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1 Introduction

The problem of speci�cation and formal veri�cation of distributed commu-

nicating systems (DCS) is one of most important problems in theoretical

computer science. DCSs arise in a wide range of applications, for example in

distributed information processing, telecommunications, control of complex

systems like aircrafts and nuclear reactors. The problems of human safety ne-

cessitate formal proofs that DCSs which control functioning of such systems

are absolutely trustworthy. The mathematical formalization of the problem

of checking correctness of a DCS is known as the problem of speci�cation and

veri�cation. A speci�cation of a DCS is a formal representation of desired

properties of the DCS. The problem of veri�cation of a DCS consists of

construction of a formal proof that the DCS meets its speci�cation.

A solution of the problem of speci�cation and veri�cation of a DCS de-

pends on the choice of a formal model of the DCS and a speci�cation lan-

guage.

There are several algebraic and logical approaches to representation, spec-

i�cation and veri�cation of DCSs. The most popular ones are CCS and �{

calculus ([17], [18], [19]), the approaches based on graph rewriting and partial

ordering semantics ([4], [5], [6], [20], [9], [10], [21], [22]), CSP ([11]), UNITY

([2]), Input-Output Automata ([13], [14]), temporal logic approaches ([3], [7],

[12], [16]). These approaches use various techniques for the solution of veri�-

cation problem. One of the techniques is to convert the veri�cation problem

to the problem of search of a deduction of a formula or to the problem of

proving of observable congruence between a pair of process expressions. A

major di�culty of this techniques is the large complexity of deduction search

procedure with respect to the size of description of a given DCS and its

speci�cation.

In the approaches which are founded on temporal logic, the most popular

technique of veri�cation consists of construction of a state transition diagram

for a distributed program and reduction of the veri�cation problem to the

problem of model checking. A major di�culty of this technique is the large

complexity of state transition diagrams.

In the theory of input-output (I/O) automata the veri�cation technique

is founded on the construction of invariants, i.e. conditions which are true in

all reachable states of an I/O automaton. The disadvantage of this approach

is again higher complexity of an I/O automaton corresponding to a DCS
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which is by de�nition a cartesian product of I/O automata corresponding to

sequential subsystems of the DCS.

In the present report we introduce a new formal model for distributed

communicating systems, with the speci�cation language and the correspond-

ing veri�cation technique, which eliminates some disadvantages of the above

veri�cation techniques.

The proposed veri�cation technique is founded on the modular approach,

that consists of two stages: (a) veri�cation of all subsystems of the DCS

separately, and (b) proving that the conjunction of speci�cations of these

subsystems and some special formulas implies speci�cation of the whole sys-

tem.

The main concepts of this model are sequential and distributed agents. A

sequential agent is a formal model of sequential subsystems of distributed

communicating systems. A sequential agent is represented in a form similar

to a 
owchart of a sequential program.

A distributed agent is a formal model of a DCS on the whole. Distributed

agent is a set of sequential agents with a set of communication channels

connecting these sequential agents.

Our approach to the problem of veri�cation is a generalization of Floyd's

inductive assertion method (see [8], [15], ch.3).

The proposed approach to speci�cation and veri�cation has some ad-

vantages in comparison with other approaches. Since we do not employ the

operation of cartesian product commonly used in construction of state transi-

tion graphs, the complexity of veri�cation of a DCS is considerably reduced.

The proposed veri�cation technique allows the interactive implementation

the veri�cation process. The use of �xpoint constructions in the speci�ca-

tion language results in a simple and precise description of the behavior of a

DCS.

The report is organized as follows. In Section 2 we introduce the concepts

of types, data expressions, and queues. The concepts of sequential agents

and distributed agents are de�ned in Sections 3 and 4. The speci�cation

language for expressing properties of distributed agents is given in Section

5. In Section 6 we give an approach to veri�cation of distributed agents.

The example of alternating bit protocol is used in Section 7 to illustrate the

concepts introduced in the report. Finally, concluding remarks are given

along with directions of future research.
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2 Types, queues and data expressions

In this section we de�ne the concepts which are necessary for formal descrip-

tion and speci�cation of sequential and distributed agents.

2.1 Types

Assume that a set T is given, the elements of which are called types.

The concept of a type in our model is a generalization of the concept of a

data type in programming languages. For example, the following entities can

be considered as types: a natural number, an integer number, a real number,

a boolean value, a list, a set and a string.

Let M be a set, every element m of which is associated with some type

type(m) 2 T . In this case for every � 2 T the symbol M� denotes the set

fm 2M j type(m) = �g:

For every � 2 T and every m 2M� we say that m is of the type � .

2.2 Lists

For every set M a list of elements of the set M is any �nite (possible empty)

string, components of which are elements ofM . The empty list is denoted by

the symbol �. The symbolM� denotes the set of all possible lists of elements

of M .

Let M be a set, every element m of which is associated with some type

type(m) 2 T . In this case for every list N 2M
� the symbol type(N) denotes

the list

� (type(m1); : : : ; type(mn)), if N = (m1; : : : ; mn),

where n � 1,

� �, if N = �.

2.3 Data values

We assume that a set D is given, every element d of which is associated with

some type type(d). The elements of the set D are called data values.
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For every type � 2 T the symbol ! denotes an element which does not

belong to D� (this symbol is the same for all types).

We assume that

� for every type � the set T contains a type which is denoted by the

symbol �̂ , and D�̂

def
= D� t f!g,

� for every list T 2 T � the set T contains a type which is equal to the

list T , and the set DT is equal

{ to the cartesian product

D�1
� : : :�D�n

;

if T = (�1; : : : ; �n), where n � 1,

{ to the one-element set f1g, if T = �.

2.4 Queues

We assume that for every type � the set T contains a type which is denoted

by the symbol �� , and the set D�� consists of all in�nite strings, elements of

which belong to the set D�̂ . Elements of the set D�� are called queues. Types

of the form �� are called queue types.

For every � 2 T and every queue Q = (d1; d2; : : :) 2 D�̂

� the symbol head(Q) denotes the �rst element of Q:

head(Q)
def
= d1;

� the symbol tail(Q) denotes Q with its �rst component removed:

tail(Q)
def
= (d2; d3; : : :);

� for every k � 1 the symbol Q[k] denotes the k{th element of Q,

� for every d 2 D� the symbol d � Q denotes the queue which is the

concatenation of d and Q:

d �Q
def
= (d; d1; d2; : : :):
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2.5 Functional types and functional symbols

We assume that for every string of the form

(T ! �)

where T 2 T � and � 2 T , the set T contains a type, which is equal to this

string. The types of this form are called functional types.

We assume that a set F is given. Elements of F are called functional

symbols. Every functional symbol f is associated with

� a functional type type(f),

� a mapping (denoted by the same symbol f) of the form

f : DT ! D�

where T and � are such that type(f) = (T ! �).

For every functional type (T ! �) and every f 2 F such that type(f) =

(T ! �)

� the symbol dom type(f) denotes the list T , and

� the symbol im type(f) denotes the type � .

If T (f) has the form (�! �), i.e. the mapping f has the form f : f1g !
D� ; then the symbol f denotes also the element f(1) of the set D� .

2.6 Special types and functional symbols

The following assumptions are used.

� The set T contains the type bool, such that Dbool is the two-element set

f>;?g,

� The set F contains the following functional symbols:

{ >;? : T (>)
def
= T (?)

def
= (�! bool),

{ : : T (:)
def
= (bool! bool),
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{ ^;_;!;$:

T (^)
def
= T (_)

def
= T (!)

def
= T ($)

def
=

def
= ((bool; bool)! bool).

� The mappings associated with the functional symbols >;?;:;^;_;!

;$, are the same as for the standard boolean operations.

� For every non-empty list

T = (�1; : : : ; �n) 2 T
�

the set F contains the following functional symbols (which are called

projections):

�1 : type(�1) = (T ! �1);

: : :

�n : type(�n) = (T ! �n).

Note that for every list T 2 T � the projections are denoted by the same

symbol �k.

For every k = 1; : : : ; n the mapping

�k : D�1
� : : :�D�n

! D�
k

is a projection on the k{th component.

� For every � 2 T the following functional symbols belong to F :

1. head : type(head) = (�� ! �̂),

2. tail : type(tail) = (�� ! �� ),

3. � (concatenation) : type(�) = ((�̂ ; ��)! ��).

The mappings associated with the above functional symbols are de�ned

according to the concepts in subsection 2.4, i.e. the mapping head

maps every queue Q to the element head(Q), and so on.

2.7 Variables

We assume that a set X is given. The elements of X are called variables.

Every x 2 X is associated with some type type(x) 2 T .
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2.8 Data expressions

The set E of data expressions is de�ned by induction. Every data expres-

sion e 2 E is associated with some type, which is denoted by the symbol

type(e).

1. Every data value d 2 D is a data expression of the type type(d).

2. Every variable x 2 X is a data expression of the type type(x).

3. For every f 2 F , and every list E of data expressions, such that

type(E) = dom type(f); the string f(E) is a data expression of the

type im type(f).

For every data expression e 2 E , the symbol V ar(e) denotes the set of

variables that have an occurrence in e.

2.9 Evaluation of data expressions

Let X � X . An evaluation of variables from the set X is a mapping

Eval : X ! D

such that for every x 2 X

Eval(x) 2 Dtype(x):

The mapping Eval can be extended to the mapping which is denoted by

the same symbol Eval, and has the form

Eval : fe 2 E j V ar(e) � Xg ! D:

This mapping is de�ned as follows:

1. If e = d 2 D, then Eval(e)
def
= d.

2. If e = f 2 F , where dom type(f) = �, then

Eval(e)
def
= f (2 Dim type(f)):

3. If e = f(e1; : : : ; en), then

Eval(e)
def
= f(Eval(e1); : : : ; Eval(en)):
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3 Sequential agents

In this section we de�ne the concept of a sequential agent. A sequential agent

is a formal model of sequential subsystems of distributed communicating

systems.

3.1 Input ports and output ports

Assume that the pair Inputs; Outputs of disjoint sets is given, and every ele-

ment p 2 InputstOutputs is associated with some queue type type(p). Ele-

ments of the set Inputs are called input ports, elements of the set Outputs

are called output ports. For every input or output port p there is a variable

of the type type(p), which is denoted by the same symbol p. Hereafter every

port p and the variable p which correspons to this port are considered as the

same entities.

3.2 De�nition of a sequential agent

A sequential agent is an oriented graph SA with the following properties.

1. SA has one chosen node root(SA) called a root.

2. Every edge a of SA has a label hai of one of the following forms:

input action: hai = input(p; x);

where p 2 Inputs, x 2 X , type(p) = type(x),

output action: hai = output(p; e);

where p 2 Outputs, e 2 E , type(p) = type(e),

default action: hai = default,

assignment action: hai = (X := E), where

(a) X 2 X � is a non-empty list of distinct variables, and

(b) the list E 2 E� is such that

type(E) = type(X).

boolean condition: hai = b, where b 2 Ebool.

3. For every node n of SA one and only one of the following conditions

holds.
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(a) There are only two edges outgoing from n.

One of these edges has the label of the form input(p; x).

The second edge has the label default.

(b) There are only two edges outgoing from n.

One of these edges has the label of the form output(p; e).

The second edge has the label default.

(c) There is only one edge outgoing from n.

This edge has the label of the form (X := E).

(d) There are only two edges outgoing from n.

One of these edges has the label of the form b, where b 2 Ebool.

The second edge has the label :b.

(e) There are no edges outgoing from n.

(Nodes with such property are called terminal nodes.)

We will use the following notations.

1. Nodes(SA) is the set of nodes of SA.

2. Edges(SA) is the set of edges of SA.

3. For every a 2 Edges(SA) the symbols start(a) and end(a) denote

nodes which are the start and the end of the edge a, respectively.

4. Inputs(SA) is the set of all input ports p 2 Inputs such that there is

an edge in SA with the label of the form input(p; x).

5. Outputs(SA) is the set of all output ports p 2 Outputs such that there

is an edge in SA with the label of the form output(p; e).

6. Ports(SA)
def
= Inputs(SA) [ Outputs(SA),

7. V ar(SA) is the set of all variables that occurre in the labels of the

edges of SA and does not belong to Ports(SA).

11



3.3 Paths in sequential agents

Let SA be a sequential agent.

A path in SA is a �nite or in�nite sequence A of edges of SA of the form

A = (a1; : : : ; am) (m � 1) or A = (a1; a2; : : :)

such that for every i � 1

end(ai) = start(ai+1);

if A has edges with the numbers i and i+ 1.

The node start(a1) is called the start of the path A, and is denoted also

by the symbol start(A).

If the path A is �nite, i.e. A = (a1; : : : ; am), then the node end(am) is

called the end of the path A, and is denoted also by the symbol end(A).

We assume that any sequential agent SA under consideration has the

following property: for every node

n 2 Nodes(SA) there is a �nite path A such that

start(A) = root(SA); end(A) = n:

3.4 Traces

Let SA be a sequential agent, and Q be a Ports(SA){indexed set of queues

of the form

Q = fQp 2 Dtype(p) j p 2 Ports(SA)g:

A trace of SA associated with the set Q, is any �nite or in�nite sequence

tr of the form

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g

where for every t � 1

1. Node(t) 2 Nodes(SA),

2. Edge(t) 2 (Edges(SA))^
def
= Edges(SA) t f!g,
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3. Eval(t) is an evaluation of variables from the set V ar(SA),

(hereafter for every data expression e the value of e with respect to the

evaluation Eval(t) will be denoted by the symbol e(t))

such that

� Node(1) = root(SA),

� the trace tr is �nite, and consists of t components (where t � 1) if and

only if

{ the node Node(t) is terminal,

{ 8t0 < t the node Node(t0) is not terminal,

{ Edge(t) = !,

and for every t � 1 such that tr has components with the numbers t and

t+ 1, the following conditions hold:

1. start(Edge(t)) = Node(t).

2. end(Edge(t)) = Node(t + 1).

3. If hEdge(t)i = input(p; x), then

(a) Qp[t] 6= !,

(b) 8q 2 Ports(SA) n fpg Qq[t] = !;

(c) x(t + 1) = Qp[t],

(d) 8y 2 V ar(SA) n fxg y(t+ 1) = y(t).

4. If hEdge(t)i = output(p; e), then

(a) Qp[t] = e(t),

(b) 8q 2 Ports(SA) n fpg Qq[t] = !;

(c) 8x 2 V ar(SA) x(t+ 1) = x(t).

5. If hEdge(t)i = default, then

(a) 8p 2 Ports(SA) Qp[t] = !;
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(b) 8x 2 V ar(SA) x(t+ 1) = x(t).

6. If hEdge(t)i = (X := E), where X = (x1; : : : ; xn) and E = (e1; : : : ; en),

then

(a) 8p 2 Ports(SA) Qp[t] = !;

(b) 8i = 1; : : : ; n xi(t+ 1) = ei(t);

(c) 8y 2 V ar(SA) n fx1; : : : ; xng y(t+ 1) = y(t).

7. If hEdge(t)i = b 2 Ebool, then

(a) 8p 2 Ports(SA) Qp[t] = !;

(b) b(t) = >,

(c) 8x 2 V ar(SA) x(t+ 1) = x(t).

The symbol Beh(SA) denotes the set of all Ports(SA){indexed sets Q of

the above form, such that there is a trace of SA associated with the set Q.

4 Distributed agents

In this section we de�ne the concept of a distributed agent. A distributed

agent is a formal model of a distributed communicating system on the whole.

4.1 De�nition of a distributed agent

A distributed agent is a list

DA

def
= (SA1

; : : : ; SA

k;Channels);

where

1. SA1
; : : : ; SA

k is some list of sequential agents, such that for every pair

of distinct indices i; j 2 f1; : : : ; kg

Inputs(SAi) \ Inputs(SAj) = ;, and
Outputs(SAi) \Outputs(SAj) = ;.
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2. Channels is a binary relation of the form

Channels �
k[
i=1

Inputs(SAi) �
k[
i=1

Outputs(SAi)

such that

(a) if (p; q) 2 Channels and (p; q0) 2 Channels, then q = q
0,

(b) if (p; q) 2 Channels and (p0; q) 2 Channels, then p = p
0,

(c) 8(p; q) 2 Channels type(p) = type(q):

Every element (p; q) of the set Channels is called a communication

channel, which connects the input port p with the output port q.

4.2 Input ports and output ports of distributed agents

Let DA = (SA1
; : : : ; SA

k;Channels) be a distributed agent.

The sets Inputs(DA) and Outputs(DA) of input and output ports of

DA are de�ned as follows:

1. Inputs(DA)
def
=

def
= (

kS
i=1

Inputs(SAi)) n fp j 9 q : (p; q) 2 Channelsg,

2. Outputs(DA)
def
=

def
= (

kS
i=1

Outputs(SAi)) n fq j 9 p : (p; q) 2 Channelsg,

3. Ports(DA)
def
= Inputs(DA) [ Outputs(DA).

For every i = 1; : : : ; k

� the set Obs Inputs(SAi) of observable input ports of SAi is the set

Inputs(DA) \ Inputs(SAi),

� the set Hid Inputs(SAi) of hidden input ports of SAi is the set

Inputs(SAi) nObs Inputs(SAi),

� the set Obs Outputs(SAi) of observable output ports of SAi is the

set Outputs(DA) \Outputs(SAi),
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� the set Hid Outputs(SAi) of hidden output ports of SAi is the set

Outputs(SAi) nObs Outputs(SAi):

4.3 Pictorial representation of distributed agents

Every distributed agent

DA

def
= (SA1

; : : : ; SA

k;Channels)

can be represented by its 
ow graph, which displays connections between

the hidden input ports and the hidden output ports.

The 
ow graph for DA consists of

� a list Oval1; : : : ; Ovalk of ovals where for every i = 1; : : : ; k the oval

Oval
i corresponds to the sequential agent SAi, and has white and black

circles with labels from the set Ports(SAi) on its exterior, which depict

respectively the input and output ports of the sequential agent SAi:

{ labels of observable input and output ports are depicted by the

normal font, and

{ labels of hidden input and output ports are depicted by a smaller

font,

� a set of lines that represent the pairs from the set Channels: for every

pair (p; q) 2 Channels there is a line from the white circle that corre-

sponds to the input port p to the black circle that corresponds to the

output port q.

For example, the 
ow graph for the distributed agent

DA

def
= (SA1

; SA

2
; SA

3;Channels);

where

� Inputs(SA1) = fp1g; Outputs(SA
1) = fq1g,

� Inputs(SA2) = fp2; g; Outputs(SA
2) = fq2g,

� Inputs(SA3) = fp; p01; p
0

2g;

Outputs(SA3) = fq; q01; q
0

2g,
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� Channels

def
= f(p1; q

0

1); (p
0

1; q1); (p2; q
0

2); (p
0

2; q2)g,

is represented pictorially as follows:
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Figure 1: an example of a 
ow graph.

4.4 Traces of distributed agents

Let DA
def
= (SA1

; : : : ; SA
k;Channels) be a distributed agent, and Q be a list

of the form Q = (Q1
; : : : ; Q

k), such that

� for every i = 1; : : : ; k

Q

i = fQi

p
j p 2 Ports(SAi)g 2 Beh(SAi);

� for every pair i; j 2 f1; : : : ; kg and every pair

(p; q) 2 Channels, such that p 2 Ports(SAi)

and q 2 Ports(SAj), the equality Qi

p
= Q

j

q
holds.

A trace of DA associated with Q, is a list

0
B@

tr
1 = f(Node

1(t); Edge1(t); Eval1(t)) j t � 1g
: : :

tr
k = f(Node

k(t); Edgek(t); Evalk(t)) j t � 1g

1
CA

of traces of SA1
; : : : ; SA

k associated with Q
1
; : : : ; Q

k respectively, such that

for every (p; q) 2 Channels, and every t � 1 the following statement holds:
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� if there is an edge outgoing from Node
i(t), where i is such that p 2

Inputs(SAi), and the label of this edge is of the form input(p; x), and

� if there is an edge outgoing from Node
j(t), where j is such that q 2

Outputs(SAj), and the label of this edge is of the form output(q; e),

then hEdgei(t)i = input(p; x), hEdgej(t)i = output(q; e).

For every list Q of the above form the observable part of Q is the

Ports(DA){indexed set Obs(Q), which consists of all queues of the form Q
i

p
,

where

p 2 Ports(DA), and i is such that p 2 Ports(SAi).

The symbol Beh(DA) denotes the set of all Ports(DA){indexed sets

of the form Obs(Q), where the list Q is such that there is a trace of DA

associated with Q.

5 Speci�cation language

In this section we describe the speci�cation language, which allows to express

properties of sequential and distributed agents. The main novelty of this

language is the use of �xpoint constructions, which are a generalization of

temporal operators.

5.1 Relational symbols

We assume that the set R of relational symbols is given. Every symbol

� 2 R is associated with a type type(�) of the form

type(�) = (�1; : : : ; �m) 2 T
�

:

5.2 Speci�cation systems

We assume that a set of symbols of speci�cation systems S is given.

Every symbol � 2 S is associated with a speci�cation system, i.e. with a

set (which is denoted by the same symbol �) of formal equations of the form

f�i(Xi) = si j i 2 =g;

where = is an arbitrary set of indices, and for every i 2 =

18



� �i is a relational symbol such that �i 6= �j if i 6= j,

� Xi is a list of distinct variables such that

type(�i) = type(Xi);

� si is a speci�cation expression.

5.3 Speci�cation expressions

In this subsection we de�ne the set Spec of speci�cation expressions. Every

s 2 Spec is associated with a type

type(s) 2 T . For every s 2 Spec

� the symbol V ar(s) denotes the set of all variables that have an occur-

rence in s,

� the symbol V ar List(s) denotes a list which consists of all elements of

the set V ar(s),

(we assume that the list V ar List(s) is uniquely determined by the

speci�cation expression s)

� the symbol Rel(s) denotes the set of all relational symbols that have

an occurrence in s.

The set Spec of speci�cation expressions is de�ned as follows.

data expressions:

Every data expression e 2 E is a speci�cation expression of the type

type(e).

application of functional symbols:

For every list S 2 Spec
�, and every f 2 F , such that

dom type(f) = type(S);

the string f(S) is a speci�cation expression of the type im type(f).
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application of relational symbols:

For every � 2 R, and every list S 2 Spec
�, such that

type(S) = type(�);

the string �(S) is a speci�cation expression of the type bool.

�xpoint constructions:

For

� every speci�cation system

� = f�i(Xi) = si j i 2 =g;

such that for every i 2 =

{ type(si) = bool,

{ si does not contain symbols from S,

{ Rel(si) � f�i j i 2 =g,

{ for every variable x from the set V ar(si)

x belongs to the list Xi,

� every i 2 =, and

� every list S of speci�cation expressions, such that

type(S) = type(Xi);

the string �i(S) is a speci�cation expression of the type bool.

By de�nition,

V ar List(�i(S))
def
= V ar List(�i(S)):

A speci�cation expression of the type bool is called a boolean speci�-

cation expression.

For every n{tuple s1; : : : ; sn of boolean speci�cation expressions, the con-

junction s1 ^ : : : ^ sn and the disjunction s1 _ : : : _ sn will also be denoted

as 8><
>:

s1

: : :

sn

9>=
>; and

2
64
s1

: : :

sn

3
75

respectively.
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5.4 Substitutions in speci�cation expressions

A substitution operator is a pair

� = (X;S) 2 X � � Spec

�

;

where X is a list of distinct variables, and

type(S) = type(X):

For every substitution operator � = (X;S) the symbol � denotes also a

mapping � : Spec! Spec, which is de�ned as follows:

1. If X = (x1; : : : ; xm), S = (s1; : : : ; sm), and there is i 2 f1; : : : ; mg, such

that s = xi, then

�(s)
def
= si.

2. If s = d 2 D or s = f 2 F where dom type(f) = �, or s 2 X n

fx1; : : : ; xmg, then �(s)
def
= s.

3. If s = f(s01; : : : ; s
0

k
), where f 2 F and k � 1, then �(s)

def
= f(�(s01); : : : ; �(s

0

k
)):

4. If s = �(s01; : : : ; s
0

k
), where � 2 R and k � 1, then �(s)

def
= �(�(s01); : : : ; �(s

0

k
)):

5. If s = �i(s
0

1; : : : ; s
0

k
), then �(s)

def
= �i(�(s

0

1); : : : ; �(s
0

k
)):

If the list X is a concatenation of lists X1; : : : ; Xm and the list S is a con-

catenation of lists S1; : : : ; Sm of corresponding types, i.e. the listsX1; : : : ; Xm

and S1; : : : ; Sm have the form

X1 = (x1;1; : : : ; x1;l1); : : : ; Xm = (xm;1; : : : ; xm;lm
);

S1 = (s1;1; : : : ; s1;l1); : : : ; Sm = (sm;1; : : : ; sm;lm
):

and
X = (x1;1; : : : ; x1;l1 ; : : : ; xm;1; : : : ; xm;lm

)

S = (s1;1; : : : ; s1;l1; : : : ; sm;1; : : : ; sm;lm
)

then the substitution operator � = (X;S) has the equivalent notation

8><
>:

X1 := S1

: : :

Xm := Sm

9>=
>; :
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5.5 Interpretation of speci�cation expressions with-

out relational symbols

For every s 2 Spec such that Rel(s) = ;, an interpretation of s is a

mapping

[[s]] : Dtype(V ar List(s)) ! Dtype(s);

which is de�ned as follows:

1. If s = x 2 X , then

[[s]] : Dtype(x) ! Dtype(x)

is the identity mapping.

2. If s = d 2 D or s = f 2 F , where dom type(f) = �, then

[[s]] : f1g ! Dtype(s)

maps the element 1 to the element d or f respectively.

3. If s = f(s1; : : : ; sm), where f 2 F , m � 1, and

V ar List(s1) = (x1; : : : ; xk);

: : :

V ar List(sm) = (y1; : : : ; yl);

V ar List(s) = (z1; : : : ; zn),

then the mapping [[s]] is a composition of the form

f � ([[s1]]� : : :� [[sm]]):

Here the mapping

[[s1]]� : : :� [[sm]] : Dtype(V ar List(s)) ! Ddom type(f)

maps every list (d1; : : : ; dn) to the list

([[s1]](di1 ; : : : ; dik); : : : ; [[sn]](dj1; : : : ; djl));

where the numbers i1; : : : ; ik, : : :, j1; : : : ; jl are such that

zi1
= x1; : : : ; zi

k
= xk;

: : :

zj1
= y1; : : : ; zj

l
= yl:
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5.6 Interpretation of speci�cation expressions with

the �xpoint constructions

Let � = f�i(Xi) = si j i 2 =g be a speci�cation system.

The concept of a �xpoint of � is de�ned below.

An evaluation of relational symbols from the set f�i j i 2 =g is an

={indexed set " of mappings of the following form:

"

def
= f[[�i]]" : Dtype(�i) ! Dbool j i 2 =g:

For every speci�cation expression si from the system � an "{interpretation

of si is a mapping [[si]]", which is de�ned in the previous subsection, with the

following assumption: for every i 2 = the relational symbol �i is considered

as a functional symbol of the type

(type(�i)! bool);

which is associated with the mapping [[�i]]".

The evaluation " is called a �xpoint of �, i� for every i 2 = and every

D = (d1; : : : ; dm) 2 Dtype(�i)

[[�i]]"(d1; : : : ; dm) = [[si]]"(dj1; : : : ; djk);

where the numbers j1; : : : ; jk 2 f1; : : : ; mg are such that if the list Xi has the

form

Xi = (x1; : : : ; xm);

then V ar List(si) = (xj1; : : : ; xjk).

Note that not every speci�cation system has a �xpoint.

If the system � has a �xpoint, then for every speci�cation expression of

the form �i(S), where the list S has the form (s01; : : : ; s
0

k
), we say that its

interpretation [[�i(S)]] does exist, and the mapping [[�i(S)]] is equal to

the composition

[[�i]] � ([[s
0

1]]� : : :� [[s0
k
]]);

where the mapping [[�i]] : Dtype(�i) ! Dbool maps every list D 2 Dtype(�i) to

the element

� >, if there is a �xpoint " of �, such that [[�i]]" maps D to >,
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� ?, otherwise.

If the system � has no �xpoints, then we say that an interpretation of

the speci�cation expression �i(S) does not exist.

Hereafter any speci�cation expression under consideration is assumed to

be such that its interpretation does exist.

5.7 Notation

For every s 2 Spec and every listD of data values of the type type(V ar List(s))

the symbol �D denotes the following substitution operator:

�D

def
=
n
V ar List(s) := D

o
:

Hereafter the speci�cation expression �D(s) and the element [[s]](D) are

considered as the same entities.

5.8 Tautologies

A boolean speci�cation expression s is a tautology, i�

8D 2 Dtype(V ar List(s)) �D(s) = >:

It is not so di�cult to prove that if s is a tautology, then for every

substitution operator � the speci�cation expression �(s) also is a tautology.

If s is a tautology, then this fact is denoted by the formula s = >. If a

speci�cation expression of the form s1 ! s2 is a tautology, then this fact is

denoted by the formula s1 � s2.

5.9 Models of speci�cation expressions

Let P = fp1; : : : ; pkg be a �nite subset of the set

Inputs [Outputs.

A speci�cation expression associated with P is a boolean speci�-

cation expression s such that V ar(s) � P .

Let s be a speci�cation expression associated with P , and Q be a P{

indexed set of queues of the form

Q = fQp 2 Dtype(p) j p 2 Pg:
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The set Q is a model of s, i� �(s) = >, where the substitution operator

� has the form

� =

8><
>:

p1 := Qp1

: : :

pk := Qp
k

9>=
>;

The symbol Q j= s denotes the statement that Q is a model of s.

If a sequential agent SA is such that

8Q 2 Beh(SA) Q j= s;

then this statement is denoted by the symbol SA j= s. The symbol DA j= s

denotes the analogous statement for a distributed agent DA.

6 Veri�cation of distributed agents

In this section we represent the new approach to the problem of veri�cation

of distributed agents. The approach consists of

1. Proving of the correctness of all sequential agents that are constituents

of the distributed agent.

2. Proving that the conjunction of speci�cations of the above sequential

agents and the conditions of equality of queues on connected ports

implies the speci�cation of the distributed agent.

6.1 The problem of veri�cation of distributed agents

The problem of veri�cation of a distributed agent consists of the following:

given a distributed agent DA, and a speci�cation expression s associated

with Ports(DA), prove that DA j= s.

The statement DA j= s can be proven with use of the following theorem.
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Theorem 1.

Given

� a distributed agent DA of the form

DA

def
= (SA1

; : : : ; SA

k;Channels);

where the set Channels has the form

Channels = f(p01; p
00

1); : : : ; (p
0

u
; p

00

u
)g;

� and a speci�cation expression s associated with

Ports(DA).

Then the statement DA j= s holds, if there is a list s1; : : : ; sk of speci�cation

expressions associated with

Ports(SA1); : : : ; P orts(SAk) respectively, such that

1. 8i = 1; : : : ; k SA
i j= s

i
; and

2.

(
s
1 ^ : : : ^ s

k

(p01 = p
00

1) ^ : : : ^ (p0
u
= p

00

u
)

)
� s.

Proof.

Let Ports(DA) = fp1; : : : ; pmg, andQ be a list of the formQ = (Q1
; : : : ; Q

k);

where

� for every i = 1; : : : ; k

Q

i = fQi

p
j p 2 Ports(SAi)g 2 Beh(SAi);

� for every pair i; j 2 f1; : : : ; kg and every pair

(p0; p00) 2 Channels, such that p0 2 Ports(SAi)

and p
00 2 Ports(SAj), the equality Qi

p0
= Q

j

p00
holds,

� there is a trace tr = (tr1; : : : ; trk) of DA associated with Q.
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We must prove that �(s) = >, where the substitution operator � has the

form

� =

8><
>:

p1 := Q
i1
p1

: : :

pm := Q
im
pm

9>=
>;

and the numbers i1; : : : ; im are such that

p1 2 Ports(SAi1); : : : ; pm 2 Ports(SAim):

We will use the following notations:

� for every i 2 f1; : : : ; kg the symbol List(Ports(SAi)) denotes a list of

elements of the set Ports(SAi),

� for every i 2 f1; : : : ; kg the symbol List(Qi) denotes a list of elements

of the set Qi, such that if List(Ports(SAi)) = (pi1; : : : ; p
i

r
), then

List(Qi) = (Qi

p
i

1

; : : : ; Q
i

pi
r

),

� the symbol �Q denotes the substitution operator

�Q

def
=

8><
>:

List(Ports(SA1)) := List(Q1)

: : :

List(Ports(SAk)) := List(Qk)

9>=
>;

The assumption that s associated with Ports(DA), i.e. V ar(s) � fp1; : : : ; pmg,

implies the equality �Q(s) = �(s).

The assumption

8i = 1; : : : ; k SA

i j= s

i and Q

i 2 Beh(SAi);

implies that

�Q(s
1) = : : : = �Q(s

k) = >:

The condition that for every pair i; j 2 f1; : : : ; kg and every pair (p0; p00) 2
Channels, such that p0 2 Ports(SAi)

and p
00 2 Ports(SAj), the equality Qi

p0
= Q

j

p00
holds, implies the equalities

�Q(p
0

1 = p

00

1) = : : : = �Q(p
0

u
= p

00

u
) = >:
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Thus,

�Q(s
1 ^ : : : ^ s

k ^ (p01 = p

00

1) ^ : : : ^ (p0
u
= p

00

u
)) = >;

and, since

�Q(s
1 ^ : : : ^ s

k ^ (p01 = p

00

1) ^ : : : ^ (p0
u
= p

00

u
)) � �Q(s);

we have:

�(s) = �Q(s) = >:

For every sequential agent SAi the statement

SA
i j= s

i can be proven using the concept of local correctness presented in

subsection 6.5.

6.2 Additional notations

Let (p1; : : : ; pk) be a list of variables of queue types. Then

� the symbol tail(p1; : : : ; pk) denotes the list

(tail(p1); : : : ; tail(pk));

� the symbol head(p1; : : : ; pk) = ! denotes the boolean speci�cation

expression 8><
>:
head(p1) = !

: : :

head(pk) = !

9>=
>; :

For every sequential agent SA the symbol Spec(SA) denotes the set

fs 2 Specbool j V ar(s) � V ar(SA) t Ports(SA)g:

Let

� SA be a sequential agent,
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� the set V ar(SA) has the form

V ar(SA) = fx1; : : : ; xlg;

� the set Ports(SA) has the form

Ports(SA) = fp1; : : : ; pkg;

� Q be a Ports(SA){indexed set of queues:

Q = fQp 2 Dtype(p) j p 2 Ports(SA)g;

� tr be a trace of SA associated with Q:

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g:

Then for every t � 1, such that tr has a component with the number t,

the symbol �tr;t denotes the following substitution operator:

�tr;t

def
=

8>>>>>>>>><
>>>>>>>>>:

x1 := x1(t)

: : :

xl := xl(t)

p1 := p1(t) (
def
= tailt�1(Qp1

))

: : :

pk := pk(t) (
def
= tailt�1(Qp

k
))

9>>>>>>>>>=
>>>>>>>>>;
;

where tail0 is an identity mapping, and for every t � 1 tailt
def
= tail� tailt�1.

Note that 8i = 1; : : : ; k and 8t � 1

head(�tr;t(pi)) = head(tailt�1(Qpi
)) = Qpi

[t];

tail(�tr;t(pi)) = �tr;t+1(pi):

6.3 Transformations at edges

Let SA be a sequential agent, and P be a list (p1; : : : ; pk) of variables of

queue types such that fp1; : : : ; pkg = Ports(SA).

For every a 2 Edges(SA) a transformation at a is the pair ('a; �a),

where
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� 'a is a boolean data expression, which is called a condition at a, and

� �a is a substitution operator, which is called an action at a.

The components 'a and �a are de�ned as follows.

1. If hai = input(pi; x), where i 2 f1; : : : ; kg, then

'a

def
=

(
head(pi) 6= !

head(p1; : : : ; pi�1; pi+1; : : : ; pk) = !

)
,

�a

def
=

(
x := head(pi)

P := tail(P )

)
.

2. If hai = output(pi; e), where i 2 f1; : : : ; kg, then

'a

def
=

(
head(pi) = e

head(p1; : : : ; pi�1; pi+1; : : : ; pk) = !

)
,

�a

def
= fP := tail(P )g.

3. If hai = default, then

'a

def
= (head(P ) = !),

�a

def
= fP := tail(P )g.

4. If hai = (X := E), then

'a

def
= (head(P ) = !),

�a

def
=

(
X := E

P := tail(P )

)
.

5. If hai = b 2 Ebool, then

'a

def
=

(
b

head(P ) = !

)
,

�a

def
= fP := tail(P )g.

Theorem 2.

Given

� a sequential agent SA,

� a Ports(SA){indexed set Q of queues of the form:

Q = fQp 2 Dtype(p) j p 2 Ports(SA)g;
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� a trace tr of SA associated with Q:

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g:

Then for every t � 1, such that tr has the components with the numbers

t and t + 1, the following formulas hold:

1. �tr;t('a) = >,

2. 8s 2 Spec(SA) �tr;t+1(s) = �tr;t(�a(s));

where a
def
= Edge(t).

Proof.

For proving the formula (2) it is necessary and su�cient to prove that

8x 2 V ar(SA) t Ports(SA)

�tr;t+1(x) = �tr;t(�a(x)):

Note that 8p 2 Ports(SA) �tr;t+1(p) = �tr;t(�a(p)). Indeed,

� �tr;t+1(p)
def
= tailt(Qp), and

� �tr;t(�a(p)) = �tr;t(tail(p)) = tail(�tr;t(p)) =

= tail(tailt�1(Qp)) = tailt(Qp).

So, for completing of the proof of theorem 2 it is su�cient to prove that

1. �tr;t('a) = >, and

2. 8x 2 V ar(SA) �tr;t+1(x) = �tr;t(�a(x)).

Now we prove the formulas (1) and (2) for all possible values of hai.

Let fp1; : : : ; pkg be the set Ports(SA).

1. If hai = input(pi; x), where i 2 f1; : : : ; kg, then the de�nitions of tr,

'a and �a imply that

(a) �tr;t+1(x) = head(�tr;t(pi)),

(b) 8j 2 f1; : : : ; kg n fig head(�tr;t(pj)) = !;
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(c) 8y 2 V ar(SA) n fxg �tr;t+1(y) = �tr;t(y),

(d) 'a

def
= (head(p1; : : : ; pi�1; pi+1; : : : ; pk) = !),

(e) �a(x) = head(pi),

(f) 8y 2 V ar(SA) n fxg �a(y) = y.

The formula (1) follows from (b) and (d).

The formula (2) follows from (a), (c), (e) and (f):

� �tr;t+1(x) = head(�tr;t(pi)) = �tr;t(�a(x)),

� 8y 2 V ar(SA) n fxg

�tr;t+1(y) = �tr;t(y) = �tr;t(�a(y)).

2. If hai = output(pi; e), then the de�nitions of tr, 'a and �a imply that

(a) head(�tr;t(pi)) = e(t),

(b) 8j 2 f1; : : : ; kg n fig head(�tr;t(pj)) = !;

(c) 8x 2 V ar(SA) x(t+ 1) = x(t),

(d) 'a

def
=

(
head(pi) = e

head(p1; : : : ; pi�1; pi+1; : : : ; pk) = !

)

(e) 8x 2 V ar(SA) �a(x) = x.

The formula (1) follows from (a), (b) and (d).

The formula (2) follows from (c) and (e).

3. If hai = default, then the de�nitions of tr, 'a and �a imply that

(a) 8p 2 Ports(SA) head(�tr;t(p)) = !;

(b) 8x 2 V ar(SA) x(t+ 1) = x(t),

(c) 'a

def
= (head(P ) = !)

(d) 8x 2 V ar(SA) �a(x) = x.

The formula (1) follows from (a) and (c).

The formula (2) follows from (b) and (d).
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4. If hai = (X := E), where X = (x1; : : : ; xm) and E = (e1; : : : ; em), then

the de�nitions of tr, 'a and �a imply that

(a) 8p 2 Ports(SA) head(�tr;t(p)) = !;

(b) x1(t + 1) = e1(t); : : : ; xm(t+ 1) = em(t),

(c) 8y 2 V ar(SA) n fx1; : : : ; xmg y(t+ 1) = y(t),

(d) 'a

def
= (head(P ) = !),

(e) �a(x1)
def
= e1; : : : ; �a(xm)

def
= em,

(f) 8y 2 V ar(SA) n fx1; : : : ; xmg �a(y)
def
= y.

The formula (1) follows from (a) and (d).

The formula (2) follows from (b), (c), (e) and (f).

5. If hai = b 2 Ebool, then the de�nitions of tr, 'a and �a imply that

(a) 8p 2 Ports(SA) head(�tr;t(p)) = !;

(b) b(t) = >,

(c) 8x 2 V ar(SA) x(t+ 1) = x(t),

(d) 'a

def
=

(
b

head(P ) = !

)

(e) 8x 2 V ar(SA) �a(x) = x.

The formula (1) follows from (a), (b) and (d).

The formula (2) follows from (c) and (e).

6.4 Asymptotic speci�cations

Let SA be a sequential agent, and n 2 Nodes(SA).

We say that the node n has in�nite index, if there is an in�nite path

A in SA, such that start(A) = n.

Let Nodes
1(SA) be a set of all nodes from the set Nodes(SA), which

have in�nite index.
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For every n 2 Nodes
1(SA) the symbol Edges1(n) denotes the set

of all edges outgoing from the node n, ends on which belong to the set

Nodes
1(SA).

The symbol �1(SA) denotes the speci�cation system of the form

f�n(X) = sn j n 2 Nodes

1(SA)g

where X is a list of all variables from V ar(SA) t Ports(SA), and for every

n 2 Nodes
1(SA) the speci�cation expression sn is de�ned as follows: let

� Edges
1(n) = fa1; : : : ; arg,

� n1
def
= end(a1); : : : ;nr

def
= end(ar),

then sn

def
=

2
64
'a1

^ �a1
(�n1(X))

: : :

'ar
^ �ar

(�nr(X))

3
75.

For every n 2 Nodes
1(SA) the speci�cation expression �1(SA)n(X) is

denoted by the symbol Asympn, and is called an asymptotic speci�cation

of the node n.

Theorem 3.

Given a sequential agent SA, and an in�nite trace tr of SA:

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g:

Then for every n 2 Nodes
1(SA) and every number t � 1 such that

Node(t) = n, the following formula holds:

�tr;t(Asympn) = >:

Proof.

Let �1(SA)
def
= f�n(X) = sn j n 2 Nodes

1(SA)g.

For every n 2 Nodes
1(SA) and every number k � 0 de�ne the subset

Falsek(n) of the set Dtype(�n) by induction.

Let n 2 Nodes
1(SA), and

� the set Edges1(n) has the form

Edges

1(n) = fa1; : : : ; arg;
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� n1
def
= end(a1); : : : ; nr

def
= end(ar).

1. The set False0(n) consists of all lists D 2 Dtype(�n) such that

�D('a1
) = : : : = �D('ar

) = ?

(see subsection 5.7 for the de�nition of the substitution operator �D).

2. For every k � 0 the set Falsek+1(n) consists of all lists D 2 Dtype(�n)

such that

� either D 2 Falsek(n),

� or for every i 2 f1; : : : ; rg the following implication holds:

�D('ai
) = > ) �D(�ai(X)) 2 Falsek(ni):

De�ne an evaluation

"

def
= f[[�n]]" : Dtype(�n) ! Dbool j n 2 Nodes

1(SA)g:

For every list D 2 Dtype(�n)

[[�n]]"(D)
def
=

(
?; if 9k � 0 : D 2 Falsek(n);

>; if 8k � 0 : D 62 Falsek(n):

Now we prove that the evaluation " is a �xpoint of �1(SA), i.e. for every

n 2 Nodes
1(SA) and for every D 2 Dtype(�n)

[[�n]]"(D) = [[sn]]"(D):

Let sn has the form

2
64
'a1

^ �a1
(�n1(X))

: : :

'ar
^ �ar

(�nr(X))

3
75.

Therefore

[[sn]]"(D) =

2
64
�D('a1

) ^ [[�n1 ]]"(�D(�a1(X)))

: : :

�D('ar
) ^ [[�nr ]]"(�D(�ar(X)))

3
75 :

By de�nition, the formula [[�n]]"(D) = ? holds i� for every i = 1; : : : ; r

�D('ai
) = > ) [[�ni ]]"(�D(�ai(X))) = ?:

This condition is equivalent to the formula [[sn]]"(D) = ?.

Thus, " is a �xpoint of �.

The de�nition of " implies that for
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� every �xpoint "0 of �,

� every node n 2 Nodes
1(SA), and

� every list D 2 Dtype(�n)

the following implication holds:

[[�n]]"(D) = ? ) [[�n]]"0(D) = ?:

Consequently, for every n 2 Nodes
1(SA)

[[Asympn]] = [[�n]]":

Let a number t � 1 is such that Node(t) = n. We now prove that

�tr;t(Asympn) = >.
Since [[Asympn]] = [[�n]]", the following equality holds:

�tr;t(Asympn) = [[�n]]"(�tr;t(X)):

Since the trace tr is in�nite, then n 2 Nodes
1(SA) and a

def
= Edge(t) 2

Edges
1(n). Let n0

def
= end(a).

According to theorem 2, the following formulas hold:

1. �tr;t('a) = >,

2. 8s 2 Spec(SA) �tr;t+1(s) = �tr;t(�a(s)).

Consequently,

�tr;t(Asympn)

= [[�n]]"(�tr;t(X))

= [[sn]]"(�tr;t(X))

=

2
64
�tr;t('a1

) ^ [[�n1 ]]"(�tr;t(�a1(X)))

: : :

�tr;t('ar
) ^ [[�nr ]]"(�tr;t(�ar(X)))

3
75

� [[�n0 ]]"(�tr;t(�a(X)))

= [[�tr;t(�a(�n0(X)))]]"
= [[�tr;t+1(�n0(X))]]"
= �tr;t+1(Asympn0):
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The above formulas and inductive reasonings imply that for every k � 0

�tr;t(X) 62 Falsek(n):

Consequently, �tr;t(Asympn) = [[�n]]"(�tr;t(X)) = >:

6.5 Local correctness

Let

� SA be a sequential agent,

� P be a list (p1; : : : ; pk) of variables of queue types such that fp1; : : : ; pkg =
Ports(SA),

� C = fcn j n 2 Nodes(SA)g be a Nodes(SA){indexed set of data

expressions from Spec(SA),

� G = fgn j n 2 Nodes(SA)g be a Nodes(SA){indexed sets of speci�ca-

tion expressions from

Spec(SA).

We say that SA is locally correct with respect to the pair (C;G),

i� for every a 2 Edges(SA) the following formulas hold:

'a ^ ca � �a(c
0

a
)

�a(g
0

a
) ^ 'a ^ ca � ga

where

ca

def
= cstart(a); c

0

a

def
= cend(a);

ga

def
= gstart(a); g

0

a

def
= gend(a):

For every n 2 Nodes(SA)

� cn is called a safety assertion at the node n,

� gn is called a liveness assertion at the node n.
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The meaning of safety assertions and liveness assertions is explained be-

low.

The sequential agent SA can be interpreted as a deterministic dynamical

system with discrete time. The process of functioning of this system consists

of transitions from a node to another node, with an execution of actions

which are labels of traversed edges. Every transition is a triple

(n; n0; a) 2 Nodes(SA)�Nodes(SA)� Edges(SA);

such that start(a) = n; end(a) = n
0
: A record of traversed nodes, tra-

versed edges, and current values of variables of SA at every moment of its

functioning forms a trace of SA:

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g;

for every number t > 1 the component

(Node(t); Edge(t); Eval(t))

is a record of

1. current node Node(t) at the moment t,

2. current edge Edge(t) at the moment t, and

3. current values of variables Eval(t) at the moment t.

For every n 2 Nodes(SA) the safety assertion cn is some logical condition

on the current values of variables of SA for every t � 1 such thatNode(t) = n.

The inequality 'a ^ ca � �a(c
0

a
) can be interpreted as the following state-

ment: for every number t � 1, such that

Edge(t) = a;

if the current values of variables at the moment t satisfy the safety assertion

ca, then after the execution the action hai the values of variables at the next

moment of time will satisfy the assertion c
0

a
.

For every n 2 Nodes(SA) the liveness assertion gn expresses properties

of a subtrace

trk = f(Node(t); Edge(t); Eval(t)) j t � kg
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of any trace

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g

of SA, where k is any number such that Node(k) = n.

The inequality �a(g
0

a
) ^ 'a ^ ca � ga can be interpreted as the following

statement. Let t � 1 be a number such that

� Edge(t) = a,

� the values of variables at the moment t satisfy the safety assertion ca.

Then we can prove that the functioning of SA starting from the moment t

with the initial evaluation Eval(t) has the properties which are expressed by

the speci�cation expression ga, if we can prove that after the execution of

the action hai the functioning of SA (which is started from the node end(a))

has the properties which are expressed by the speci�cation expression g
0

a
.

6.6 Veri�cation of sequential agents

In this subsection we prove the main theorem about veri�cation of sequential

agents.

Lemma.

Given

� a sequential agent SA,

� a Nodes(SA){indexed set

C = fcn j n 2 Nodes(SA)g

of data expressions from Spec(SA), and a Nodes(SA){indexed set

G = fgn j n 2 Nodes(SA)g

of speci�cation expressions from Spec(SA), such that SA is locally

correct with respect to the pair (C;G),

� a Ports(SA){indexed set Q of queues of the form

Q = fQp 2 Dtype(p) j p 2 Ports(SA)g;
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� a trace tr of SA associated with Q of the form

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g:

Then for every t � 1, such that tr has the components with the numbers

t and t + 1, the following formulas hold:

�tr;t(ca) � �tr;t+1(c
0

a
)

�tr;t+1(g
0

a
) ^ �tr;t(ca) � �tr;t(ga)

where a
def
= Edge(t), and the speci�cation expressions ca, c

0

a
, ga and g

0

a
are

de�ned at the beginning of subsection 6.5.

Proof.

Since

� 'a ^ ca � �a(c
0

a
), and

� �a(g
0

a
) ^ 'a ^ ca � ga;

the following formulas hold:

�tr;t('a) ^ �tr;t(ca) � �tr;t(�a(c
0

a
));

�tr;t(�a(g
0

a
)) ^ �tr;t('a) ^ �tr;t(ca) � �tr;t(ga):

These inequalities can be transformed to the desired inequalities by using

the results of theorem 2.

Theorem 4.

Given a sequential agent SA, and a speci�cation expression s associated

with Ports(SA).

Then the statement SA j= s holds, if there are

� a Nodes(SA){indexed set

C = fcn j n 2 Nodes(SA)g

of data expressions from Spec(SA), and
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� a Nodes(SA){indexed set

G = fgn j n 2 Nodes(SA)g

of speci�cation expressions from Spec(SA),

such that

1. SA is locally correct with respect to (C;G),

2. croot(SA) = >; groot(SA) = s,

3. for every terminal node n 2 Nodes(SA)

cn � gn;

4. there is a subset N � Nodes
1(SA) such that

� 8n 2 N cn ^ Asympn � gn,

� for every in�nite trace of SA

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g

there is a number t such that Node(t) 2 N .

Proof.

Let the set Ports(SA) has the form

Ports(SA) = fp1; : : : ; pkg;

and Q be a set of queues of the form

Q = fQpi
2 Dtype(pi) j i = 1; : : : ; kg

such that there is a trace tr of SA associated with Q:

tr = f(Node(t); Edge(t); Eval(t)) j t � 1g:

We must prove that �(s) = >, where

� =

8><
>:

p1 := Qp1

: : :

pk := Qp
k

9>=
>; :
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According to the lemma in this subsection, for every t � 1, such that tr

has the components with the numbers t and t + 1, the following formulas

hold:
�tr;t(ca) � �tr;t+1(c

0

a
)

�tr;t+1(g
0

a
) ^ �tr;t(ca) � �tr;t(ga)

where a
def
= Edge(t), the speci�cation expressions ca, c

0

a
, ga and g

0

a
are de�ned

in subsection 6.5, and the substitution operators �tr;t (t � 1) are de�ned in

subsection 6.2. These formulas imply that for every t � 1, such that tr has

the component with the number t, the following formulas hold:

�tr;1(c1) � �tr;2(c2) � : : : � �tr;t(ct)

�tr;t(gt) ^ �tr;1(c1) � �tr;1(g1);

where for every i = 1; : : : ; t

ci

def
= cNode(i); gi

def
= gNode(i):

The equality c1 = > implies that

� �tr;1(c1) = �tr;2(c2) = : : : = �tr;t(ct) = >; and

� �tr;t(gt) � �tr;1(g1):

By assumption, g1 = s, and V ar(s) � Ports(SA). Thus, �tr;1(g1) =

�tr;1(s) = �(s), and �tr;t(gt) � �(s).

If the trace tr is �nite and consists of t components, then by assumption

ct � gt, and consequently

�tr;t(ct) � �tr;t(gt) � �(s):

Since �tr;t(ct) = >, we have: �(s) = >.
Assume that the trace tr is in�nite.

By assumption, in this case there is a number t such that Node(t) = n 2

N .

According to theorem 3, �tr;t(Asympn) = >.

Since cn ^ Asympn � gn is given, we obtain:

�tr;t(cn) ^ �tr;t(Asympn) � �tr;t(gn):
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Since �tr;t(cn) = > and �tr;t(Asympn) = >, we have:

�tr;t(gn) = >:

As it was stated before, �tr;t(gn) � �(s).

Consequently, �(s) = >:

One of di�culties in practical use of theorem 4 is the problem of checking

the condition cn^Asympn � gn: In subsection 6.8 we prove a theorem which

can be used for checking this condition.

6.7 Transformation graphs

Let X = (x1; : : : ; xm) 2 X
� be a list of distinct variables.

A transformation over X is a pair ('; �); where

� ' is a boolean data expression such that

V ar(') � fx1; : : : ; xmg;

� � is a substitution operator of the form (X;S), where S = (s1; : : : ; sm)

is such that for every i = 1; : : : ; m

si 2 E ; V ar(si) � fx1; : : : ; xmg:

A transformation graph over X is a rooted labelled graph TG, every

edge of which is labelled by some transformation over X.

The symbols Nodes(TG), root(TG) and Edges(TG) denote the set of

nodes of TG, the root of TG, and the set of edges of TG, respectively.

For every edge a 2 Edges(TG)

� the symbol hai denotes its label,

� the symbols 'a and �a denote the �rst and the second components of

hai respectively.

Thus, hai
def
= ('a; �a).
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A node n 2 Nodes(TG) is said to be terminal, i� the set of outgoing

edges from n is empty. Any terminal node of TG is denoted by \!".

The concept of a path in TG is de�ned similar to the one de�ned for

sequential agents in subsection 3.3.

For every �nite path A in TG a transformation at A is a pair ('A; �A),

which is de�ned as follows:

� if A has the form (a), where a 2 Edges(TG), then 'A

def
= 'a and

�A

def
= �a,

� if A has the form (a1; : : : ; ak), where k � 2, and B
def
= (a2; : : : ; ak), then

{ 'A

def
= 'a1

^ �a1
('B),

{ �A(X)
def
= �a1

(�B(X)).

Let TG and TG
0 be transformation graphs over X.

A morphism from TG to TG
0 is a binary relation � from Nodes(TG)

to Nodes(TG0):

� � Nodes(TG)�Nodes(TG0)

such that

1. (root(TG); root(TG0)) 2 �,

2. let n1; n2 be nodes fromNodes(TG) and n01 be a node fromNodes(TG0)

such that

� (n1; n
0

1) 2 �,

� there is a path A from n1 to n2,

then there is a node n02 2 Nodes(TG0) such that

(a) (n2; n
0

2) 2 �,

(b) there is a path A
0 in TG

0 from n
0

1 to n
0

2, such that

� 'A � 'A0,

� for every D 2 Dtype(X) the following implication holds:

�D('A) = > ) �D(�A(X)) = �D(�A0(X)):
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The symbols node(�; n1; n2; n
0

1; A) and

path(�; n1; n2; n
0

1; A) denote the node n02 and the path A
0 which have

the above properties.

The formula � : TG ! TG
0 denotes the fact that � is a morphism from

TG to TG0.

Let

� TG be a transformation graph over X,

� n be a node from Nodes(TG), and

� D be a list from Dtype(X).

The node n is said to be open for D, i� there is an in�nite path A =

(a1; a2; : : :) in TG outgoing from n, such that for every k � 1 the pre�x

Ak

def
= (a1; : : : ; ak) of A satis�es the following condition: �D('A

k
) = >:

The de�nition of a morphism of transformation graphs implies that if

1. TG and TG
0 are transformation graphs over X,

2. n 2 Nodes(TG) and n
0 2 Nodes(TG0),

3. there is a morphism � : TG! TG
0, such that (n; n0) 2 �,

4. D 2 Dtype(X),

5. the node n is open for D,

then the node n0 is open for D.

Let TG be a transformation graph, and ('; �) be a transformation over

X.

The symbol ('; �):TG denotes a transformation graph, which is de�ned

as follows:

� Nodes(('; �):TG)
def
= Nodes(TG) t fng, where n is a new node,

� root(('; �):TG)
def
= n,

� The set Edges(('; �):TG) consists of all edges from the set Edges(TG)

and of a new edge from n to

root(TG), label of which is ('; �).
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6.8 Linear speci�cation systems

A speci�cation system � = f�i(Xi) = si j i 2 =g is said to be linear, i�

every formal equation of � has the form

�i(Xi) =

2
6664
'0

'1 ^ �j1
(S1)

: : :

'u ^ �ju
(Su)

3
7775

where

� '0; '1; : : : ; 'u are boolean data expressions,

� �j1
; : : : ; �ju

are relational symbols from the set

f�i j i 2 =g,

� S1; : : : ; Su are lists of data expressions such that

8k = 1; : : : ; u type(Sk) = type(�j
k
):

Let s be a speci�cation expression of the form �i(S), where � is a linear

system of the form

� = f�i(X) = si j i 2 =g:

A transformation graph TG(s) over X associated with s is de�ned

as follows:

� Nodes(TG(s))
def
= frootg t f�i j i 2 =g t f!g,

� root(TG(s))
def
= root,

� the graph TG(s) contains an edge with the label (>; �) from root to

�i, where � is the substitution operator (X;S),

� for every formal equation of the form given above from �

{ the graph TG(s) contains an edge with the label ('0; �X) from �i

to !, where �X
def
= (X;X),
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{ for every k = 1; : : : ; u the graph TG(s) contains an edge with the

label ('k; �k) from �i to �j
k
, where �k is the substitution operator

(X;Sk).

Theorem 5.

Given

� a sequential agent SA,

� a set H of speci�cation expressions from Spec(SA) of the form

H = fhn j n 2 Nodes

1(SA)g

such that for every n 2 Nodes
1(SA)

{ the expression hn has the form �n

i
(Sn), where �n is a linear sys-

tem,

{ for every a 2 Edges
1(n) there is a morphism �a : ('a; �a):TG(hend(a))!

TG(hn):

Then for every n 2 Nodes
1(SA) Asymp(n) � hn:

Proof.

The condition Asympn � hn is equivalent to the following statement: for

every D 2 Dtype(X)

[[Asympn]](D) = > ) �D(hn) = >:

The formula [[Asympn]](D) = > is equivalent to the following statement:

there is an in�nite path

A = (a1; a2; : : :) in SA outgoing from n, such that for every k � 1 the pre�x

Ak

def
= (a1; : : : ; ak) of A satis�es the condition

�D('A
k
) = >:

We now prove that root(TG(hn)) is open for D, i.e. there is a path

B = (b1; b2; : : :) in TG(hn) outgoing from root(TG(hn)), such that for every

k � 1 the pre�x

Bk

def
= (b1; : : : ; bk)
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of B satis�es the equality

�D('B
k
) = >:

Let n0
def
= n, G0

def
= TG(hn), and for every i � 1

ni

def
= end(ai); Gi

def
= ('ai

; �ai
):TG(hni):

By assumption, for every i � 1 there is a morphism

�i : Gi ! TG(hni�1
):

This implies that for every i � 0 there exist an in�nite sequence

(n0
i
; n

1
i
; : : :)

of nodes of Gi and an in�nite sequence

(B0
i
; B

1
i
; : : :)

of �nite paths in Gi such that

� 8i � 0 n
0
i
= root(Gi) = start(B0

i
),

� 8i � 1 n
1
i
= root(TG(hni)),

� 8i � 0 8j � 1

n

j

i
= end(B

j�1
i

) = start(B
j

i
);

� 8i � 0 8j � 1

n

j+1
i

= node(�i+1; n
j�1
i+1 ; n

j

i+1; n
j

i
; B

j�1
i+1 );

B

j

i
= path(�i+1; n

j�1
i+1 ; n

j

i+1; n
j

i
; B

j�1
i+1 ):

The required path B is de�ned as the concatenation

B

def
= B

0
0 �B

1
0 �B

2
0 � : : :

The statement that root(TG(hn)) is open for D and the de�nition of hn
imply the required equality:

�D(hn) = >:
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This theorem can be used for checking the conditions

cn ^ Asympn � gn

in theorem 4 (which are equivalent to the conditions

Asympn � cn ! gn) in the case when for every

n 2 Nodes
1(SA) the speci�cation gn has the form

gn =

2
6664
�0

�1 ^ �1
i1
(S1)

: : :

�m ^ �m

im
(Sm)

3
7775

where

� �0; �1; : : : ; �m are boolean data expressions,

� �1
; : : : ;�m are linear speci�cation systems.

In this case the speci�cation expression cn ! gn has the same interpreta-

tion as a speci�cation expression of the form �i(S), where � is linear.

6.9 Simpli�ed condition of local correctness

The construction of the sets C;G of safety assertions and liveness assertions

for veri�cation of a given sequential agent SA can be very di�cult and non-

trivial procedure.

In this subsection we prove a theorem (theorem 6) which can be used for

simpli�cation of construction of the sets C and G.

This theorem claims that it is su�cient to de�ne safety assertions and

liveness assertions not for all nodes of SA, but only for some of them.

For the formulation of this theorem it is necessary the following de�nition

of a transformation at a path of SA.

Let A = (a1; : : : ; am) be a �nite path in SA.

A transformation at A is the pair ('A; �A), where

� 'A is a boolean data expression, which is called a condition at A,

and
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� �A is a substitution operator, which is called an action at A, and has

the form

�A

def
=

8>>><
>>>:

x1 := s1

: : :

xl := sl

P := tailm(P )

9>>>=
>>>;

where fx1; : : : ; xlg = V ar(SA), P is a list of elements of the set

Ports(SA), and m is a number of edges in the path A.

The components 'A and �A are de�ned as follows.

� If m = 1, i.e. A = (a), and �a has the form

�a

def
=

8>>><
>>>:

xi1
:= s

0

1

: : :

xi
h
:= s

0

h

P := tail(P )

9>>>=
>>>;

where fi1; : : : ; ihg � f1; : : : ; lg, then 'A

def
= 'a, and

�A

def
=

8>>><
>>>:

x1 := s1

: : :

xl := sl

P := tail(P )

9>>>=
>>>;

where 8j = 1; : : : ; l

sj

def
=

(
xj; if j 62 fi1; : : : ; ihg;
s
0

g
; if j = ig for some g 2 f1; : : : ; hg:

� Let

{ A has the form (a1; : : : ; am), where m > 1,

{ B be the path (a2; : : : ; am).

Then

{ 'A

def
=

(
'a1

�a1
('B)

)
,
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{ �A =

8>>><
>>>:

x1 := �a1
(�B(x1))

: : :

xl := �a1
(�B(xl))

P := tailm(P )

9>>>=
>>>;
.

Lemma.

Given

� a sequential agent SA,

� a path A = (a1; : : : ; am) in SA such that m > 1,

� speci�cation expressions c; g; c0; g0 from Spec(SA) such that

'A ^ c � �A(c
0) and �A(g

0) ^ 'A ^ c � g:

Let

� B be the path (a2; : : : ; am),

� c1
def
= 'B ! �B(c

0); g1
def
= �B(g

0) ^ 'B ^ �B(c
0).

Then the following inequalities hold:

1. 'a1
^ c � �a1

(c1),

2. �a1(g1) ^ 'a1
^ c � g,

3. 'B ^ c1 � �B(c
0),

4. �B(g
0) ^ 'B ^ c1 � g1.

Proof.

The inequalities are proved by using of the de�nitions of a condition and

an action on the path A:

1. the inequality 'A ^ c � �A(c
0) is equivalent to the inequality

'a1
^ �a1

('B) ^ c � �a1
(�B(c

0));

which is equivalent to

'a1
^ c � �a1

('B)! �a1
(�B(c

0));

i.e. 'a1
^ c � �a1

('B ! �B(c
0)) = �a1

(c1),
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2. �a1(g1) ^ 'a1
^ c

= �a1
(�B(g

0) ^ 'B ^ �B(c
0)) ^ 'a1

^ c

=

8>>>>>><
>>>>>>:

�a1
(�B(g

0))

�a1
('B)

�a1
(�B(c

0))

'a1

c

9>>>>>>=
>>>>>>;
=

8>>>>>><
>>>>>>:

�A(g
0)

�a1
('B)

�A(c
0)

'a1

c

9>>>>>>=
>>>>>>;

=

8>>><
>>>:

�A(g
0)

'A

�A(c
0)

c

9>>>=
>>>;
�

8><
>:

�A(g
0)

'A

c

9>=
>; � g,

3. 'B ^ c1 = 'B ^ ('B ! �B(c
0)) � �B(c

0),

4. �B(g
0) ^ 'B ^ c1

= �B(g
0) ^ 'B ^ ('B ! �B(c

0))

� �B(g
0) ^ 'B ^ �B(c

0) = g1.

Theorem 6.

Given

� a sequential agent SA,

� a subset N � Nodes(SA), such that for every

n 2 Nodes(SA) nN there is a unique edge

a 2 Edges(SA) with the property

end(a) = n;

� a pairC;G ofN{indexed sets of speci�cation expressions from Spec(SA)

of the form

C

def
= fcn j n 2 Ng; G

def
= fgn j n 2 Ng;

where 8n 2 N cn 2 E ,

� a �nite set Paths of paths in SA such that
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{ for every a 2 Edges(SA) there is

A 2 Paths, such that a 2 A,

{ let A be a path from the set Paths:

A = (a1; : : : ; ah);

then for every pair j1; j2 2 f1; : : : ; hg

j1 6= j2 ) end(aj1) 6= end(aj2);

and 8j 2 1; : : : ; h� 1 end(aj) 62 N;

{ for every A 2 Paths the following conditions hold:

� start(A) 2 N and end(A) 2 N ,

� 'A ^ cA � �A(c
0

A
);

�A(g
0

A
) ^ 'A ^ cA � gA, where

cA

def
= cstart(A); c

0

A

def
= cend(A);

gA

def
= gstart(A); g

0

A

def
= gend(A):

Then there is a pair of Nodes(SA){indexed sets

~
C = f~cn j n 2 Nodes(SA)g;
~
G = f~gn j n 2 Nodes(SA)g

of speci�cation expressions from Spec(SA), such that

1. 8n 2 Nodes(SA) cn 2 E ,

2. 8n 2 N ~cn = cn and ~gn = gn,

3. SA is locally correct with respect to the pair ( ~C; ~G).

Proof.

We prove this theorem by induction for the cardinality of the setNodes(SA)n
N .

If the set Nodes(SA) n N is empty, then the conclusion of the theorem

holds: in this case ~
C = C and ~

G = G.
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Let N 6= Nodes(SA), i.e. 9n 2 Nodes(SA) nN .

There is b 2 Edges(SA), such that end(b) = n.

By assumption, 9A 2 Paths such that b 2 A.

Let A has the form (a1; : : : ; ah). If end(a1) 2 N , then A = (a1), and,

consequently, a1 = b, i.e. end(b) 2 N . This is impossible.

Thus, the edge a
def
= a1 has the property:

start(a) = start(A) 2 N;

end(a) 62 N:

Let

� fA1; : : : ; Amg be the set of all paths from the set Paths, such that the

�rst edge of all of them is the edge a; this set is not empty because it

contains A

� fB1; : : : ; Bmg be the set of paths in SA such that for every i = 1; : : : ; m

the path Ai is a concatenation of (a) and Bi.

According to the lemma in this subsection, for every i = 1; : : : ; m there is a

pair ci; gi of speci�cation expressions from the set Spec(SA), such that the

following inequalities hold:

1. 'a ^ c � �a(ci),

2. �a(gi) ^ 'a ^ c � g, which is equivalent to the inequality

�a(gi) � ('a ^ c)! g;

3. 'Bi
^ ci � �Bi

(c0
Bi

),

4. �Bi
(g0

Bi

) ^ 'Bi
^ ci � gi,

where

c

def
= cstart(a); c

0

Bi

def
= cend(Bi);

g

def
= gstart(a); g

0

Bi

def
= gend(Bi):

De�ne the speci�cation expressions cend(a) and gend(a) as follows:

cend(a)
def
= c1 ^ : : : ^ cm; gend(a)

def
= g1 _ : : : _ gm:

Now we prove that the following inequalities hold:
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1. 'a ^ c � �a(cend(a)), i.e. 'a ^ c � �a(c1) ^ : : : ^ �a(cm),

2. �a(gend(a)) ^ 'a ^ c � g, which is equivalent to the inequality

�a(g1) _ : : : _ �a(gm) � ('a ^ c)! g;

3. 'Bi
^ c1 ^ : : : ^ cm � �Bi

(c0
Bi

),

4. �Bi
(g0

Bi

) ^ 'Bi
^ c1 ^ : : : ^ cm � g1 _ : : : _ gm.

The �rst inequality follows from the property of the operator \^". The

second inequality follows from the property of the operator \_". The third

and fourth inequalities are trivial.

We now prove that all the conditions of theorem 6 hold, if

� the set N is augmented to

Na

def
= N t fend(a)g;

� the sets C = fcn j n 2 Ng and G = fgn j n 2 Ng are augmented to

the sets

Ca

def
= fcn j n 2 Nag and Ga

def
= fgn j n 2 Nag

respectively, which are obtained from C and G by adding the speci�-

cation expressions cend(a) and gend(a), that are de�ned above,

� the set Paths is changed on the set Pathsa:

Pathsa

def
=

(Paths n fA1; : : : ; Amg) t f(a)g t fB1; : : : ; Bmg:

The conditions of theorem 6 for the sets Na; Ca; Ga and Pathsa have the

following form.

1. For every n 2 Nodes(SA) n Na there is a unique edge b 2 Edges(SA)

with the property end(b) = n.

This condition holds because

(Nodes(SA) nNa) � (Nodes(SA) nN):
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2. For every b 2 Edges(SA) there is a path

B 2 Pathsa, such that b 2 B.

This condition holds because by assumption there is a path A 2 Paths,

such that b 2 A, and

� if A 62 fA1; : : : ; Amg, then A 2 Pathsa, and the required path B

is equal to A,

� if A 2 fA1; : : : ; Amg, i.e. A = Ai for some

i 2 f1; : : : ; mg then

{ either b = a, in this case the required path B is equal to (a),

{ or b 2 Bi, in this case the required path B is equal to Bi.

3. Let B be a path from the set Pathsa:

B = (b1; : : : ; bh);

then for every pair j1; j2 2 f1; : : : ; hg

j1 6= j2 ) end(bj1) 6= end(bj2):

This condition holds because

� the path (a) satis�es this condition, and

� every path from the set Pathsa n f(a)g is a subpath of some path

from the set Paths.

4. Let B be a path from the set Pathsa:

B = (b1; : : : ; bh);

then 8j 2 1; : : : ; h� 1 end(bi) 62 Na.

This condition holds because

� the path (a) satis�es this condition, and
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� if a path B = (b1; : : : ; bh) from the set

Pathsa n f(a)g does not satisfy this condition, then there is a

number i 2 1; : : : ; h� 1, such that

end(bi) = end(a):

By assumption, for every n 2 Nodes(SA) n N there is a unique

edge b 2 Edges(SA) with the property end(b) = n.

In particular, for n
def
= end(a), there is a unique edge b 2 Edges(SA)

with the property end(b) = end(a).

Consequently, bi = a. This is impossible, because

{ If i > 1, then by assumption

start(a) = end(bi�1) 62 N;

that contradicts to the de�nition of a.

{ If i = 1, then B 62 fB1; : : : ; Bmg, and consequently B 2

Paths n fA1; : : : ; Amg.
This contradicts to the de�nition of the set fA1; : : : ; Amg.

5. For every B 2 Pathsa

start(B) 2 Na and end(B) 2 Na:

This property follows from the de�nitions of the sets Na and Pathsa.

6. For every B 2 Pathsa the following conditions hold:

'B ^ cB � �B(c
0

B
)

�B(g
0

B
) ^ 'B ^ cB � gB

where

cB

def
= cstart(B); c

0

B

def
= cend(B);

gB

def
= gstart(B); g

0

B

def
= gend(B):

This property has been proved above.
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Thus, the conditions of theorem 6 hold if the sets N;C;G and Paths are

changed to the set Na; Ca; Ga and Pathsa respectively.

The cardinality of the set Nodes(SA) nNa is less that the cardinality of

the set Nodes(SA) nN .

Consequently, by the induction, there is a pair of

Nodes(SA){indexed sets

~
C = f~cn j n 2 Nodes(SA)g;
~
G = f~gn j n 2 Nodes(SA)g

of speci�cation expressions from Spec(SA), such that

1. 8n 2 Na ~cn = cn and ~gn = gn,

2. SA is locally correct with respect to the pair ( ~C; ~G).

Since N � Na, then the sets ~
C and ~

G satisfy the statement of theorem 6.

7 Alternating bit protocol (ABP) example

In this section we consider the Alternating Bit Protocol ([1]) implemented

by a distributed agent as an example of the concepts introduced so far in the

report.

7.1 The ABP distributed agent

The ABP distributed agent is de�ned as follows:

ABP

def
= (Sender; Receiver; Env1; Env2;Channels)

where

� Inputs(Sender)
def
= fin; �g,

Outputs(Sender)
def
= f�g,

� Inputs(Receiver)
def
= f�g,

Outputs(Receiver)
def
= f
; outg,
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� Inputs(Env1)
def
= fp; p1g,

Outputs(Env1)
def
= fq1g,

� Inputs(Env2)
def
= fp2g,

Outputs(Env2)
def
= fq2g,

� Channels

def
= f(�; p1); (q1; �); (
; p2); (q2; �)g,

and the de�nitions of Sender; Receiver; Env1; Env2 are presented below.

The 
ow graph of ABP has the following form:
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Figure 2: the 
ow graph for ABP .

The functioning of ABP consists of transmission of messages from the

Sender to the Receiver through the environments Env
1, where Env

1 is

assumed to be noisy (i.e it may corrupt messages). The Sender receives

acknowledgements through the Env2, which is assumed to be noise free.

The model of the noisy environment Env1 is assumed to be as follows.

After receiving from the port p1 a message which has the form (u; x) (where

u is a control bit and x is a body), it receives a corruption signal corr, which

is a boolean value. If corr = >, then Env
1 outputs on the port q1 the pair

(:u; �), where the symbol � denotes a corrupted body. If corr = ?, then

Env
1 outputs on the port q1 the original pair (u; x).

The functioning of the sequential agents Sender,

Receiver, Env1 and Env
2 can be informally described as follows.

� Initialization:

The Sender and Receiver have boolean variables u and v, respectively,

called control bits, whose values are initialized to >.
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� Sender:

1. receives a message x on the input port in,

2. adds the control bit u to this message,

3. sends the pair (u; x) to the agent Env1,

4. receives an acknowledgement bit � from the port �,

5. if the acknowledgement bit � is equal to the current control bit u,

then Sender inverts the control bit, and starts another cycle from

step (1),

6. otherwise it sends the current message (u; x) again, until the ac-

knowledgement bit � is equal to the current control bit u.

� Env
1:

1. receives a pair (u; x) on the input port p1,

2. receives the corruption signal corr on the input port p ,

3. if corr = ?, then Env1 sends the unmodi�ed (u; x) to the Receiver,

4. if corr = >, then Env
1 sends (:u; �) to the Receiver.

� Receiver:

1. receives a pair (�; y) on the input port �,

2. if � is equal to the current control bit v of the Receiver, then the

Receiver

(a) extracts the message y, and sends it to the output port out,

(b) sends the control bit v on the port 
,

(c) inverts v,

(d) and starts execution of new cycle of its work from its step (1),

3. otherwise it sends the inverted current control bit (that is :v) to
the output port 
, and starts execution of new cycle of its work

from its step (1).

� Env
2

1. receives a bit � on the input port p2,
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2. sends the bit � to the output port q2.

The speci�cation expression Spec(ABP ), which speci�es the behavior of

ABP , can be choosen as follows:

Spec(ABP )
def
= ABP (in; out)

where the speci�cation system ABP consists of the equation

�(in; out)
def
=

2
66666666666664

(
head(in) = !

�(tail(in); out)

)

(
head(out) = !

�(in; tail(out))

)

(
head(out) = head(in)

�(tail(in); tail(out))

)

3
77777777777775

7.2 The sequential agent Sender

The set of variables of Sender is de�ned as follows:

V ar(Sender)
def
= fu; �; �; xg, where

1. type(u) = type(�) = type(�) = bool,

2. type(x) = type(in).

The sequential agent Sender has the following form:
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�S4
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default
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�S3

�
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�
�S5

��

6

default
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?
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�
�
�
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�
�
�
�S6

�
�
�
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�
�
�
�
�
�
�
�S0

�
�
�
�S7

�
�
�
�S4

?

u := >

� := ?

?

� = u

?

input(in; x)

6

input(�; �)

6
� = u

� � 6= u � � 6= u

-
� := :�

-
output(�; (u; x))

����������

u := :u

Figure 3: Sender.

The speci�cation expression Spec(Sender), which speci�es the behavior

of Sender, can be choosen as follows:

Spec(Sender)
def
= Sender>(in; �; �)

where the speci�cation system Sender has the following form:

(
�>(in; �; �) = sender>

�?(in; �; �) = sender?

and the speci�cation expressions senderu for u = > and ? are de�ned as
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follows:

senderu

def
=

2
666666666666666666666666666666666666664

(
head(in) = !

�u(tail(in); �; �)

)

(
head(�) = !

�u(in; tail(�); �)

)

(
head(�) = !

�u(in; �; tail(�))

)

8>>><
>>>:
head(in; �; �) 6= !

head(�) = (u;head(in))

head(�) = u

�:u(tail(in); tail(�); tail(�))

9>>>=
>>>;

8>>><
>>>:
head(in; �; �) 6= !

head(�) = (u;head(in))

head(�) = :u
�u(in; tail(�); tail(�))

9>>>=
>>>;

3
777777777777777777777777777777777777775

Let sendu(in; �; �) denote the following speci�cation expression:

"
(u = >) ^ sender>(in; �; �)

(u = ?) ^ sender?(in; �; �)

#
:

Veri�cation of the agent Sender can be done with the use the following

safety assertions and liveness assertions:

� g0
def
= sender>(in; �; �),

c0
def
= >,

� g1
def
=

"
(� 6= u) ^ sendu(in; �; �)

(� = u) ^ sendu(x � in; �; �)

#
,

c1
def
= >,

� g2 = sendu(in; �; �),

c2
def
= (� 6= u),
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� g3 = sendu(x � in; �; �),

c3
def
= (� 6= u),

� g4 = sendu(x � in; �; �),

c4
def
= (� = u),

� g5 = sendu(x � in; (u; x) � �; �),

c5
def
= (� = u),

� g6 = sendu(x � in; (u; x) � �; � � �),

c6
def
= (� = u),

� g7 = send:u(in; �; �),

c7
def
= (� = u).

The checking of the inequalities from the de�nition of local correctness is

trivial for all edges with the exception of the edges, end of which is the node

S1.

For example, the checking of the inequalities at the edge from S6 to S1

has the following form.

We must prove the inequalities

'a ^ ca � �a(c
0

a
)

�a(g
0

a
) ^ 'a ^ ca � ga

where

� 'a = (� 6= u) ^ (head(in; �; �) = !),

� �a =

8><
>:

in := tail(in)

� := tail(�)

� := tail(�)

9>=
>;,

� ca = (� = u),

� c
0

a
= >,

� ga = sendu(x � in; (u; x) � �; � � �),

� g
0

a
=

"
(� 6= u) ^ sendu(in; �; �)

(� = u) ^ sendu(x � in; �; �)

#
.
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Since c0
a
= >, the inequality 'a ^ ca � �a(c

0

a
) holds.

The inequality �a(g
0

a
) ^ 'a ^ ca � ga has the following form:

8>>>>>>>><
>>>>>>>>:

"
(� 6= u) ^ �a(sendu(in; �; �))

(� = u) ^ �a(sendu(x � in; �; �))

#

(� 6= u) ^ (head(in; �; �) = !)

(� = u)

9>>>>>>>>=
>>>>>>>>;
�

sendu(x � in; (u; x) � �; � � �):

The last inequality is equivalent to the inequality

8>>><
>>>:

sendu(x � tail(in); tail(�); tail(�))

(� 6= u)

(head(in; �; �) = !)

(� = u)

9>>>=
>>>;
�

sendu(x � in; (u; x) � �; � � �):

Using the de�nition of the expression sendu(in; �; �), the last inequality
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can be rewritten as follows:2
666666666666666666664

8>>>>>><
>>>>>>:

(u = >)

sender>(x � tail(in); tail(�); tail(�))
(� = ?)
(head(in; �; �) = !)

(� = >)

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

(u = ?)

sender?(x � tail(in); tail(�); tail(�))

(� = >)

(head(in; �; �) = !)

(� = ?)

9>>>>>>=
>>>>>>;

3
777777777777777777775

�

2
6666664

(
(u = >)
sender>(x � in; (>; x) � �; � � �)

)

(
(u = ?)
sender?(x � in; (?; x) � �; � � �)

)

3
7777775
:

The last inequality follows from the following pair of inequalities:

(
sender>(x � tail(in); tail(�); tail(�))
(head(in; �; �) = !)

)
�

sender>(x � in; (>; x) � �;? � �);(
sender?(x � tail(in); tail(�); tail(�))
(head(in; �; �) = !)

)
�

sender?(x � in; (?; x) � �;> � �):

A speci�cation expression s1 is said to be equivalent to a speci�cation

expression s2, if the inequalities s1 � s2 and s2 � s1 hold. The de�nition of

the speci�cation expressions senderu for u = >;? implies that the speci�ca-

tion expression

sender>(x � in; (>; x) � �;? � �)

is equivalent to the speci�cation expression

sender>(x � in; �; �);
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and the speci�cation expression

sender?(x � in; (?; x) � �;> � �)

is equivalent to the speci�cation expression

sender?(x � in; �; �):

Thus, we must prove the following pair of inequalities:

(
sender>(x � tail(in); tail(�); tail(�))
(head(in; �; �) = !)

)
�

sender>(x � in; �; �);(
sender?(x � tail(in); tail(�); tail(�))

(head(in; �; �) = !)

)
�

sender?(x � in; �; �);

which follows from the inequalities:

sender>(x � tail(in); tail(�); tail(�)) �
sender>(x � ! � tail(in); ! � tail(�); ! � tail(�));

sender?(x � tail(in); tail(�); tail(�)) �
sender?(x � ! � tail(in); ! � tail(�); ! � tail(�)):

The last inequalities follow from the de�nition of the expressions sender>
and sender?.

7.3 The sequential agent Receiver

The set of variables of Receiver is de�ned as follows:

V ar(Receiver)
def
= f�; v; y; zg, where

1. type(v) = type(�) = bool,

2. type(y) = type(out),

3. type(z) = (bool; type(y)).
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The sequential agent Receiver has the following form: (note that some of

the steps the Receiver given in subsection 7.1 have been modi�ed to reduce

the number of its nodes)

�� -

default

�� -

default

���

default

input(�; z)

� 6= v

output(out; y)

�
�
�
�
�
�
�
�R0

�
�
�
�R1

�
�
�
�R2

�
�
�
�R6

�
�
�
�R3

�
�
�
�R5

�
�
�
�R4

?

6

6

?

?

-

�

�

v := >

� := �1(z)

y := �2(z)

� = vv := :v

output(
; �)

Figure 4: Receiver.

The speci�cation expression Spec(Receiver), which speci�es the behavior of

Receiver, can be choosen as follows:

Spec(Receiver)
def
= Receiver>(out; �; 
)

where the speci�cation system Receiver has the following form:(
�>(out; �; 
) = receiver>

�?(out; �; 
) = receiver?
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and the speci�cation expressions receiverv for v = >;? are de�ned as follows:

receiverv

def
=

2
66666666666666666666666666666666666666664

(
head(out) = !

�v(tail(out); �; 
)

)

(
head(�) = !

�v(out; tail(�); 
)

)

(
head(
) = !

�v(out; �; tail(
))

)

8>>>>>><
>>>>>>:

head(out; �; 
) 6= !

�1(head(�)) = v

�2(head(�)) = head(out)

head(
) = v

�:v(tail(out); tail(�); tail(
))

9>>>>>>=
>>>>>>;

8>>><
>>>:
head(out; �; 
) 6= !

�1(head(�)) = :v
head(
) = :v

�v(out; tail(�); tail(
))

9>>>=
>>>;

3
77777777777777777777777777777777777777775

Let receivv(out; �; 
) denote the following speci�cation expression:

"
(v = >) ^ receiver>(out; �; 
)

(v = ?) ^ receiver?(out; �; 
)

#
:

Veri�cation of the agent Receiver can be done with the use the following

safety assertions and liveness assertions:

� g0
def
= receiver>(out; �; 
),

c0
def
= >,

� g1
def
= receivv(out; �; 
),

c1
def
= >,

� g2
def
= receivv(out; z � �; 
),

c2
def
= >,
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� g3
def
= receivv(out; z � �; 
),

c3
def
= (� = �1(z)) ^ (y = �2(z)),

� g4
def
= receivv(out; z � �; 
),

c4
def
= (� = �1(z)) ^ (y = �2(z)) ^ (� = v),

� g5
def
= receivv(y � out; z � �; 
),

c5
def
= (� = �1(z)) ^ (y = �2(z)) ^ (� = v),

� g6 =

"
receiv:v(y � out; z � �; 
)

receivv(out; z � �; 
)

#
,

c6
def
= (� = �1(z)) ^ (y = �2(z)) ^ (� = :v).

7.4 The sequential agent Env1

The set of variables of Env1 is de�ned as follows:

V ar(Env1)
def
= f�; corrg, where

� type(�) = (bool; �), where � is such that �� = type(in),

� type(corr) = bool.

We assume that the domain D� contains a special element �, which de-

notes a corrupted message.

The sequential agent Env1 has the following form:
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�
�
�
�
�
�
�
�B0

�
�
�
�B1

�
�
�
�B2

�
�
�
�B3

�
�
�
�B4

- -

6

?

�
�
�
�
�
�
�
�
��


B
B
B
B
B
B
B
B
BBM

��

?

default ��

?

default

��
�default

���default

input(p1; �) input(p; corr)

corr = >

corr = ?

output(q1; (:�1(�); �))

output(q1; �)

Figure 5: Env1.

The speci�cation expression Spec(Env1), which speci�es the behavior of

Env
1, can be choosen as follows:

Spec(Env1)
def
= Env

1(p1; q1)
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where the speci�cation system Env
1 consists of the equation

�(p1; q1) =

=

2
66666666666666666666666664

(
head(p1) = !

�(tail(p1); q1)

)

(
head(q1) = !

�(p1; tail(q1))

)

8><
>:
head(p1; q1) 6= !

head(q1) = head(p1)

�(tail(p1); tail(q1))

9>=
>;

8><
>:
head(p1; q1) 6= !

�1(head(q1)) = :�1(head(p1))
�(tail(p1); tail(q1))

9>=
>;

3
77777777777777777777777775

Note that the speci�cation expression given above speci�es the behavior

of Env1 partially. In particular, the port p is not included in the speci�ca-

tion expression. The reason of using the partial speci�cation is that for the

proving of correctness of the ABP the information about behavior on the

port p is not essential.

Veri�cation of the agent Env1 can be done with the use the following

safety assertions and liveness assertions:

� g0
def
= Env

1(p1; q1),

c0
def
= >,

� g1
def
= g2

def
= g3

def
= g4

def
= Env

1(� � p1; q1),

c1
def
= c2

def
= c3

def
= c4

def
= >.

7.5 The sequential agent Env2

The set of variables of Env2 is de�ned as follows:

V ar(Env2)
def
= f�g, where type(�) = bool.
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The sequential agent Env2 has the following form:

�
�
�
�
�
�
�
�C0

�
�
�
�C1

?

input(p2; �)

�

output(q2; �)

�

��� -default

�� -default

Figure 6: Env2.

The speci�cation expression Spec(Env2), which speci�es the behavior of

Env
2, can be choosen as follows:

Spec(Env2)
def
= Env

2(p2; q2)

where the speci�cation system Env
2 consists of the equation

�(p2; q2)
def
=

2
66666666666666664

(
head(p2) = !

�(tail(p2); q2)

)

(
head(q2) = !

�(p2; tail(q2))

)

8><
>:
head(p2; q2) 6= !

head(q2) = head(p2)

�(tail(p2); tail(q2))

9>=
>;

3
77777777777777775

Veri�cation of the agent Env2 can be done with the use the following

safety assertions and liveness assertions:

� g0
def
= Env

2(p2; q2),

c0
def
= >,

� g1
def
= Env

2(� � p2; q2),

c1
def
= >.
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8 Conclusion

In the present report we have described a new approach to the problem of

speci�cation and veri�cation of distributed communicating systems.

The proposed approach to speci�cation and veri�cation has the following

advantages in comparison with other approaches to speci�cation and veri�-

cation of DCSs:

1. The proposed veri�cation technique allows the implementation the ver-

i�cation process in an interactive form. (In this sense the proposed

technique is similar to the veri�cation technique founded on the Floyd's

inductive assertion method, which allows use of programmer's intuition

for construction of the necessary inductive assertions.)

2. Use of �xpoint constructions in the speci�cation language allows a sim-

ple and precise description of the behavior of a DCS. In comparison with

encoding of speci�cations by temporal formulas, the �xpoint construc-

tions are more natural for representation of semantics of the speci�ed

properties.

3. The operation of cartesian product commonly used in construction of

state transition graphs for the whole DCS is not employed; this results

into a drastic reduction of the complexity of veri�cation of a DCS.

In order to apply the proposed technique we need the development of a

methodology for:

� the construction of appropriate speci�cation expressions for sequential

agents that are components of a given distributed agent,

� the construction of appropriate safety assertions and liveness assertions

for proving that the sequential agents meet their speci�cation expres-

sions,

� proving that conjunction of speci�cation expressions for the sequential

agents and the conditions of equality of queues corresponding to the

connected ports implies the speci�cation expression for the distributed

agent.
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