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Abstract

A new property of conceptual data models is introduced.
Realizability extends strong satisfiability as defived by
Lenzerini and Nobili, which is held by a data model when
it nmust be possible to create at least one non-empty
database in which no cardinality constraints are violated.
A constraint is realizable when at least one database can
be created in which the number of associations involving a
specific entity instance is equal to the limit imposed by the
consiraint. When all constramts in a data model are
realizable, then the entire model is said to be realizable. It
is possible for a data model to be strongly satisfiable but
not realizable, which means the lafter is a more stringent
test for model correctness. We define bounds imposed by
cardinality constraints on the relative sizes of entity sefs.
A data model is shown to be realizable if and only if the
bounds for any cycle of relationships are either both equal
to one, or the lower bound is strictly less than one while
the upper bound is strictly greater than one.

1. Introduction

The entity relationship approach {1] has influenced a
wide variety of conceptual data modeling techniques (e.g.
[4, 10]) including muost recently several object-oriented
approaches such as OMT [9] and the Unified Modeling
Language (UML) [12, 13]. A common characteristic of
such modeling techniques is the use of entities {or data
objects) as well as relationships that represent associations
between the entities. Virtually all of the most widely used
data modeling techniques use cardinality constraints to
define the nature of relationships. Figure 1 provides an
example using the UML notation. This example defines
two relationships between Employee and Project. The first
relationship indicates that each employee is assigned to
exactly one project and there may be two to three
employees assigned to each project. The second
relationship indicates that certain employees serve as

occasional resources (advisors, sources of information,
etc.} for specific projects. Figure 1 indicates that each
employee must serve as a resource for one or more
projects, while each project may optionally have up to two
resources,

The set of cardinality consfraints in a data model
restricts the database states that are permitied by the
model. For instance, any database state in which a given
employee is assigned to two projects is prohibited by
Figure 1. A database state that violates no constraints is
said to satisfy the model.

It is possible to specify cardinality constraints so they
are difficult to satisfy. For instance, assume Figure 1 is
modified so that each project can have only zero or one
resource employees. In this case the Assigned To
relationship specifies that the database must include at
least twice as many employees as projects, whereas the
Resource For relationship restricts the number of
employees in the database to be less than or equal to the
number of projects. The only database state that satisfies
this model involves zero employees and zero projects.
The modified model is satisfiable but only in a very
restricted semse.

Lenzerini and Nobili [6] argue that this concept of
satisfiability is of limited usefulness for data models. They
suggest that a data model should exhibit swrong
satisfiability, which means it is possible to create at least
one non-empty database state that satisfies the model
Figure 2 provides a sample database state for the model in
Figure 1 involving four employees and two projects. None
of the consiraints in Figure 1 are violated in Figure 2.
Therefore the data model in Figwe 1 is strongly
satisfiable.

Assigned To
2.3 1

Employee Project

Resource For
0.2 |

Figure 1: A sample conceptual data modet
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Figure 2: A database state consistent with Figure 1.

Despite the fact that Figure 1 is strongly satisfiable,
the model includes constraints that make little sense. The
Assigned To relationship specifies that the database must
include at least twice as many employees as projects,
whereas the Resource For relationship restricts the
number of employees in the database to be af most twice
the number of projects. Therefore the only database siates
that satisfy this model include exactly twice as many
employees as projects. Each project must have exactly
two employees assigned and each employee must be a
resource for exactly one project. The maximum
cardinality constraint of 3 in Figure 1 is meaningless in
the sense that it is impossible for any project to be
assigned three employvees without violating some
constraint. Similarly ne project can have more than one
resource employee nor can any erployee to be a resource
on less than two projects. A new property for data models
is required to ensure that such meaningless constraints can
be avoided.

Intuitively, a cardinality constraint can be realized if
at least one database state can be created in which the
number of associations involving at least one specific
entity instance is equal to the limit imposed by the
constraint. (A more complete definition is provided in
Section 4.) For example the constraint limiting the number
of resources per project to two is realized in Figure 2
since projects pl and p2 each have two resources. A data
model is said to be realizable if each constraint in the
model can be realized in at least one database state. Based
on the preceding discussion the model in Figure 1 is
strongly satisfiable but not realizable.

Realizability is a more stringent criterion for
“correctness” of cardinality constraints than is strong
satisfiability, Indeed realizability is the more appropriate
condition to check since it makes little sense to specify
constraints that can never be realized.

Lenzerini and Nobili [6] define a means to determine
if a model is strongly satisfiable. Thalheim {11] extends
this work by providing an alternative means for testing the
same property. Harimann [3] provides approaches for
generating database states with various properties (e.g.
minimum size) for strongly satisfiable data models.
McAllister [8] introduces the concept of realizability of a
single relationship and defines a compleie set of rules for
checking whether the constraints specified for a single
n-ary relationship are realizable.

This paper defines the means to test whether an entire
entity-relationship model is realizable. The remainder of
the paper is organized as follows. Section 2 defines the
terms and concepts required in this paper. Bounds
imposed by cardinality constraints on the relative sizes of
entity sets are defined in Section 3, setting the stage for a
discussion of realizability in Section 4. Conclusions and
opportunities for further work are presented in Section 5.

2. Entity-relationship terms and concepts

Employee in Figure 1 is an example of an entify. One
or more aftributes are defined for each entity, which
specify the types of pertinent values for each entity. For
example, Employee might have attributes such as Em-
ployee#, Employee-Name, Employee-Address, etc. Each
attribute has a domain from which values for that atéribute
are selected. For exatuple, values for Employee# may be
selected from the domain of four-digit integers. An entity
instance is a tuple consisting of a value for each attribute
of a specific entity. An instance of the Employee entity
might have values such as (1062, "John Smith", "100
Main 8t.",.... etc.).

In & conceptual model for a database, an entity
represents the need for the database to be able to store a
set of instances for that entity. For an entity «, the notation
[«] is used to represent an instance of 4, and (@) represents
a set of zero or more instances of a. The term entity set is
also used to refer to a set of entity instances. The notation
la] refers to the number of entity instances in (@).

A relationship represents the need to store
associations between entity instances. Each relationship
has two or more roles, each of which links a specific
entity to the relationship. The Assigned To relationship in
Figure 1 has two roles and is referred to as binary. The
term n-ary is used to describe any relationship with »
roles where n>2. A role name can be assigned to any role,
however role names are typically used only when a given
entity participates in multiple roles for a given
refationship, For example, the Supervises relationship in
Figure 3 has two roles, both of which are named.
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Figure 3: A relationship with two named roles

Adttributes can be defined for relationships in the same
manner as for entities. In this paper, however, relationship
attributes are not considered since their presence or
absence has no impact on realizability. In the absence of
relationship attributes, a relationship instance is a tuple of
the form (eq, 29, -.., &) where n is the number of roles
and each ¢; identifies an instance of the entity
participating in the #’th role. As an illustrative example,
Figure 2 shows a possible set of instances for each of the
two entities and two relationships defined in Figure 1.

For a relationship r, the notation [r] is used to
represent an instance of r, and (#) represents a set of zero
or more instances of r. The term relationship set is also
used to refer to a set of relationship instances. The
notation |+ refers to the number of entity instances in (7).

A cardinality constraint is used to restrict, for a given
relationship, the number of different entity instances with
which a given entity instance can be associated. For the
UML notation used in Figures 1 and 3, a cardinality
constraint for each relationship role can be specified in the
form of a range of allowable values, I the form
“minimum. maximum”. For example, the number 2
specified next to Employee for the Assigned To
relationship in Figure 1 specifies that any given instance
of Project must be associated with a minimum of 2
instances of Employee by the Assigned To relationship. In
addition, the number 3 in Figure 1 specifies that any given
instance of Project can be associated with a maximum of 3
instances of Employee by the Assigned To relationship.

The notation Cmin{r,a,b) represents a minimum
cardinality constraint, which specifies the rinimum
mmber of different [5]’s with which any given [¢] can be
associated in any (#). Similarly, Cmax(r,q,b) specifies the
maximum number of different [b]’s with which any given
[«] can be associated in any (r). Abbreviating Employee,
Project and the Assigned To relationship as E, P and AT
respectively, example constraints in Figure 1 include:
Cmin(AT,P.E) = 2, Cmax{AT,P,E} = 3, Cmin(AT,E,P} =
1 and Cmax(AT,E,P) = 1.

A Cmin constraint can be any integer zero or larger.
A Cmax constraint can be any integer one or larger, or
“#" +which represents infinity or “many”. Cmax(r,a,b) = *
indicates there is no restriction on the maximum number
of [b]’s associated with any given [¢] in (7).

Cmax(r.a,b) is violated in (#) if for any given [a] the
number of associated [b]’s I (#) is more than
Cmax(r,a,b). It foliows that no Cmax(r,a,b) = * can be
violated in any (#). Similarly, Cmin{r,a.b} is violated in (r)
if for any given [a] the number of associated [b]’s in (#) is
less than Cmin(r,a.b), which means that no Cmin(r,a,b) =
0 can be violated i any (r).

A database state for a data model is made up of a set
of instances for each of the entities and relationships in the
model, A database state that violates no constraints is said
to satisfy the data model.

A path p involving m relationships (m 2 1) is defived
as the ordered list p = (ay, 7(, Gy, 3, @34 - s Tps A1)
where each relationship r; associates the entities a; and
&t;.;. The notation p " denotes a path involving the same
entities and relationships as p, but in reverse order. A
cyele is a path where the first and last entities are the
same. In cases where the definition of a path makes the
direction of relationship traversal ambiguous,
specification of entities can be augmented with
relationship role names to remove the ambiguity. For
example, the following path specification for the model in
Figure 3 is ambiguous: (Employee, Supervises,
Employee). Two unambiguous paths are: p = (Employee
(Supervisor), Supervises, Employee(Subordinate)) and
p'l = (Employee(Subordinate), Supervises, Employee
{Supervisor)). :

For a cycle ¢ and a relationship r in ¢, c-r denotes the
path obtained by removing # from ¢.

3. Bounds on the relative sizes of entity sets

The basic issue involved with both strong
satisfiability and realizability is that cardinality constraints
can do more than resirict participation of entities in
relationships. The constraints can also place bounds on
the relative sizes of entity sets. For example, Section 1
describes how Figure 1 restricts the number of employees
to be exactly twice the number of projects, The first step
in exploring the concept of realizability is to understand in
general how a relationship can restrict the relative sizes of
two entity sets.

Consider the Assigned To relationship in Figure 1,
ignoring for the moment the Resource For relationship.
Assume we wish to create a database state with the
minimum number of employees relative to the number of
projects in the database. This is achieved by assigning the
minimum number of employees to each project and by
assigning each employee to the maximum number of
projects. In other words, the ratio of employees to projects
has a lower bound determined by Cmin{Assigned To,P,E)
and Cmax(Assigned To,E,P). This lower bound is defined
in general as follows:
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Cmin(r,a,8) _ 18l
Cmax(r,b,2)  |d|

Ib(ra,b) =

For the Assigned To relationship (abbreviated as AT) this
works out to:
Cmin(AT,P,E)

IB(AT,E) = CRNATRE) 2 B
Cmax(AT,E,P) I  |P|

There is also an upper bound on the ratio of employees to
prajects, which is defined in general as follows:

Cmax(r,a,b)

1) _
——— b s ’b —
iq] ublra.b) Cmin{r, b,a)

and for the Assigned To relationship as:

Bl ¢ wbaT,ppy = SRXATLEE) _ 3

|| Comin{AT,E,P) 1
In other words, any database state consistent with the
constraints defined for the Assigned To relationship must
include between two and three times as many employees
as projects. The converse of this statement also holds: any
database state must include between one-third and one-
half as many projects as employees. The following is
easily derived from the definitions of Ib and ub provided
above:

1

Ib(r,a,b) = W

This means that Ib(AT,E,P) and ub(AT.E,P) are %- and

% , respectively.

Since Cmin constraints can be zero and Cmax
constraints can be ¥, it is possible for a given relationship
to place no bounds on the relative size ratio of the
participating entity sets. Consider for example the
Resource For relationship (abbreviated RF) in Figure 1
(ignoring for now the Assigned to relationship). The
formulae above result in the following:

REER) = * < Bl <upmrER) = —
2 |E| 0
In other words, the Resource For relationship imposes no
upper bound on the ratio of projects per employee. The
following are defined in the context of calculating ub and
Ib, where x represenis any valid Cmin or Cmax value:

*
O o Z=» — = X
x *

il =0
0 x

Theorem 1 shows that lb and wb define precisely
when the relative sizes of the instance sets for two

participating entities allow a given relationship to be
satisfied.

Theorem 1: A binary relationship » involving two distinct
entittes g and b can be satisfied in a database state 4 with

non-empty () and (5) i#f Ib{r,a,b) = -:-é:— < ub(r,a,b).

d
Proof: [fpart — Assume a set of instances for r is
generated using Algorithm Genr.

Algorithm Genr.

Input: A definition for #, A database state 4 with non-
empty (&) and {b). Assume lq| > Cmin(r.b.e) and 5| >
Cmin(r,a,b).

Qutput: A set{r).

Method: :
1. Generate (r) so that /| = Ja| X lb] in the following
manner .

1.1 Create |a|x|b| empty []’s.

1.2 Create a pattern that includes each [5] once. E.g.
[6]; (61, (B350 [l

1.3 Repeat this entire pattern 2| tires in (7}, i.e. until
each [r] includes a [b] and each [b] appears |a|
times in (7).

1.4 Create a pattern that includes each [4] once. E.g.
[a]ls [a]2a {0]3,..., [a]|a|‘

1.5 Repeat the current pattern of «]’s L

ged((al,[ 5]}
times in (). (The gcd function returns the
greatest common divisor of two integers.)

1.6 Shift the current pattern of [«]’s by 1 position in
a cyclic fashion (e.g. [a]}, [aly, [al3...., [a]iﬂl
becomes [a],, [alss---s [a]lﬂl’ [a];.)

1.7 Repeat steps 1.5 and 1.6 until all [#]’s have an [a]
participant.

2. Retain the minimum number of [#]’s required to
satisfy Cmin(r,a,b) and Cmin(r,b,a) as follows:
2.1 n = max(jaxCmin(r,a,b), [bxCmin(r,b,a}}). (The
max function refurns the largest of two numbers.)
2.2 Retain only the first r [#]’s.

As an example of applying Genr, assume r is the
Assigned To relationship as defined in Figure 1, @ is
Employee, & is Project, [Employeej = 5 and {Project| = 2.
The result is the set of Assigned To instances in Figure 4.

_ The relationship 7 is satisfied by the resultant (r) if no
constraints defined for r are violated. The calculation of n
ensures that each [a] participates in at least Cmin(r,a,b)
[]’s and that each [5] participates in at least Cmin(r,b,a)
[r¥’s. Therefore the two Cmin constraints defined for » are
not violated.
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Figure 4: Result of Algorithm Genr for Assigned To

-|~3- gives the average number of [b] $ associated with

each [g] in (#). Genr ensures that after a given [4] is
associated with a [b], all other [a]’s are associated with
one more [b] before the given [a] is associated with
another [b]. Therefore the minimum and maximum
number of [b]’s associated with each [«] in {7} differ at

most by 1. The maximum is defined by ﬁ rounded up to
d

the nearest imteger, Cmax(r,a,b) is not violated in (r} iff

2 < Cmax(rab). If n = laxCmin(,ab) then

lai

la[xCmin(r, &, b)
|

simplifies to Cmin{r,a,b) £ Cmax(r,a,b) and is true by

definition, Otherwise (ie. if # = [b[xCmin(r,b,a)) then

|BIxCmin(r, b, a)
a]

£ Cmax(r.ab) is required, which

[

transforms to ﬁ < ubir,a,b), which is given. It follows
[41

that Cmax{r,a,b) is mnot violated in (¥). Shnilarly,
Cmax(r,b a) is shown not to be violated by showing that

| l < Cmax{r,b,a). It follows that the (#) produced by

Genr satisfies r.

Only-if part — Assume lb'(r,a,b) > F’-:-
: a

Cmin(r,a,b¥x|d]

Bl

a lower bound for the average mumber of [#]’s in which

each [b] must participate. This average can only be

achieved by violating Cmax(r,b,a). It follows by

contradiction that 7 can be satisfied only if Ib(r,a,b) < -F—’% .

4
A similar argument shows that r can be satisfied only if

L <ub(r,a,b). O
la

. This transforms to

> Cmax(r,b,a). The left hand side gives

Given that a single relationship r| can impose a
restriction on the relative sizes of (@) and (a,), and that a
second relationship r, can impose a restriction on the
relative sizes of (a;) and (a3), it makes sense that a path p

< Cmax{rab) is required. This

= (ay, 71> 83, 3, G3) can restrict the relative sizes of (a)
and (2;). In general, for a path p involving m
relationships, we define:

bis3
Ib(p.aya, )= H Ib(rpa,a:01)
. i=1

m
ub(p,al,amH) = H ub(?‘;-,al-,afﬂ)
i=1
The proof for Lemma 1 shows how these definitions are
dertved,

Lemma 1: A path p involving m relationships can be
satisfied in a database state d with non-empty (a;) and

(@) HE D@10 ) < |Z+|1| Sub(p,a),4p 1)
1

Proof: Base case—Assume m=1. By Theorem | p can be
satisfied in 4 iff Ib(p,a,ap) < || 2| <ub(p,a,a,).
q
Induction step—Assume that a subset of p defined as
g = (a, . - aj, " ajﬂ) can be satisfied in 4 iff

41l
< ub(g,a;,a;41). By Theorem 1 7;

I
Ib(g,a.a51.) <
a1|

can be satisfied in d iff 16(ry.1,¢;41,2 2| < 1a),+2| <
ub(z 14 ﬁ?) Xzl Theieﬁmost and rightmost terms
define a minimum and a maximum for |ay,| telative to
la _,_I| respectively. Replacing |a; 1 in these two terms
w1th the minimum and maximumn (respectwely) for [a;.f
relative to |a1{ {such that ¢ can be satisfied) results in;
Ib(#sps01,8140) X Ib(g.ay.4:41) X lagl = |aj+2|

ub(r}ﬂ, #1sn) X Ub(g.ay,a;1) X lay|. Therefore ¢’

(@15 715 o G ¥ Bpaps Fraps _}+2) can be satisfied in d 1ff

42
ay

by induction. O

Theorem 1 and Lemma 1 show that binary
relationships can be satisfied if the relative sizes of the
instance sets for the participating entities fall within
specific bounds. At least one cycle is necessary in a model
to prevent strong satisfiability (and also to prevent
realizability). This can be thought of in at least two
different ways. First, consider any two entities g and b ina
cycle. There are two paths from a to b in the cycle. Each

of these paths imposes bounds on : :
a2

I
lb(q’,al,aﬁz) < < ub(q’,al,aj_,_z). Lemma 1 follows

If the two sets of
example if they define
|3

nonoverlapping allowable ranges for —) then it can be

bounds conflict (for

impossible to strongly satisfy (or to reallze) the cycle.
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By the definition of Ib and ub for paths (as provided
above), the following equations are true for any two
entities ¢ and b in a cycle ¢:

Ib(c,a.a) = Ib(c,b,b)
ub(e,a,q) = uble,b,5)

Therefore for a cycle ¢ the bounds can be referred to more
simply as Ib(c) and ub{c). We define lbic) to be the same
as Ib(c,a.q) for any entity a in ¢, and ub(c) to be the same
as ub(c,a,a) for any entity « in ¢. It follows easily that:

= l =
Ib(c) = e ub(c)

be™)

As a slightly different way to think of strong
sattsfiability of cycles, consider any entity « in a cycle.
The cycle defines a (directed) path from « to a, which

imposes bounds on the range of % allowed by the path.
a
This leads to the following lemma:

Lemma 2: A cycle ¢ is strongly satisfiable iff Ib(c) < 1 <
ub{c).

Proof: By Lemma 1 a cycle ¢ involving entity @ is

strongly satisfiable iff Ib(c,a,a) < % £ ub(c,a,4). Since
4
:aE =1, Lemma 2 follows easily. B8
d|

If all cycles in a given data model are strongly
satisfiable, then the model is strongly satisfiable. This
restates the result of Lenzerini and Nobili [6] in terms of
our definitions of Ib and ub.

4. Testing for realizability

We define the terms “realized” and “realizable™ as
follows. An integer cardinality constraint Cmin{r,a,b) or
Cmax(r,a,b) is realized in (¥) iff for at least one [a] the
number of different [b]’s associated with this [a] in () is
equal to the constraint, An integer cardinality constraint is
realizable iff it is possible to create at least one (r) in
which the constraint is realized without violating any
constraints in the data model. Cmax(r,ab) = * is
realizable iff for at least one specific [¢], regardless of the
mimber of [5]’s associated with this {4] in {#), the number
of [6]’s associated with this [¢] in (#) can be increased
without violating any constraints in the data model. A
relationship is realizable iff all constraints specified for
the relationship are realizable. A data model is realizable
iff all relationships in the model are realizable.

Realizability is similar to strong satisfiability in that
both depend on the nature of the cycles in a data model.

Realizability involves a more stringent requirement than
strong satisfiability, however, as defined by Theorem 2.

Theorem 2: A data model is realizable iff for any cycle ¢
in the model: 1b(c) = 1 = ub(e) or Ib{c) < 1 < ub(c).

Proof: [Fpart — The if-part addresses the following
cases:

{I) A relationship not in any cycle;

(2) A cycle ¢ for which lb{c) = 1 = ub(c);

(3) A cycle ¢ for which 1b(c) < 1 < ub(c).

The remainder of the if-part is divided into portions
numbered to be consistent with the above List.

(1) Assume relationship » involving entities ¢ and b is
not part of any cycle r is the only relationship that places

a restriction on — . Cmax(r,q,b) and Cmin(r,b,q) are

Ial
realized simultaneonsly by setfing % “to ub(r,a,b) and
14

using Genr to generate (). The proof for Theorem 1
shows that no constraints are violated in this (7). The other
two constraints for r are realized in the same manner by
reversing a and b. Thus any # not in a cycle is realizable.

(2) Assume a cycle ¢ for which Ib{c) = 1 = ub(c).
From the definition of 1b(¢) and ub(c) we know:

Fec HEeC

Now assume for some 7; € c that Ib(rpa,a;,) <
ub(r,a;,a;,1). Then for 2.1 above to be true, it must also
be .true _thaf for sqme rEC lb(r},aj,fxﬁl) p ub(r},aj,ajﬂ),
which is impossible by the definition of lb and ub.
Therefore for all 7; € ¢, b(ruana) = wb(r,a.a:.),
which means that any database state constructed for ¢ that
satisifies the data model must realize all cardinality
constraints defined for the relationships in ¢. By Lemmma 2
c is strongly satisfiable, so it is possible to construct such
a database instance. It follows that any cycle ¢ for which
ib(c) = 1 = ub{c) is realizable.

(3) Assume a cycle ¢ for which lb(c) < 1 < ub{c). For
every » in ¢, either Ib(r,a,b) = ub(r,a,b) or Ib(r,ab) <
ub(r,a,b). If Ib(r.a,b) = ub(r,a,b) then any non-empty (»)
must realize all four constraints defined for ». By Lemma
2 we know ¢ is strongly satisfiable, so a non-empty (#) can
be created. Therefore r is realizable,

Assume Ib{r,a,b) < ub(r,ab). Create non-empty (@)
and () so that both of the following are true:

Ib(r,a.b) < ﬁ < ub(r,a,b)
a

b{c-rab) £ % <ub(c-r.a.b)
a
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The latter condition enables c-r to be strongly satisfied. It
is possible for these conditions to be simultaneocusly true
exactly when the ranges defined by the conditions overlap.
The two ranges overlap iff Ib(r,a,b) < ublc-r,a,b) and
Ib(c-7,a,b) < ub(r,a,b). Since Ib{c) < 1:

(ra,b) x Ib{c-r.b,a) < 1

Ib(r,a,b) <1
ub{c—r,a,b)
Ib(r,a.b) < ublc-r,ab)

Similarly, 1b(c~r,a,b) < ub(ra,b) follows from 1 < ub{c).

Therefore it is possible to create (a) and (b) so that the .

conditions defined above are true.

Use Algorithm Gemr2 to create (r) in which
Cmin(r,a,b) is realized using {a) and (b) as created above,
Then use Algorithm Genr2 again to create a different (r)
in which Cmax(r,q,b) is realized using the same (a) and
(b). Cmin(r,b,q) and Cmin(r,b,a) can be realized in the
same way by replacing ¢ with ¢! and swapping a and 5.

Algorithm Genr?2.
Input: A definition for . A database d with non-empty (@)
and (b). A constraint to be realized—either Cmin(r,a,b) or
Cmax(r,a,b).
Output: A set () in which the given constraint is realized.
Method:
1. If the given constraint is Cmin(r.a,b) then:
m = Cmin(r,a,b).
Else:
If Cmax(r,a,b) = * then:
m = any integer > Cmin(r,a,b).
Else:
m = Cmax{r,a,b).
2. Generate (r) so that |f] = |¢] % |b| in the following
manner:
2.1 Create |a| x {b] empty [#]’s. _
2.2 Create a pattern that includes each [2] once. E.g.
[631, 181, (B30 (Bl
2.3 Repeat this entire pattern |a| times in (¢}, i.e. until
each [r] includes a [#] and each [5] appears |a]
times in (#).
2.4 Insert [a]) in each of the first m [r]’s.
2.5 Create a pattern that includes each {¢] once, with
the exception that [a}; is not included. E.g. [a],
[a]3,..., [a][a]. |b|
X fia]'s —————
2.6 Repeat the current pattern of ja] 2ed(bl.1a=D)
times in ().
2.7 Shift the current pattern of [2]’s by 1 position in
a gyclic fashion (e.g. [al. [@)3ses [a]|a| becomes
{0]3, [a]4:"-> [a]|a|’ [a]z.)

2.8 Repeat steps 2.6 and 2.7 until all [#]’s have an [«]
participant,

3. Retain the minimum number of-{r}’s required to
satisfy Cmin(r,a,b) and Cmin(r,b,a) as follows:
3.1 n=max(m + (|a-1) x Cmin(r,a,b),
[bIXCmin(r,b,a)).
3.2 Retain only the first 7 []’s.

4. If any consiraints defined for r are violated in (r)
then:
Double |f and b|.
Repeat steps 2 to 4.

By the definition of realizability, the relationship # is
shown to be realizable iff Cmin(r,a,5) and Cmax(r.a,b)
are each realized in their respective (#) and no constraints
are violated in either (). The proof of this is the same
regardless of whether Cmin(r,a,b) or Cmax(r,a,b) is the
constraint to be realized. In Genr2, steps | and 2.4
combine to ensure that the specified constrain is realized
in the resultant (7). It remains to be shown that no
constraints defined for r are violated in (r).

The calculation of 7 in step 3.1 ensures that each [4];
(#>1) participates in at least Cmin(r,a,b} [r}’s and that
each [b] participates in at least Cmin(r.,b,a) [¢]'s. The
calculaiion of m in step 1 ensures that [a], participates in
at least Cmin(r,a,b) [r]’s. Therefore the two Cmin
constraints defined for » are not violated in (#).

The calculation of m ensures that Cmax(r,a,b) is not
violated for [a];.

If n = m+{|a|- 1)xCmin(r,e.b) then the mimber of [5]’s
associated with each of {a], to '[a]la] in (7} is Cmin{r,a,b),
so Cmax(r,a,b) is not violated. To aveid violating
Cmax{r,b,q) the following must be true:

m+{|a]-1)xCmin(r,a,b) < |bXCmax(r,b,a)

which can be transforined as follows:

m
—— {4l Dxlb(rab) < b
S (lal-DxIb(r,a,b} = |b|
1ok CmaxTr b,a)
Ib(r,a,b) < 2
a1
Step 4 in Genr2 increases |¢| and |b| so that % remains

constant. This can be represented in the above formula by
multiplying each of |a| and |b} by a variable % (which can
increase in value) as follows:

[N a—
Cmax(r,b,a)
kx|al-1

Ib(r,a,b) <
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The right hand term approaches L} as k — oo. Since

|4l
Ib(r,a,b) < ;—b:, then for some value of k& the above
a

condition becomes true. Therefore Cmax{r,b,a) is not
violated in (r).

If n = {BxCmin(rb,a) then the number of [4]’s
associated with each [p] in (#) is Cmin(r,b,a), so
Cmax(r,b,a) is not violated. To avoid violating
Cmax(r,a,b) the following must be frue:

1B XCmin(r,b,a) < m+(|a|—i)XCmax(r,a,b)
which can be transformed to:

bl
Cmin(r,b,a)

%< ub{r,a,b)
|a-1

Introducing a variable & (as above) results in:

Je| |- =
Cmin(r,b,a)

kxlal-1

< ub{r,a,b)

H as k —> <o, Since lﬂ <
|a| |al

ub(r,a.b), then for some value of % the above condition
becomes true. Therefore Cmax(r,a,b) is not violated in ().
It follows that any cycle ¢ for which Ib{c)} < 1 < ub{c) is
realizable.

The left hand term approaches

Only-if pari— By Lemma 2, any cycle ¢ for which Ib(c) >
1 or ub(c) < 1 is not strongly satisfiable and is therefore
not realizable.

The only remaining case is a cycle ¢ where Ib(c) = 1
< ub{c). Note that Ib(c) < 1 =ub(c) is the same case and is
equivalent to Ib{(c™) =1 <ub(c™).

Since 1b(c) < ub{c) there must be at least one » in ¢
for which Ib(r.ab) < ub(reb). Assume r is such a
relationship. Since Ib(c) = 1, by the definition of lb(c) we
know the following: '

Ib(r,a,6) % lbl(c-rb,a) =1

1
Ib asb=—'"'__= b ',,b
(r,a,b) berba) ub(c-r,a,b)
This means the only value for% that permits both » and
a

¢+ to be strongly satisfied is Ib(r,a,b). Assume an (7) is

created and % = Ib(r,a,b). Every [¢] must be in (7)
&

exactly Cmin(r,a,b) times and every [b} must be in (#)

exactly Cmax(r,b,a) times. Since Ib(r,a,b) < ub(r,a,b) then

one or both of the following must be true:

Cmin{r,a,b) < Cmax(r,a,b)

Cmin(r,b,a) < Cmax(r,b,a)

Therefore it is impossible to realize at least one of
Cmin(r,b,a) and Cmax(r,a,b). It follows that any cycle ¢
for which 1b(c) = 1 < ub(c) is not realizable, 0

Theorem 2 makes it possible to check a data model
for unrealizable cardinality constraints by searching for
cycles that do not meet the criteria defined by the
Theorem, This type of searching can be performed in
polynomial time. For example, the Floyd-Warshall
algorithm or Dijkstra’s algorithm determine the shortest
path between two nodes in a graph and can be modified to
identify unrealizable cycles. These algorithms can be
found in any standard algorithms text, such as [2].

The concepts in this paper are defined in terms of
binary relationships., These concepts can easily be
extended to handle generalization (is-a) relationships [12,
13] and p-ary relationships. An is-a relationship can be
treated as a binary relationship with implied cardinality
constraints. The standard semantics of “g is-a 5™ implies
that Cmin(r,a,b) = Cmax(r,a,b) = | and Cmax{r.b,a) = ¥,
Cmin(r,b,a) can be either 0 or 1 depending on whether [5]
can exist independently of an associated [a].

When two of the roles defined for an n-ary
relationship form part of a cycle, then it is necessary to
understand the cardinality constraints that affect only
those two roles. Several authors describe how such binary
constraints form part of the definition of n-ary
relationships [5, 7, 8]. McAllister proves that if the
constraints defined for a given n-ary relationship conform
to a specific set of rules, then all of the constraints for that
relationship are realizable [8]. _

Further details concerning how to check for
realizability of data models that include generalization and
n-ary relationships are omitted due to space constraints,

5. Conclusions

Data models with unrealizable cycles should be
avoided since they define system requirements that are
impossible to achieve. The approach defined in this paper
can be applied manually to ensure that a given model is
realizable. The primary application, however, is likely to
be the inclusion of this approach in the automated
conmsistency checking capability of computer-aided
software engineering (CASE) tools for systems analysis
and design, as well as database design tools,
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