.
Choosing m to be the smallest possible, this means that a!, = af. But because d makes
al, = of minimal, af, must have already been minimal, which means that d was low, a

contradiction. Similarly, d’s elimination is only affected if ¢ was also high, a contradiction.
(o

Now we claim that we can ignore high-only comparisons.

Lemma 5 If P is an incremental proof of nonintersection, then there exists another incre-
mental ordering of P such that all useful comparisons are low.

Proof: First reorder P according to Lemma 4 so that the low-only comparisons come
before all high comparisons. We shall now reverse the order of the high comparisons. Note
that this does not affect the low comparisons. We claim that it turns the high comparisons
into low comparisons, and hence by Lemma 3 keeps the ordering incremental. We shall prove
this by executing a sequence of permutations, repeatedly putting the last high comparison
immediately before the first high comparison.

Consider the last high comparison (¢ < af). It is also low, i.e. @ is minimal, so it
eliminates af for k > . We need to show that the comparison would also be low if we moved
it to immediately before the first high comparison, i.e., that a,f; was already minimal before
all the high comparisons. If this were not the case, there must be a high-only comparison
that newly eliminated ¢. Since it is high-only, it must be of the form (b < a}), where b
is maximal and a! was already minimal from the low-only comparisons, which completely
eliminates A®. Hence, the first high comparison is also low, the desired result. O

Finally, we argue about the inflexibility in the choice of the comparisons.

Theorem 2 The following greedy algorithm generates ¢ shortest proof of nonintersection.
After choosing cy, . .., i1, let ¢; = (af < b) where b is the largest minimal element in all the
sets, and af is an element less than b such thet af,; is mazimized. Here a;, , is defined to
be infinity.

Proof: Consider a shortest incremental proof P. It cannnot have any useless compar-
isons; otherwise we could simply remove them for a shorter proof. Hence assume by Lemma 5
that all comparisons are low.

Consider ¢ = (af < a}) € P. Because cis low, a is minimal. We will call af the eliminatee
and e:j the eliminator. We claim that the ch01ce of a, is essentially fixed. If a, is not the
largest minimal element e, we can replace ¢ by (af < e) because e > af, it will ehmma,te the
same elements, so all the future comparisons will work as before. Hence, assume that the
eliminator of each comparison in P is chosen to be the largest minimal element at the time.
The choice of 7 is also fixed: we can replace ¢ with the largest value such that ¢ is actually
true. This will eliminate (in particular) all the elements eliminated before, so all the future
comparisons will work as before.

All that remains is the choice of s, the set containing the eliminatee. Call a comparison
¢ good if the eliminatee @] is chosen such that af ; 1s maximum. Suppose that there is a
comparison ¢ = (af < b) € P that is not good. Let af be such that ¢ = (af < b) is good.
Let us consider replacing ¢ by ¢'. If ¢ eliminated an entire set, then ¢ was already good, a
contradiction. Otherwise, the only effect on future comparisons is that af,; can no longer be
an eliminator Consider a comparison d that uses af,; as a eliminator. Then we can modify
d to use af,; as its eliminator; this will cause the same elimination since a1 >l

We can keep perfoming such modifications to ¢ and corresponding d’s. Each one causes
¢’s eliminator to strictly increase, and never decreases the value of other eliminators. Since
there are only a finite number of possible values for each eliminator, we can only perform
these modifications a finite number of times. When we are done, all comparisons will be
good. That is, we will have a proof generated by the algorithm, of optimal length |P|. O

Note that the optimal proof can be obtained as well by considering the complements of
the sets being intersected. Each complement consists of a collection of open intervals. The
intersection of the given sets is empty if and only if there exists a collection of intervals
covering the entire real line. It is possible to show that such a cover corresponds to a proof
of nonintersection, and indeed the smallest-cardinality cover corresponds to a shortest proof
of nonintersection. As expected, such collection can be obtained using a greedy algorithm
similar to Theorem 2.

5 Optimal Proofs and Deterministic Algorithms

Theorem 2 gives us a simple greedy algorithm characterizing shortest proofs. The attractive-
ness of the algorithm is that it is nondeterministically optimal, running in | P| time. However,
the algorithm is not useful on a deterministic machine, because choosing to eliminate the
best set and location within that set will take more than a unit of time. The rest of this
paper is about how to actually find proofs of nonintersection in optimal (deterministic) time.

The key to this problem is the definition of “optimal.” We need a measure of the difficulty
of an instance, relative to which we can then evaluate algorithms and lower bounds. The
natural measure of difficulty in the comparison model is the information-theoretic lower
bound, that is, the size of the optimal binary encoding of a proof of nonintersection.

How do we best encode a proof? Call an element compared if it occurs in one of the

proof’s comparisons. Because compared elements can be arbitrarily spaced out in each set,
it is natural to encode the size of the gaps (i.e., the differences in index) between compared
elements, which costs lg g for each gap of size g, where lgg = [log,(1 + g)]. There are two
details left out of this idea. First, by appropriately switching between specifying gaps from
the low and high sides, we can avoid encoding the largest gap in each set. Second, we need
to specify the pairing between compared elements that forms the proof.

Here is an encoding that fills in both of these details. Take any incremental ordering
of the proof P (which exists by Lemma 3), and let ¢ = (af < a}) be the first comparison.
Assume that ¢ is low; the high case is symmetric. First encode s and ¢ using [log, n| bits
each. Encode i by specifying the smallest gap ¢ to an already compared element in A® (using
essentially lg g bits), along with whether that gap is from the low or high side (using one
bit). Encode j by specifying that ¢ is low (using one bit). The cost of encoding ¢ in this way
is thus :

2[log, n] +1gg +2.

By induction, we obtain a formula for the cost for encoding an entire proof P. We will
define the cost of P, denoted ¢(P), to be slightly different and easier to work with; it will
underestimate the “true” formula by at most a factor of two. Let gj, ..., g;, denote the gaps
in A° for P, including the “end gaps” before the first element and after the last compared
element in A°. Then we define

¢(P) = |P|lgn + g(P), (1)

where g(P) is the gap cost of P, defined by

g(P) = i (: lggf — max 1gg§) : (2)

S\E 0<i<ps
Indeed, the described encoding of a proof is optimal in the following sense.

Theorem 3 Let the number n of sets and the sizes ny, ..., n, of these sets be fived. Given
any proof P of nonintersection for such an instance, there are

Q (max {2|P|lg“, 29(P)“|Pl}) — 9%(c(P))

proofs of nonintersection for other such instances, each of whose cost is at most ¢(P). In
other words, if we fiz any language for encoding all proofs of nonintersection, almost every
proof P of nonintersection requires Q(c(P)) bits to be encoded in this language.

Proof: Note that the proofs of nonintersection we are seeking can be for different in-
stances, because we are concerned with encoding a general proof of nonintersection, without
knowing the instance. However, n and the n;’s cannot vary, because we presume they are
known by the message decoder. _

Also note that the factor p in the proof is because of the use of Ig in the the definition of
cost of a proof, which presumes that any information costs at least one bit, and that partial
amounts of information consume a whole bit.

First let us show a lower bound of Q(Z'P 87} proofs of nonintersection. Let p be any
positive integer, and let N be the total number of elements. Note that the message decoder
can remove redundant comparisons, so we effectively encode a proof with no duplicate com-
parisons, implying that p < N. Pick two sets A® and A® with s < £, and define the first
comparison to be {a? < ai). For each 2 < k < p, pick two arbitrary elements af and o} with
s < t that were not previously compared, and define the kth comparison to be {(af < af).
This results in a proof of nonintersection for any instance satisfying a < a}? whenever s < t.
There are at least n? choices per comparison, so we have found % = 228" proofs of
nonintersection with length p, showing the desired bound.

Now we will show a lower bound of Q(29(")~IP1} proofs of nonintersection. Let P be the
given proof in the theorem statement. First assume that g > 1 for all ¢ and s. This means
that no two consecutive elements in a set are used in the proof.

From this proof P, we construct several other proofs (for different instances) as follows.
We decrease every gap, except the largest gap in each set, to any amount less than or equal
to the gap in P. The pairing between elements stays the same; we simply move the compared
elements. To compensate for these shrinking gaps, the largest gap in each set grows, and
hence remains largest. These modified gap sizes induce moved positions of the compared
elements. More precisely: '

o Fors=1,...,n:

1. Let
o], <. <al <@ <oo-<a

i — = Vim41 — = "ipg
denote the elements in A® that are used in P, where af and @i . bound the
largest gap fmy1 — & 0 P. :
2. Let 45 = 0 and 4,41 = ns + 1, so that the gap g}, is simply izy1 — 4, even at the
ends.
3. Define jg = ﬁ'{) and jps+1 = ip3+1.
4. Fork=1,...,m:
— Replace af, by af for any chosen gy such that 1 < jix — je—1 < b — ép—1.
5. Fork=ps....,m+1

— Replace aj, by al, for any chosen 7 such that 1 < Jpy1 — Ji < fpp1 — -

Because we only decrease gap sizes, except for the largest gap in each set which does not
affect g(P), the gap cost of any constructed proof is at most the gap cost of P. Furthermore,
the length of the proof and the number of sets do not change, so the plgn term in Eqnation
(1) does not change; hence, the total cost of any constructed proof is at most the cost of P.

Now at each execution of Step 4 or 5, we have g7 choices for the value of ji. Therefore,
the number of proofs constructed using this technique is

n
II II &
s=1 0Zi<ps

iFEmy

which is 2907 i.e., the exponentiation of Equation (2).
The case where there are gap costs of 1 follows using the same technique, by noticing
that their contribution to the £2{2977)} is zero, because the gap cost cancels out with p. O

It now makes sense to talk about optimal proofs of nonintersection, that is, proofs of
nonintersection with minimum cost. We call this minimum cost the difficulty D of the
instance, because it is an information-theoretic lower bound on the running fime. It turns
out that another important measure on proofs is the gap cost; we will denote the minimuam
gap cost by G. Note that it is possible for this gap cost to only be realized by suboptimal
proofs, that is, ones with cost higher than D.

The next two sections prove matching lower and upper bounds on the competitive ratio
of the time complexity to the difficulty. The bound is ©(nG/D), which is somewhat less
than @(n).

5.1 Lower Bound

In this section, we prove the following theorem.

Theorem 4 Given positive integers m, p, and g (p < g), and given an algorithm for finding
proofs of nonintersection, there is a collection of n sets having a p-comparison proof of
nonintersection with cost O(plgn+ g), such that every proof of nonintersection has gap cost
Qg), and the algorithm takes Q(ng) time on this input. In other words, the competitive ratio
is Qng/(plgn + g)) in the worst case.

The basic idea is to construct a parameterized class of instances, and have an adversary
pick a bad instance for the algorithm. Let #;,...,£, be positive integers summing to g,
such that each is either |g/p| or [¢/p]. An £; will represent the lg of a gap in the proof of
nonintersection.

First let us describe the parameters for an instance. Pick p 4+ 1 “magic” values my <
+o+ < m,. Pick a sequence $g, ..., sp of set numbers such that s; # s, foralll <7 < p.
Furthermore, each s € {1,...,n} must occur at least every 2n elements in the sequence.
One way to do this is to concatenate several permutations of {1,...,n}, chosen randomly
such that the first value of one permutation is different from the last value of the previous
permutation. Finally, pick integers kf, ..., k5 such that lgk{ = ¢;, except for k' which is
defined to be zero.

Then we construct an input as follows (see Figure 1). Each magic value m; occurs in
every set except A%; we will denote the occurrence of m; in A® by m{. In every set A*, there
are precisely k¢ elements strictly between m;_; and m;. In particular, A%~ has no elements
strictly between m;_; and my; indeed, it also has no elements equal to m;_;.

Next let us describe the proof of nonintersection. Note that there are no elements before
ms°, and hence it is minimal. Suppose in general that m;*~* is minimal. Then we can use it to
eliminate all elements less than m; in A%. But there are no elements between m; (inclusive)
and m;y (exclusive) in A%, so this elimination makes m;3; minimal. This continues by
induction until we find that “my.;” is minimal, that is, A? is entirely eliminated.

This gives a p-comparison proof of nonintersection, but what is its cost?

10

g my ma g
i E— i
S 0 ——0 R
O 24 — O
a2 28 ~ 28 s 2%
Figure 1: Hiustration of lower-bound construction. Circles show magic elements, and crossed-

out circles indicate missing magic values. Arrows indicate comparisons that form o proof of
noniniersection.

Lemma 6 The described proof has cost O(plgn + g).

Proof: Consider the elimination of all elements less than m; in A%. By construction of
the sequence sq,...,Sp, either 4 < 2n or there exists ¢ — 2n < j < 4 such that s; = s;. In
other words, this comparison eliminates at most the last 2n gaps. Each gap between magic
elements has a lg of £ < g/p+1, and thus is of size at most 297+ — 1; if we count the magic
element too, the —1 disappears. Hence, the number of eliminated elements is at most

90 99/P+L — pog/pt2

Now there are two gaps created by this comparison, one of which is of size one, and the other
of which is of the size above. Hence, the piece of the gap cost attributed to this comparison
is at most

1+1gn2¢?*2 < 14+1gn+1g2"*2 =lgn -+ g/p+ 4.

Summing over all comparisons, we get a gap cost of at most p(4 +1gn) + 9. The total cost
of the proof is this plus plgn, and hence is O(plgn + g} as desired. I

It turns out that this is the only proof of nonintersection for this instance, except for
two minor details described now. Let P be a proof of nonintersection. A comparison ¢ in P
is called discardable if P — ¢ still proves nonintersection. P is called minimal if none of its
comparisons can be discarded. A contraction is a set of comparisons in P of the form

{{ar < aiyr),- .-, (05 < aiyy), (af <b}}
such that af,, < b. In other words, these comparisons can be replaced with
{(ay <b),...,(a; < b)}
while still proving nonintersection. P is contraction-free if it has no contractions.

Lemma 7 There is only one minimal contraction-free proof of nonintersection for the de-
scribed instance.

Proof: Applying Lemma 5, let P be incrementally ordered such that all its comparisons
are low, and consider stepping through this ordering. Initially, m{® is minimal. Assume by

11

induction that the proof so far is as desired, and that m;*"' is now minimal. Consider the

first comparison ¢ = (af < b} in P after this assumption becomes true.
Now my,_; occurs in every set except A*-1, and m,"~* just became minimal, so no element
that is at least my_y could have been eliminated. If b < my_1, ¢ tells us nothing and so can

be discarded, contradicting minimality of P. Hence, the only possible choice for & is m;"*.

Suppose that ¢ does not make mj%, minimal, that is, af,; # mg;. Then af,, < m.
For ¢ to be undiscardable, there must be another comparison using af,; as an eliminator.
But if we take the set of all such comparisons together with ¢, we get a contraction, because
af,, < my*!, contradicting that P is contraction-free. Therefore, ¢ = (mp¥; < m;*™"), the

desired result. o

This tells us something about all proofs of nonintersection.
Lemma 8 Every proof of nonintersection for the described instance has gap cost Q{g).

Proof: If we discard some comparisons, and make some contractions, we can only de-
crease the gap cost. Hence by Lemma 7, this proof is the one described above. Clearly, it
eliminates at least one gap of size kf = Q(g/p) in each step, so the gap cost is Q(g).]

Finally, we can show a lower bound on the running time of the algorithm. The algorithm
is allowed to know the magic values my, ..., my, as well as £1, ..., £;, that is, the approximate
gap sizes. The algorithm does not know the exact gap sizes (the &{’s), nor the numbers s,
of the sets missing the magic values.

Lemma 9 The algorithm must determine the s;’s and ki*,’s, independently of each other.

Proof: By Lemma 7, every proof of nonintersection compares m; " for all ¢, and hence
it must figure out the s;'s and kj*,’s. To determine that an element is magic, we must
determine that it is equal to another element in another set. Equivalently, we can test
whether the element is equal to the known value of m;. Determining either of these does not
help us find other magic elements. O

Hence, the algorithm’s job reduces to p independent subjobs, each of the following form:
given n sorted sets, each of unknown size whose lg is 4;, find the unique set whose last
element is not magic. We need the following fundamental theorem, which to our knowledge
has not appeared before.

Lemma 10 Consider the following problem: given n sorted sets, each of size k, and given
an element e, find the unique set not containing e. In the comparison model, any algorithm
solving this problem takes Q(nlgk) time.

Proof: Suppose that the element e actually occurred everywhere. Then the algorithm
must determine position in every set at which e occurs, using queries with constant-size
answers. Encoding this information takes 1g &k bits per set, proving a lower bound of Q(nlgk)
time. a

Therefore, the algorithm takes Q(ng) time, proving Theorem 4.

12

5.2 Upper Bound

Consider the following algorithm for finding a proof of nonintersection. Essentially, it “gal-
lops” in parallel through all the sets, from both the low and high sides. Galloping consists
of doubling the jump in position each iteration, until it “overshoots” the current eliminator
{which will always be on the low side). Upon overshooting, the other parallel processes
pause while the overshooter does a binary search to find the largest eliminatable element,
and chooses the next higher element as the new eliminator.

In more detail, the algorithm works as follows.

e Initialize low-jump{s) and high-jump(s) to 1, and done(s) to 0, for each s € {1,...,n}.
e Initialize elim-set to 1 and eliminator to af.
e For s ranging through {1,...,n} cyclicly:

— Skip this step if s = elim-set.
— Low step:
1. Let p = done(s) + low-jump(s).
2. If a; > eliminator (we overshot),
(a) Binary search in the interval [done(s) + 1,p] to find the smallest p' with
Gy = eliminator.
(b) If p’ — 1 > done(s), add (ay_; < eliminator) to the proof.
(c) Set done(s) to p' — 1, and low-jump(s) to 1.
(d) Set elim-set to s, and eliminator to ay.
3. Otherwise, double low-jump(s) and set done(s) to p.
— High step:
1. Let p = n, + 1 — high-jump(s).
2. If @} < eliminator (we overshot),

(a) Binary search in the interval [p,n,| to find the largest p’ with o) <
eliminator.

If p' > done(s), add (a; < eliminator) to the proot.
If p' = n,, stop.

Set done(s) to p/, and low-jump(s} to 1.

Set elim-set to s, and eliminator to a, 4.

(b
(c
(d
(e
{f) Reset high-jump(s) to one.
3. Otherwise, double high-jump(s).

R

Note that at any point in time, af is eliminated exactly when ¢ < done(s).

Theorem 5 The algorithm runs in O(nG) time, and makes at most 8nG comparisons.

13

Proof: The initialization steps take O(n) time and no comparisons, and since G is a
positive integer, this is within the bound. The cost of performing the binary searches can
be amortized away as follows. Suppose we binary search inclusively between done(s) + 1
and p = done(s) + low-jump; the high case is similar. This takes at most ¢ = lg low-jump
comparisons. But low-jump = 2* where 4 is the number of iterations we have already executed
on this side of A° since the last overshooting. Hence, £ = { + 1, 8o we can charge the binary-
search time ¢ to these ¢ > 0 iterations, and no other overshooting iterations will charge to
the same iterations (because we reset the jump now). This amortization is the source of the
first factor of two in the comparison bound.

Let P be a proof with gap cost G, and let it be incrementally ordered with all low
comparisons by Lemma 5. Let ¢ = (af < af) be the first comparison in P. We want to
evaluate the number of iterations the algorithm spends to eliminate af. The low and high
parts of the algorithm run effectively in parallel; this causes the second factor of two in the
comparison bound.

There are two main cases. In the first case, the gap below af (of size g say) is not the
largest gap in A°. Ignoring the binary-search cost as described above, galloping effectively
occurs in lock-step parallel over the sets. Local to A?, the number of comparisons for galloping
to a$ or beyond is lg g. The other sets have had at most the same number of iterations, thus
adding a factor of n. ;

The second case is when the gap below af is the largest gap in A°. If the sum of the other
gaps’ sizes is at least g, then we can charge the cost (Igg) of running through the largest
gap to the other gaps in A®. These gaps will not be charged to again, because there is only
one largest gap in A® that the gap cost does not count (i.e., for which we must avoid paying
directly). If, on the other hand, the other gaps’ sizes sum up to some value & less than g,
then the high step finds af from the high side in lg A iterations. But Igh is at most the sum
of the lgs of the other gaps in A®, so again we can charge to these gaps. These amortizations
add the last factor of two to the comparison bound.

Therefore, eliminating af takes lg g amortized comparisons, unless g is the largest gap in
its set, in which case it takes zero amortized comparisons. By induction, this holds for all
future comparisons in P. a

Let us turn to the case where the intersection is not necessarily empty, and we are asked
to compute it. Define a proof of correctness to be a proof that demonstrates the intersection
elements {by making n — 1 equality comparisons each}, and forms a proof of nonintersection
on the remaining elements. Similar to before, we can define the gaps in such a proof, and
hence the optimal gap cost G. Then we have the following result.

Corollary 1 The intersection of n sorted sets can be computed in O(nG) time ond at most
8nG comparisons.

Proof: This follows from a simple modification to the algorithm above, namely whenever
a comparison with the eliminator returns “equal,” stop galloping in that set and increase the
occurrence count of the eliminator. If the occurrence count reaches n, output the eliminator
as part of the intersection, and take its successor as the new eliminator. G

Note that the described algorithms perform just as well on B-trees or related structures.
We only need to start with the leftmost and rightmost leaves, and then gallop inwards from

14

each side. This can be easily performed by traversing the parent and child pointers in a
B-tree, with only a constant-factor overhead.

6 Expected Case

Suppose we generate k sets, each containing n random values chosen uniformly from the unit
interval [0,1]. What is the expected length of a shortest proof of nonintersection? Suppose
that we knew the expected value v of the maximum of the minimum element in each set.
This gives us an initial eliminator of expected value v. We can use it to eliminate any value
in another set with value less than v, so we can ignore all elements with values less than v.
We have thus reduced to the subproblem of random values chosen from [v, 1]. The process
continues in the same way, reducing to the subproblems [2v, 1], [3v, 1], etc. in the expected
case. Hence, the expected length of a shortest proof is 1/v. The rest of this section will
evaluate v.

First, what is the probability distribution of the minimum element of a set A of size n,
whose elements are chosen uniformly from [0,1]? Let us denote this value by m;. We will
evaluate the probability that m; is less than some 0 < z < 1. Note that “m; is less than z”
is equivalent to “either the first element is less than z, or it is not and the second element
is less than z, or both are not and the third element is less than z, etc.” Also note that the
probability of a particular element being less than z is z. Hence,

Prim; < z] = 2(1 —2)fz=1—-(1—=)", andso Prfm; >z|=(1-z)". (3)

Although it will not be useful for our purposes, let us evaluate the expected value of m;. To
do this, we need to compute the probability density function D of the minimum value. But

1—-(1—2)"=Prm; <z]= /: D[m; = z|dy,
so Dim; = 2] = &%1 —~{1—2)"=n{l—2)"".
Now we can take the expected value:

1
n+1

E[m;| = ﬁlm n{l —z)* e =

Next we want to compute the expected value of the maximum M of the m;’s. We can do
this using an approach similar to the above, using the probability distribution of m; given
in (3). First we wani to compute the probability distribution of A: .

k-1
k

Pr[Mm]=20(1_-(1-33)“)*'(1—“@)“:1—(1—(1—m)“) ,
so PrM <z]=(1-(1-2z)"",
d

and D[M =g QI-1-2=-kQ-01-2)" vl -2)"".

T dx

15

Now we can find the expected value, by substituting y =1 — a:
1
E[M] = —kn /(; z-(1—-2)" (1 - (1-2)")* ds

1
= ko [G-yt -y dy

(\

=4 =(%‘.(k—1)!
\ nik+d M
I OGR!
I]
(2)H
= TaeD
v+ plk + 1) 1
- 1 o

Ink 1 11
— —1—1—+7+——+0(—+-—2~).
n T

where

dz! 1 1
=zl — = — il
Pz +1) 2l lnx+2m+0(m2).

Therefore, the expected length of a shortest proof is 1/E[M], which is asymptotically
n/lnk.

7 Conclusion

In this paper we have considered adaptive algorithms for computing the intersection of sorted
sets. To do this we have made a detailed study of sets of comparisons proving that a given
intersection is empty. Our main results are matching upper and lower bounds on the worst-
case ratio of the running time to the information-theoretic lower bound on the difficulty of
the problem. The bound is the number of sets times a ratio G/D which is slightly less than
one, depending on the instance. In other words, there is an algorithm that performs slightly
better than a factor of the number of sets away from the information-theoretic lower bound,
and this is the best possible in the worst case.

Acknowledgments.

We thank Ming Li for helpful discussions. This work was supported by NSERC.

16

References

[1] Aho, A., Hopcroft, J., Ullman, J. The Design and Analysis of Computer Algomthms
Addlson Wesley, 1974,

[2] Baeza-Yates, R. Efficient Text Searching, Ph.D. Thesis, Dept. of Computer Science, U.
of Waterloo, 1989.

[3] Boyer, R., Moore, J. A Fast String Searching Algorithm. CACM, 20:762-772, 1977.

(4] Bloom, B.H. Some Techniques and Trade-offs Affecting Large Data Base Retrieval
Times. ACM NC, pp. 83-95, 1969.

[5] Feldman, J.A. and Rovner, P.D. An Algol-Based Associative Language. CACM,
12(8):439-449, 1969,

[6] Frakes, W., Baeza-Yates, R. Information Retrieval, Prentice Hall, 1992.

[7] Heaps, H.S. and Thiel, L.H. Optimum Procedures for ECOHOIIIIC Information Retrieval.
Inform. Stor. and Retrieval, 6(2):137-153, 1970.

[8] Hwang, F.K. and Lin, S. A Simple Algorithm for Merging Two Disjoint Linearly-
Ordered Sets. SIAM J. Comput., 1(1):31-39, 1972.

[9] Hwang, F.K. Optimal Merging of 3 Elements with n Elements. SIAM J. Comput.,
9(2):298-320, 1980.

[10] Knush, D. The Art of Computer Programming, Vol. 3 Sorting and Searching. Addison-
Wesley, 1973.

[11] Knuth, D., Morris, J., Pratt V. Fast Pattern Matching in Strings, SIAM J. Comput.,
6:323-350, 1977.

[12] Lesk, Michael. “Real World” Seaiching Panel at SIGIR 1997. SIGIR Forum, Spring
1998.

13] Manber, U., Myers, G. Suffix Arrays: A New Method for On-line String Searches, in
Y
1st Symposium on Discrete Algorithms, pp. 319-327, 1990.

17

