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Abstract

A polygon P is a street if there exist points (u, v) on the boundary such that P is weakly
visible from any path from  to v. Optimal strategies have been found for on-line searching
of streets provided thai the starting position of the robot is s = u and the target is located
at £ = v. Thus a hiding target could foil the strategy of the robot by choosing its position
t in such a manner as not to realize a street.

In this paper we introduce a strategy with a constant competitive ratio to search a street
polygon for a target located at an arbitrary point ¢ on the boundary, starting for any other
arbitrary point s on the boundary. We also provide lower bounds for this problem.

This makes streets only the second non-trivial class of polygons (after stars) known to
admit a constant-competitive-ratio strategy in the general case.

1 Introduction

In 1991 Klein considered the problem of an agent or robot searching the interior of a
simple unknown polygon for a visually identifiable target point [18]. The competitive
ratio defined as the ratio between the distance traversed by a robot and the length of the
shortest path between the robot and the target is a natural framework to evaluate the
performance of a given search strategy. It is not hard to see that in general searching an
arbitrary simple polygon with n vertices is Q(n) competitive (see e.g. [18, 21]}.

In the same paper, Klein introduced the class of street polygons, which can be
searched on-line at a constant competitive ratio, under specific restrictions on the posi-
tion of the target. A polygon P is a street if there exists a pair of points (u,v) on the
boundary such that the interior of the polygon is weakly visible from any path from u
to v. Specifically, the strategy proposed depends on the target being located at v and
the starting position of the robot being u. Several improved strategies for streets have
been proposed under the same assumptions [13, 19, 21, 23]. Recently streets have been
shown 10 be searchable at a competitive ratio of \/§ in the worst case, which is optlmal
[25, 15], provided, as before that s = v and ¢ = v.

Several other classes of polygons that admit constant competitive ratios have been
proposed including G-streets [10, 22], HV-streets [9] and §-streets [9]. Just as with streets,
the existence of a constant competitive searching strategy for these classes of polygons
is also dependent on the position of the target.
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In 1997, Lépez-Ortiz and Schuierer [20, 24| introduced the first non-trivial class of
polygons known to admit a constant competitive ratic irrespective of the starting position
of the robot and the target, namely star polygons.

However it remained an open question if street polygons could be searched at a
constant competitive ratio when the starting position of the robot s is different from w
and the location of the target is not v, as all known search strategies depend heavily on
this fact. In this paper we answer this question in the affirmative. This is an important,
generalization of the restricted street search algorithm, as otherwise a hiding target could
foil the search strategy of the robot by choosing its hiding position ¢ in such a manner as
not to realize a street. This makes streets only the second non-trivial class of polygons
{after stars) known to admit a constant-competitive-ratio strategy in the general case.

We propose first an algorithm for the case s = u and a free target, i.e. ¢ # v with
competitive ratio of 36.806, and then an algorithm for the general case when s # u with
competitive ratio of 69.216. This completes all the search cases for street polygons. It
is also interesting to note that the competitive ratio can be improved significantly for
rectilinear street polygons using a strategy devised for that specific case [12].

The paper is organized as follows. In Section 2 we give some basic definitions. In
Section 3 we present a strategy to search a street polygon when the starting position of
the robot is s = u but the target is located at an arbifrary point on the boundary. This
strategy has a competitive ratio of 36.806. In Section 4 we give a strategy for searching
street polygons for arbitrary location of s and ¢. In this case the competitive ratio is
69.216. In Section 5 we present a lower bound of 9 for the search case when s = u and
of 11.78 for arbitrary position streets searching.

2 Definitions

We assume that the robot is equipped with an on-board vision system that allows it to
see its local environment. Since the robot has to make decisions about the search based
only on the part of its environment that it has seen before, the search of the robot can
be viewed as an on-line problem. As such, the performance of an on-line search strategy
can be measured by comparing the distance traveled by the robot with the length of the
shortest path from the starting point s to the target location ¢. The ratio of the distance
traveled by the robot to the optimal distance from s to ¢ is called the competitive ratio
of the search strategy.

“We say two points p; and p; in a polygon P are mutually visible if the line segment
P1p; is contained in P. If A and B are two sets, then A is weakly visible from B if every
point in A is visible from some point in B. :

Definition 1 Let p be a point in P. The visibility polygon of p is the subset of P visible
to p and denoted by Vp(p).

We assume that the robot has access to its local visibility polygon by a range sensing
device, e.g. a ladar (laser “radar”).

Definition 2 [18] Let P be a simple polygon with two distinguished vertices, u and v,
and let I and R denote the clockwise and counterclockwise, resp., oriented boundary
chains leading from v to v. If L and R are mutually weakly visible, i.e. if each point of
L sees at least one point of R and vice versa, then (P,u,v) is called a street.




p

Figure 1: Visibility polygon. Figure 2: Left and right pockets.

Streets are also known as LR-visibility polygons [5].

If the robot does not see the entire interior of P, then the regions not seen in P form
connected components of P\ Vp(p) called pockets. The boundary of a pocket is made of
sotme polygon edges and a line segment not belonging to the boundary of P. The edge of
the pocket which is not a polygon edge is called a window of Vp(p). Note that a window
intersects the boundary of P only in its end points. More generally, a line segment that
intersects the boundary of P only in its end points is called a chord.

A pocket edge of p is a ray emanating from p which contains a window. Each pocket
edge passes through at least one reflex vertex of the polygon, which is also an end point
of the window associated with the pocket edge. This reflex vertex is called the entrance
point of the pocket.

A pocket is said to be a left pocket if it lies locally to the left of the pocket ray that
contains its window. A pocket edge is said to be a left pocket edge if it defines a left
pocket. Right pocket and right pocket edge are defined analogously.

Definition 3 Given a polygon P, an extended pocket edge from a point s is & polygonal
chain go, 1, G2, - - - , G Such that gy = s, and each of g; is a reflex vertex of P, save posstbly
for qu. Furthermore qu_o, qr—1 and gy are collinear and form a pocket edge with G_1Gx
as associated window. If G —3Gx s a left (right) pocket edge, then each of £Zg;1:gi11 15 @
counterclockwise (clockwise) reflex angle.

Definition 4 We say two pocket edges p; and ps are clockwise consecutive if the clockwise
oriented polygonal chain of V(p) does not contain another pocket edge between p; and

P2.

Lemma 1 Let (P, u,v) be a street polygon. All left (right) pocket edges anchored in u
are clockwise (counterclockwise) consecutive.

It is easy to veriy this by assuming otherwise and noticing then that one of the
pockets cannot see the opposite boundary chain, as required by the definition of street
polygons (see e.g. [18] for a more detailed treatment). We call this arrangement left-right
consecutive pockets. Notice that in general this property only holds for the points » and
v in P, and is not necessarily the case for other points w on the boundary of P.

Definition 5 A chord between two points Wiws on the boundary of the polygon is said
to be wy-minimal if and only if there exists an € > 0 such that for all chords with end
points (wy,wh) and |we — wh| < € we have [Wws| < [unw)|.
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Notice that w;-minimal chords either form a right angle with the boundary at w., or
ws is a reflex vertex of P. _

A chord 7w is clasified as left, right or middle depending on its position with respect
to the surrounding pockets. That is, if a chord is located between two consecutive left
(right) pockets is called a left (right, respectively) chord. If the chord is located between
a right and a left pocket, in clockwise order, then it is termed a middle chord.

3 Searching for a Target from a Restricted Starting Point

In this section we consider the problem of searching for a target located at an arbitrary
point £ in the interior of & street polygon, with the robot starting from the point s = u
on the boundary.

Lemma 2 Ifc is o chord with endpoints (u,w) in a street polygon (P, u,v), then it splits
P into two parts Py and Ps, and one of Py and Py is weakly visible from ¢ while the other
contains the point v.

Proof. Clearly v is contained in one of the two parts, assume that it is on the left side, P,
{the other case is symmetrical). Therefore the entire counterclockwise polygonal chain
from u to w is contained in F. Moreover, we know that the polygonal chain from « to
w sees the left chain L in P,. But any line contained in the polygon and joining a point
in P, with a point in P intersects the chord ¢. This implies that the chord weakly sees
all points in 5. O

Observation 1 The point v lies to the right of all but the last left pocket edge and to
the left of all but the last right pocket edge.

Theorem 1 There exists a strategy for searching for a target of arbitrary location t
inside a street (P,u,v) storting from s = u with a competitive ratio of at most 36.806.

Proof. The proof of this theorem is based in the algorithm for star polygons first
presented in [20] and further improved in [24]. However, there are several key differences
which result in a significantly larger competitive ratio than the case of a star polygon.

This algorithm traverses left and right pockets edges alternatively, and in order of
increasing length, until the entire polygon is seen. We classify extended pocket edges
in two groups, Fies: and Frigns. The robot starts with the subset of currently visible
extended pocket edges Fp . and FJ ,,, respectively. These sets are updated as the
robot explores pocket edges and at the same time discovers new ones. Given an extended
pocket edge E, let lg denote the last point in the chain, and pg denote the second to
last point of E.

Let side € {left, right} and if side = right, then —side = left and vice versa, and let
@ > 1 be a constant.

Algorithm Restricted-Start Free-Target Search
Input: A street polygon (P, u,v) and a starting point s = u (notice that the
location of v is not required by the algorithm);
Output: The location of the target point ¢;
1 let Frepe (Frignt) be the set of extended left (right) pocket edges currently seen
but not explored;




Figure 3: Extended pocket edge search. Figure 4: A left pocket inside a right pocket.

_ (* Initially Fieps and Frigns contain only simple pocket edges; %)
2 let pg be the closest entrance point to s and E the pocket edge corresponding
0 pE;

3 let d be the distance of pg to s;
4 if F is a left pocket edge
5  then let side + left
6 else let side <~ right
7 while Fiep U Frign: is non-empty do
8 traverse d units on E measuring from s;
9 if £ ig seen then exit loop;
10 add the new pocket edges seen on this path to Fiep or Frigns as extended
pocket edges starting from s;
11 if a new side pocket edge Ey is seen inside a —side pocket and |Ex| < d
12 then let F < Ey;
13 Move to the entrance point of the —side pocket and explore E;
14 remove from F,4. all extended side pocket edges to the side side of the
extended pocket edge £
15 if Iz is reached then remove E;
16 move back to s;
17 let d < a-d;
18 let, side +— —side;
19 if side = left
20 then let B € F5 such that pgp is the rightmost entrance point with
: d(s,pe) < d.
21 if there is no such edge
22 then select as F as the leftmost edge in Fp;
' 23 else (* side = right *)
j select E analogously;
: end while;

24 move to ¢;

An important difference with the star searching algorithm of [20, 24], is that in this
case it is possible for a left pocket to be contained inside a right pocket and vice versa.




Figure 4 illustrates one such case, where traversal of a left pocket edge leads to the
discovery of a further left pocket edge hidden inside a right pocket. .
Assume that the new pocket edge is left and is contained in a right pocket (the other
case is symmetric). When the algorithm sees the new pocket edge it adds it to Fi.p:.
Furthermore, if the length of the new pocket edge is smaller than the one currently being
explored, then the robot moves on the new pocket edge. This causes a detour in the
algorithm, since if the robot had known of the existence of such hidden pocket, it would
have travelled straight to the entrance of the right pocket edge and from there to the
hidden left pocket edge. Unfortunately that edge was not in contention in Step 20. The
length of this detour can be bounded as follows.

Claim 1 Let g be the poini on the original pocket edge where the robot discovered the
new pocket edge, and let w be the entrance to the pocket defined by this new pocket edge.
Then d(s, q) +d{g,w) < {(2a+ 1) d(s,w).

Proof. Since the new left pocket was hidden inside an unexplored right pocket edge,
we know that the distance d(s,w) must be larger than the value d used to explore in
the last step, as otherwise that pocket would have been explored. Therefore we have
that d(s,q) < ad < ad(s,w). Now, the robot must reach w from ¢ (see Figure 4). We
apply the triangle inequality and obtain d(g,w) < d(s,q) + d(s,w) < ad(s,w) + d(s, w).
Therefore the total distance traversed by the robot to reach w is at most d(s, ¢}+d(g, w} <
(2a + 1)d(s,w). O

The last observation we need to make is that such a hidden pocket edge discovery
might happen more than once within one exploration step. That is, once the robot
starts moving towards the newly discovered pocket edge it might discover yet another
left pocket edge with entrance w’ further inside the right pocket. This reflects the case
of a street with more than one “funnel structure” (see for example [18]). Klein showed
that since the shortest path to the hidden pocket goes through the entrance of the right
visible pocket, the street polygon can be decomposed into a sequence of funnel structures.
The search strategy then has a competitive ratio no greater than the maximum of the
competitive ratios in each of the consecutive funnel structures [18, 21].

Note that after the first two iterations the while-loop has the following invariant:

Invariant: All pockets at a distance of d/a? or less on the side side have been
explored.

Clearly the algorithm always terminates, as it either finds the target or it eventually
explores all pocket edges. In the later case we must ensure that the target is also found.
This follows from Lemma 1, Lemma 2 and Observation 1. Indeed, after exploring the last
pocket edge all of the polygon to the left of the last left pocket edge has been explored,
all of the polygon to the right of the last right pocket edge has been explored as well
and there are no unseen areas (i.e. pockets) left to explore. Therefore, the target must
have been discovered in the last step when the robot reaches the entrance point of the
last pocket edge and in all cases the target is found.

The competitive ratio is derived from the Claim 1 and the Invariant. After Step 16,
the invariant holds because if there was a, say, left pocket at a distance of less than d/o?
it means it was part of the set F two steps before. Thus, if it was unexplored then, it
either was traversed, or another left pocket of length at most d/a? which is to the right
of it was traversed. But exploring this second edge entails exploring the earlier edge as
shown in Lemma 2 and Observation 1.




Figure 5: Worst case discovery of a target.

This means that after Step 16 we know that the target must be located inside a
pocket with entrance point at a distance of strictly greater than d/a® from s. The worst
case occurs when the robot sees the target at a distance of d/a® + ¢, at the very end of
a search of length d (see Figure 5). This means that the ratio of the distance traversed
by the robot according to Algorithm Reséricted-Start Free-Target Search to the distance
from s to ¢ is at most

2 (2+1/a)a’ 1= 2&.2 (2a+ 1)

2
an—2 a—1

+ 1.

This expression is minimized when ¢ = (5 + +/57)/8 which gives a competitive ratio of
(151 + 19+/57)/8 < 36.806 as claimed. O

4 Searching in a Street from an Arbitrary Sf:arting Point

In this section we present an algorithm for searching for a target of arbitrary position
t in a street polygon, starting from an arbitrary point s on the boundary of the poly-
gon. In other words we remove the restriction from the previous section that s = w.
Moreover, the robot does not need to know the location of u and v to explore . The
algorithm is considerably more involved than the one for restricted starting position, and -
the competitive ratio is somewhat larger, as it is to be expected.

A chord ¢ inside a street polygon (P, u,v) splits a polygon in two parts. P, and P.
The points u or ¥ may be located both on one of the two parts, or one on each part.

Lemma 3 Consider a chord ¢ in P and assume that u and v are on the same side of
P, say P,. Then Py is weakly visible from c.

Proof. Since both « and v are in P;, one of the two polygonal chains from u to w 1s
entirely contained in Py, say the left polygonal chain L from u to v. We know that any
point on RN P,, where R is the right polygonal chain from u to v, sees at least one point
in L. But any line contained in the polygon and joining a point in P with a point in
RN P, intersects the chord c. This implies that the chord weakly sees all points in FPs.
O

Notice that this lemma holds for any simple path between two points on the boundary
of the polygon (not just a chord) as long as the points u and v are on the same side of
the path.

Definition 6 If the points u and v are one on each side of the chord ¢, say v in P, and
v in Py, then the chord splits each of L and R in two. Let Ly = LN P, Lg = LN P,
RL :Rﬂpl andRR:RﬂPg.




Figure 6: Right pockets in Lg.

For example, in Figure 6, the chord ¢ = (s, w) splits the left (clockwise) polygonal chain
L from % to v in two parts, from u to w and from w to v corresponding to Ly and Lg,
respectively. Similarly, the counterclockwise chain R from u to v is split into two parts
from u to s and from s to v which correspond to Ry and Rp, respectively.

Lemma 4 In the polygon formed by the chord ¢ = (s,w), Ly and Ry, there are only
right pockets on Ly and only right pockets in Ry, visible from ¢. Similarly, for the polygon
formed by ¢, Lg and Rg, there are only right pockets on Ry and left pockets on Ly visible
from c.

Proof. Assume otherwise. That is, there is, say a right pocket on Ly with an associated
pocket edge F with entrance point e (see Figure 6). In this case, the boundary points
delimiting the window edge of this pocket are both in L. Since the polygon is a street,
every point in the boundary of the pocket can see at least one point in B. Now, the two
edges (w, s) and (s, e) together form a path separating the points in the pocket from the
right polygonal chain R. Therefore, from Lemma 3 it follows that the pocket must be
entirely visible from this path. Since the pocket cannot be seen from the pocket edge
itself, the pocket must be visible from the chord ¢, which is a contradiction. The same
argument applies to Ly. For Ry and Ry, the robot moves to w and the argument above
also applies. |

A general description of the algorithm is to traverse edges as in the Restricted-Start
Free-Target Search (RSFTS) algorithm described in the previous section as long as the
pocket edges are left-right consecutive and the entire portion of the polygon to the left
side of a left pocket edge {and to the right side of a right pocket edge) can be seen from
the edge. If the portion of the polygon to the left of a left pocket edge already explored
was not seen in its entirety, we know by Lemma 3 that « and v must necessarily be on
opposite sides of this pocket edge and Lemma 4 applies. The same holds for the right
part of the polygon to the right of a pocket edge. If the pocket edges are no longer
left-right consecutive, the robot selects the shortest length minimal middle chord and
traverses it, which splits the polygon in two parts. In this case, since the chord is of type
middle, it follows that the points 4 and v must be on opposite side of the chords, and
therefore we are in the situation described in Lemma 4 and Definition 6.



In either case, we are in the situation of Lemma 4 and the robot simply searches each
side using the RSFTS algorithm. The competitive ratio corresponds then to a four ray
search, which gives a different choice of ¢ for RSFTS. More formally,

Theorem 2 There exists a 69.216-competitive strategqy that finds a target of arbitrary
position in a street polygon starting from o point 3 on the boundary.

Proof. The algorithm is a modification of RSFTS. Initially the robot executes lines 1-21
of RSFTS with the exception of line 7 which now reads:

7 while Fieps U Frign: is non-empty and the pocket edges appear in consecutive left-
right order and all the side of a side pocket edge was seen do

Line 22 onwards are replaced by

22 if 't was found then move to %;
(* Since we exited the loop without finding ¢, pockets are not in left-right order %)
23 let M be the set of minimal middle chords;
24 sort M by increasing length;
25 traverse the chord ¢ < min{AM);
26 the chord ¢ splits P in two parts. Let P, and P, be those parts
27 while target has not been found do
28  alternatingly apply one step of RSFTS on P and F;
29 endwhile
30 move to 1;

The invariant is now as follows.

Invariant: The visibility region of the path explored thus far by the robot con-
tains the visibility region of any path of length dfa* or less.

The correctness of the algorithm follows from Lemmas 2-4 and Observation 1. Lemmas
3 and 4 guarantee that either we can explore the entire polygon using RSFTS or the
polygon is split into two pieces. Lemma 2 and Observation 1 guarantee that each of the
parts can be explored using RSFTS.

As before the worst case competitive ratio occurs when the target is located at a
distance d/a* + €, and the competitive ratio is given by

» (24 1/a) ¢ 1= 2(14 (2a+1)

2
a4 a—1

+ 1

This expression is minimized when a = (7 4+ +/177}/16 which gives a competitive ratio
of (71893 + 52514/177)/2048 < 69.216 as claimed. 0

5 TLower Bounds

In Figure 7 we have a street polygon that provides a 9 lower bound on the competitive
ratio of searching in streets starting from a point s = u. This polygon can be explored,
say, by traversing the path (u,v) from which, by definition, the entire polygon is seen.
Notice that from each indentation we can see the opposite polygonal chain somewhere
in the upper part of the polygon. As we increase the height of the polygon and make
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Figure 7: Lower bound when 5 = u. Figure 8: Lower bound for arbitrary position.

the angle of the walls of each indentation go to 7/2 the polygon remains a street, yet
traversing (u, v) is no longer an efficient exploration strategy. Thus the robot is restricted
to exploring the base using a doubling strategy, which has a 9 competitive ratio (see
3, 1, 11] for a lower bound on doubling and [20, 24] for a more detailed analysis on this
general type of indented rectangular polygouns).

For the case of searching from an arbitrary position the polygon of Figure 8 is a street.
In this case the indentations along the diagonals, which seem $o be horizontal, are in fact
slanted just enough to actually intersect the vertical edges on the opposite side of the
street. For example, the extension of the horizontal walls of the indentation containing
t in the figure above intersect the left vertical line just below . As the distance from u
to v is increased, the angle of the walls of the indentations goes to zero. In this case the
robot is forced to do a simplified form of a four ray search, which can be shown to have
competitive ratio of at least a*/{a — 1) + a®. This is minimized for & = (5 ++/7)/6 with
competitive ratio of at least 11.78.

6 Conclusions

We have presented a strategy for on-line searching of a street polygon regardless of the
starting position of the robot or the location of the target. The strategy proposed has
a constant competitive ratio. This is in contrast to previous strategies for searching on
streets as well as other classes of polygons for which the choice of position of the target
and the starting position are highly restricted in order to achieve a constant competitive
ratio. We provided lower bounds for this problem.

We also presented a more efficient strategy for the special case when the robot starts
from a distinguished point on the polygon but the target is free to select its hiding
position, and gave a lower bound for this variant as well.

Acknowledgements: We wish to thank Sven Schuierer for helpful discussions on this
subject.
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