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Abstract

We combine techniques originally developed for refistational first-order theo-
rem proving within the clause tree framework with techuiques for minimal model
computation developed within the hyper tableau framework. This combination
generalizes well-known tableaux technigues like complement splitting and folding-
up/down. We argue that this combination allows for efficiency improvements over
previous, related methods. It is motivated by application to diagnosis tasks; in
particular the probiem of avoiding redundancies in the diagnoses of electrical cir-
cuits with reconvergent fanouts is addressed by the new technique. In the paper we
develop as our main contribution in 2 more general way a sound and complete cal-
culus for propositional circumscriptive reasoning in the presence of minized and
varying predicates.

1 Introduction

Logical reasoning systems solve two problems: (1) given a formula, find a model (or sit-
uation in which the formula is true) or (2) determine that no model exists. When solving
the first problem, finding models, it is important to find a minimal model, or situation
that makes no unnecessary assumptions. These models can be applied to problems in
programming language semantics, knowledge representation and diagnosis. The second
problem is equivalent to automated theorem proving, where one refutes the complement
of theorem to be proved. In this paper we concentrate on the first problem.

Recently clause trees [Horton and Spencer, 1997a], a data structure and calculus
for automated theoremn proving, introduced a general merge operation to eliminate open
goals in the tree, based on so-called merge paths (cf. Section 1.1). In essence the clause
tree allows one to build just one tree, but it implicitly represents a (usually large) number
of different binary resolution proofs. Merge paths are related to the folding-up and
folding-down inference rules developed within model elimination {Letz ef al., 1994]. In
- effect, merge paths realize their combination. This combination is not trivial, as care
must be taken not to lose soundness.
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Tableau calculi of the “hyper” type for minimal model reasoning were proposed in
[Bry and Yahya, 1996; Niemeld, 1996a]. The most general variant is [Niemeld, 1996b]
which computes circumscription in the presence of minimized, fixed and varying pred-
icates targetting at first-order logic.

The merge path technique suggested in the present paper is intended as an addi-
tional inference rule to avoid certain redundancies in this type of calculi. We use our
own framework of hyper tableau for this, which began with {Baumgartner e al., 1996].
A more recent first-order version is described in [Baumgartner, 1998]. Concerning min-
imal model computation, ground versions of the hyper tableau calculus were used in
[Baumgartner et al., 1997a;, Baumgariner ef al., 1997b] for diagnosis applications, and
in [Aravindan and Baumgartner, 19971 for view updates in deductive databases.

It is common to all these model computation calculi that they use atomic cuts (cf.
Lemma 5.1 in Section 5) explicitly or — slightly weaker! — implicitly built-in into in-
ference rules to speed up derivations. These usages closely correspond to a special case

" of merge paths called right hooks, which is also known as folding-down in [Letz ez

al., 1994] or complement splitting in the Satchmo family of provers, which traces back
to [Manthey and Bry, 1988]. Essentially, complement splitting replaces a disjunction
AV Bby (4 A-B)VB.

In this paper we advocate to use more general merge paths of [Horton and Spencer,
1997a] for model computation calculi. This allows branches to close earlier than it
would be possible without merge paths or when using merge paths to simulate known
instances such as folding-down. One generalization is the case of leff hooks. They are
symmetrical to right hooks. Expressed from the viewpoint of complement splitting,
the advantage is that the splitting of literals can be deferred. In the example, it might
become only clear later in the derivation that splitting towards 4 V (B A —4) is more
fruitful. This is accomplished by the device of left/right hooks.

Besides hooks there is another kind called deep merge paths which correspond to-
folding-up. They have to be applied with care, as they can introduce some computational
overhead. This holds in particular when computing models is demanded (as opposed to
refutational theorem proving). The paper [Horton and Spencer, 1997a] is devoted to
refutational theorem proving, and the results from there do not directly carry over to
our task of computing minimal models (nethertheless, many general results about cyclic.
dependencies of paths in {Horton and Spencer, 1997a] can readily be taken for our case).
The same can be said about the folding-up/down inference rules of [Letz ef al., 1994]
which were (a) proposed for refutational theorem proving and (b) are not used together
(in order to avoid the check for cyclic dependencies).

Therefore, we give conditions such that the central pmpertles of minimal model
soundness and minimal model completeness hold. More precisely, as our main result
we develop such a calculus for the more general case of circumscriptive reasoning (Sec-
tion 6).

The minimal model completeness proof is given by a simulation of merge paths by

IThis is slightly weaker, because the presence of negative literals as introduced by the cut rule, as
in [Niemeld, 1996b], can be used to trigger the derivation of new negative unit clauses, which cause no
branching in the search space (“affirmative negative fule” in the Davis-Putnam procedure.)
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atomic cuts (cf. Lemma 5.1 in Section 5). Viewed from. this point, our approach can
thus be seen as one more and generalized approach for a controlled integration of the
cut rule for the purpose of minimal model computation.

The rest of this paper is structured as follows: first we briefly give the tdea of merge
paths as defined in [Horton and Spencer, 1997a]. This presentation should be sufficient
to explain the subsequent motivation of the new calculus from the viewpoint of a certain
problem encountered in diagnosis tasks. In Section 2 we bring in merge paths into trees
and define an ordering on merge paths. It is employed in Section 3 in a first version of
the new calculus. In Section 4 the problem of possible nontermination is explained, and
as a solution a sufficient termination condition is proposed. With this prerequisites, we
can give soundness and a first minimal model completeness result in Section 5. After
that, the calculus is be generalized in Section 6 fo a circumscription variant. Further-
more, additional conditions are defined so that minimal model soundness holds as well.
Finally, we conclude in Section 7.

Question: How costly is it to check for legality? 1 guess the cost of checking that
P U{p} is legal provided that P is legal is linear in the number of nodes.

1.1 Clause Trees

Merge paths are introduced and extensively studied in [Horton and Spencer, 1997a] in
the context of clause trees. Clause trees are a data structure that represent equivalence
classes of resolution derivations.

Merge paths serve as unified inference rule and generalize the folding up/folding
down technique of [Letz ef al., 1994]. Due to space reasons we only try to explain
clause trees and merge paths using a simple example.

Figure 3 depicts a clause sef together with a clause tree proof. Clause trees consist
of clause nodes and atom nodes. Clause nodes are indicated by a o. Every clause node
N corresponds to some input clause A(N) = L; V ... V L, as can be seen from the »
emerging edges; these edges are labeled by the signs of the L;’s, and the atom parts of
the Z;’s can be found in the adjacent atom nodes. Clause trees are built in such a way that
from every atom node exactly two edges with opposite sign emerge. This corresponds
to a binary resolution inference. A proof is a clause tree where every leaf is an atom
node.

Clause tree;. o0— C +C_ A N B _C+ C

Clause set: «~C C+ 4 AB C+ B

Figure 1: An example for a clause tree with merge path. It corresponds to the tree in Figure 3,
except that a different input clause set is used.

Now, in addition, merge paths can be drawn between equally Iabeled atom nodes.
In Figure 3 there is a merge path from the right C-node (called the tail of the merge
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path), to the left C-node (called the Aead of the merge path). The idea is “in order to
find a proof at the tail of a merge path, look it up (copy it} from the head of the merge
path”. Thus, tail nodes are considered as proven as well and need no further extension.
Head nodes can be part of another merge path. In this case the “lookup” of proofs is
done recursively. In order to terminate this, cyclic dependencies must be excluded. The
absence of cycles in a set of merge paths is referred to by the term “legal”. Many of
the results in [Horton and Spencer, 1997a] concerning legality and relation notions are
derived as general properties of paths in trees. They thus can be readily applied to our
case of hyper tableaux as well. '

1.2 Motivation: A Diagnosis Application

We consider consistency-based diagnosis according to Reiter [Reiter, 1987]. In this
scenario, a model of a device under consideration is constructed and is used to predict
its normal behavior. By comparing this prediction with the actual behavior it is possible
to derive a diagnosis. More precisely, a diagnosis A is a subset of the components of the
device, such that the observed behavior is consistent with the assumption that exactly the
components in A are behaving abnormally. Usually, one is interested in subset-minimal
diagnoses. Also, the cardinality of A is usually restricted to small values (even |A| =1
is interesting).

Of course, all this can be formalized properly within first-order or even propositional
logic (see [Reiter, 1987]), and computing diagnoses becomes a circumscription task. In
[Baumgartner ef al., 1997b] it was shown that a “standard” hyper tableau based theorem
prover is competitive to the DRUM-2 dedicated diagnosis engine [Nejdl and Frohlich,
1956].

Figure 2 depicts a hypothetical diagnosis scenario of an electrical circuit. The no-
tation [0] in the left picture means that at this point the circuit is logical zero. The {0]’s
at the bottom refer to input values of the actually observed behavior, but it is also con-
ceivable that these are passed in from other parts of the circuit below them. The “Huge”
box is meant to stand for a large circuit. The lightning at the output indicates that the
predicted output is different from the actual output. Among all possible diagnoses we
concentrate on A; = {invl} and Ay = {inv2}. Notice that with declaring these as “ab-
normal”, it is consistent to have [0] at the output of the and-gate, and we suppose that
this is essential to render the whole system consistent then.

Now, the crucial observation is that the computation of Ay and A; show consider-
able redundancies. The hyper tableau based diagnosis approach of [Baumgartner ef al.,
1997b] would result in the tableau in the middle of Figure 22, Diagnoses are read off
from open branches by collecting the ab-literals found there. The triangles stand for
sub-tableaux containing diagnoses of the “Huge” part. There are two open branches
containing Ay and A; respectively.

Notice that the “Huge” part has to be diagnosed twice although for its diagnosis

2To be precise, this is not quite true, as the diagnosis approach in [Baumgariner et al., 1997b] as well as
in [Nejdl and Froblich, 1996] is semantically guided and would attempt a goal-directed diagnosis starting
from the output of the circuit. However, the symmetrical problem would occur there.
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Circuit Hypertableaux ... with merge paths
Huge ab(inv1) @(fmz) ab(im) ab(inv2)

(9]

/e Y\ o o “for “for"
X
A & Huge Huge

| I ' Ay Ay K .
[ ] ab(invl) ab(im2)
A Ay

Figure 2: A diagnosis scenario where merge paths are useful. A; = {invl} and Ay = {inv2} are
two diagnoses.

exactly the same situation applies, namely [0] at its input. This is reflected by the nodes
“[0]”. Clearly, for the diagnosis of “Huge” it is irrelevant what caused the *“[0]”-situation.
The generalized underlying problem is well-known in the diagnosis community and is
referred to as “reconvergent fanouts”.

So, the symmetry hidden in this problem was not exploited. In fact, the merge path
technique just realizes this. It is indicated in the right part of Figure 2: after the diagnosis
A, is computed in the left branch, and the computation reaches the “[0]” node in the right
subtree, a merge path is drawn as indicated, and the branch with the right “[0]” node is
closed. The price to be paid is that A; as computed so far is invalid now. Technically,
the ab(invl) literal can be thought of as being removed from the branch (it becomes
“invisible” in our terminology). Hence, the computation starts again as indicated below
the triangle. Eventually, both A; and Az can be found there.

Why is it attractive to use such a “non-monotonic” strategy? The answer is that
it is little effort to recompute the initial segment of the diagnosis and better to save
recomputing the “huge” part. We do not suggest to use the merge paths in all possible
sitzations. In order to be flexible and allow guidance by heuristics, merge paths are thus
always optional in the calculi defined below.

1.3 Preliminaries

We assume that the reader is familiar with the basic concepts of first-order logic. Through-
out this paper, we are concerned with propositional logic®. A clause is an expression of
the form A « B, where A = (4y,...,4,) and B = (B,...,B,) are finite sequences of
atoms (m, n > 0); A is called the Aead, and B is called the body of the clause. Whenever

3To be precise, we consider variable-free (ground) first-order clausal logic. Furthermore, only finite
ground clause sets are considered.
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convenient, a clause is also identified with the disjunction A, V -+ VA, V B V e
=B, of literals.

Quite often, the ordering of atoms does not play a role, and we identify A and B
with the sets {4],...,4,} and {By,...,B,}, respectively. Thus, set-theoretic operations
{such as “C”, “M” etc.) can be applied meaningfully,

By L we denote the complement of a literal L. Two literals L and X are complemen-
tary if L =K.

In the sequel, the letters X and L always denote literals, 4 and B always denote
atoms, C and D atways denote clauses, § always denotes a finite ground clause set, and
X denotes its signature, i.e. = J{AUB | A « B € 8}.

As usual, we represent a S-interpretation J by the set of #ue atoms, i.e. J(4) = true
iff 4 € 7. Define T = A « B iff B C Jimplies ANT# 0. Notice that this is consistent
with other usual definitions when clauses are treated as disjunctions of literals. Usual
model-theoretical notions of “satisfiablity”, “validity” etc. of clauses and clause sets are
applied without defining them explicitly here.

2 Literal Trees and Merge Paths

As a new confribution of this paper, we use the “path” device of the previous section
and bring it to hyper tableaux in Section 3. Before doing so we need some notions and
preliminary definitions which are introduced in this section.

We consider finite ordered trees T where the nodes, except the root node, are la-
beled with literals. Let A be the labeling function. A branch (of T) is a sequence
b= (Np,Nt,...,N,) of nodes of T such that Ny is the root, ; is an immediate successor
node of N;—1 (for 1 < i< n) and N, is a leaf node. The fact that b is a branch of 7 is
also written as b € T'.

Any subsequence b = (N;,...,N;) with 0 < i < j < n is called a partial branch of
b; if i = 0 then this subsequence is called rooted. Define last(b'} = N;. In the sequel the
letter b always denotes a branch or a partial branch,

The expression (b1,b;) denotes the concatenation of partial branches &; and by;
similarly, the expression {b,N) denotes (N;,...,N;,N), where b is the partial branch
(M:.-HaNj)°

For convenience we write “the node L”, where L is a literal, instead of the more
lengthy “the node N labeled with L”, where N is some node given by the contex. In
the same spirit, we write (L,...,L,) and mean the partial branch (N,...,Ny), or even
(No, N1, .., Nu) in case Ny is the root and &; is an immediate successor node of the root,
where N; is labelled with L; (for 1 <i < n). Further, (b,L) means (b,N), where N is
some node labeled with L and b is a partial branch.

In order to remember the fact that a branch contains a contradiction, we label
branches as either open ot closed. A tableau is closed if each of its branches is closed,
otherwise it is open. This notion is also applied to subtrees.
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Definition 2.1 (Ancestor Path, Merge Path)
Let T be a tree and P be a set of merge paths. Suppose that T contains a rooted parUal
branch b of the form & = (N, N1, ..., Ny, ..., Nyy) with N being the root. Any sequence

ancp(b,N;) = (Np,Np—1,...,N;) , wheren > i >0

is called an ancestor path (of ). The node N, is called the fail and the node A is
called the %ead of this ancestor path. Now, if it additionally holds that A(N;) = 4 and
A(N,) = —4 (for some atom A) then ancp(b, N;) is called an ancestor merge path (of b}.

Suppose that 7 contains two different rooted partial branches of the form 57 =
(No, N1, ., Niy Niy1,- .. Ny) and 87 = (No, Ni,..., Ny M1, .. M) with Np being the
root and m,n > i > 0 and M;;q # Ny1) and such that A(N,) = A(M,,) = 4 for some atom
A. Define

T _Nm *Nx+l
pH M+1: oMy
p=(t 0" .

Here, p is understood as a concatenation of p” and p/. We assume that p can always
be decomposed into its constituents p” and p”; p is called a non-ancestor merge path
of T from BT 1o b with tail N, and head M,,. 1t is also denoted by mergep(bT ,b)A.
The node A; is called the surn point of p.

By a merge path we mean a non-ancestor merge path or an ancestor metge path. For
any merge path or ancestor path (Ny,...,N,), every node Ny, ..., N, is called an inner
node.

The lefters p and g are used in the sequel to denote ancestor paths or merge paths.
(]

Some special cases of non-ancestor merge paths: the case m = n =i+ 1 is called fac-
toring, the case m = i+ 1 is called a hook, and the case m > i+ 1 is called a deep merge
path.

Below we take advantage of merge paths in inference rules to close branches. Then,
hooks, when applied in a special way can be used to simulate folding down and com-
plement splitting, and deep merge paths, also when applied in a special way, can be
used to simulate folding up. Usually, only either folding down/complement splitting or
folding up is applied. The reason is that an unrestricted application of these inference
rules vields an unsound calculus. In order to arrive at a sound calculus, one has to avoid
certain circular dependencies. The following definition is intended to make this more
precise.

Definition 2.2 (Ordering on paths [Horton and Spencer, 1997al)
Let p = (Ny,...,Ny) and g = (Mj,..., M;,) be paths. Define g precedes p, as

g=<pitMy, € {No,...,Nom1} .

Following [Horton and Spencer, 1997a] we say that a finite set of paths P is legal iff the
< relation on P can be extended to a partial order < on P. The term “illegal” means
“not legal”. _ |

4Due to the requirement Mj, | # Nip1 it is also unigue, for given b7 and b7
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Notice that the —< relation is irreflexive but in general not transitive.

Equivalently to the previous definition, one could also define a set of paths to be
illegal if it contains a cycle, i.e. if there are paths py,...,p, € P such that p; < p2 <
vv- =< pu =< p1, forsome n > 1.

Example 2.3 (Ordexing) Figure 3 contains examples of some trees equipped with merge
paths. The underlying clause sets can be left implicit. Merge paths are indicated using
arrow notation. For instance, in the right tree, the arrow from the leaf node —4 to 4
indicates an (the) ancestor merge path p| = (4,C,—A4) of the branch {4,C, ~4) with tail
—4 and head 4. In the same tree, the arrow from the rightmost node C to the other node
C indicates a non-ancestor merge path p» = mergep({(B,C), (4,C)) = (C,B,4,C) with
tail C (the right node) and head C (the other node C) and the root as turn point. In terms
of Definition 2.1 we have p” = (C,B) and p¥ = (4,C). The path p, is an example of
a deep merge path. The merge path set {py,p2} is not legal because both p; < p» and
P2 =< pi and hence < cannot be extended to a partial order.

The left tree in Figure 3 contains two non-ancestor merge paths and both are “hooks”.
The left one with head B is an example of a “right book” and the-other one is a “left
hook” in the terminology of [Horton and Spencer, 1997a].

The left and right cases are the simplest cases for illegality, as in both cases only two
merge paths are involved. These are illegal, because the heads of the merge paths are
mutually contained as inner nodes. Of course, the situation can be more complicated by
producing such a cycle with more than two merge paths.

The reader might wish to return to this example after having read the definition of
the hyper tableau calculus with merge paths (Def. 3.1). O

Illegal Legal Illegal

N NN

4 B A B 4 m B
B A C C C C
X x T X /\\ X
~C -A ~C
)4 X x

Figure 3: Examples for legal and illegal merge paths.

The new calculus to be presented below does not only construct a tableaux 7' as the
derivation proceeds, but also a set of merge paths P. When interested in refutational
theorem proving only, one would only have to be careful not to construct illegal path
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sets. However, we are interested in a more general minimal model completeness resui.
In order to achieve this, we have to define how interpretations are extracted from open
branches.

Definition 2.4 (Visibility, Branch Semantics)

Let b = (Np, MV ..., N,) be a rooted partial branch in a tree 7 (not necessarily a hyper
tableau) with n > 0, and let P be a set of legal merge paths. The node N; (where 0 <
i < n) which is not the tail of a merge path in P is said to be visible from N, in P iff
P U {ancp(b,N;)} is legal. Define

[(No, M, ., No)lp = {AI:) | Ny is visible from N, wrt. P, for 0 < i < n} .
O

For instance, in the middle tableau in Figure 3 we have [(4,C,~C)]p = {~C,C} and
1(8,C)]p = {B,C}, where P consists of the two merge paths drwn there. Notice that
the case n = 0 is not excluded, and it holds that [(No)] = 0. Notice further that if [5]5
does not contain negative literals then [#] is an interpretation. This holds in particular
for the “open” branches computed by our calculi below.

Lemma 2.5 (Basic properties)
For any tree T with open branch b and legal path set P the following holds:

(i) For every ancestor path p such that P {p} is legal, [B] 3¢, = [blp-
(i) For every set of ancestor paths P’ such that PUY' is legal it holds [b] p,q» = [b]p-

Proof. (i). By definition 4 € [5] iff some node N4 of & labeled with 4 is visible from
the leaf last(b) of b in P. This is the same as saying that PU{p'} is legal, where p/
is the ancestor path with tail Jast(b) and head N4. Thus, in order to prove (i) we must
show PU {p,p'} is legal, provided that both PU {p} and PU {p'} are legal.

We create a total order on the nodes of T' such that for each ancestor path g such that
PU{q} is legal, all intemal nodes on ¢ precede the bead of g.

[ Added this note: ' |

This order is extended to an order on the paths by just comparing the heads of the paths.
Since this order extends the precedes-relation, and

[ End note. |

we derived that both PU {p} and PU {p'} are legal, according to this order PU {p, p'}
is legal as well.

| Todo: make the recursion more explicit |

Insert into the total order the atom nodes in reverse order of depth (defined as the
distance from the root) except for a head A of any merge path from P. Consider the set
of paths for which H is the head and the set of internal atom nodes on these paths. Insert
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H into the total order as soon as all of these internal nodes are insetted. Observe that for
every legal ancestor path its head node is later in the partial order than all of its internal
nodes,

(ii). Apply induction on the size of P, thereby using (i) in the induction step and the
trivial fact that P U P’ is legal implies that any subset of PU P’ is legal as well. [ |

3 Hyper Tableaux with Merge Paths

Before defining the new calculus we take one more preliminary step: suppose that
B ¢ [b], for given open branch b and legal path set P. In the trees constructed in
Definition 3.1, there is a unigue node Ng in b with M{(Np) = B such that N is visible
from the leaf of b (this is proven in Lemma 3.3-(ii} below). Consequently, the ancestor
merge path ancp((b,—B),Np) is uniquely defined, and it is denoted by ancp({b,~B))
alone.

Definition 3.1 (Hyper tableaux with merge paths)
Let T heatree, bbeabranchin 7 and let L; V --- V L, be a disjunction of literals.
We say that T’ is an extension of T at b with Ly V --- V L, iff T' is obtained from
T by attaching to the leaf of b # new successor nodes Ny, ..., N, that are labeled with
the literals Li,...,L, in this order. For N; (1 <i < n) the clause of N; is defined as
clause(N;y =LV -+ V L.

A selection function is a total function f which maps an open tree to one of its open
branches. If £(T) = b we also say that b is selected in T by f.

Hyper tableaux T for 8 with merge path set P — or (T, P) for short — are defined
inductively as follows.

Initialization step: (€,®) is a hyper tableau for 8, where ¢ is a tree consisting of a root
node only, Its single branch is marked as “open”.

Hyper extension step with C: 1f

(i) (T,P) is an open hyper tableau for 8 with selected branch b, and

(ii) C=41,...,4m + Bi,...,By is a clause from § (for some Ay,...,4, and
Bi,...,B, and m,n > 0}, and

(]11) {Bls res :HBPI} - I[b]]fPa and
(iv) {41,...,4n} N [blp =0 (regularity),
then (77, %) is a hyper tableau for 8, where

(i) T'is an extension of T atbwith 4, V --- VA, V -B V --- V =By, and
(ii) every branch (b,—B1)...,(b,~B,) of T’ is labeled as closed, and

(i} every branch (b,4,)}...,(b,4y) of T” is labeled as open, and

(iv) P’ = PU{ancp((b,—B1)),...,ancp({b,—By))}.
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If conditions (1) — (iv) hold, we say that an “extension step with clause A + Bis
applicable to 5”.

Merge path step with p: If

(i) (7,P) is an open hyper tableau for $ with selected branch b, and

(i) p = mergep(b,b) is a non-ancestor merge path from b, for some rooted
partial branch 7 of T, and

(iii) Zast{b™) is not the tail of a merge path in P, and
(iv) PU{p} is legal,

then (77, %) is a hyper tableau for 8, where

(i) 7' is the same as T, except that b is labeled as closed in 77, and
Gi) P = PU{p).

If conditions (i) — (iv) hold, we say that a “merge path step with merge path p is
applicable to 5”. :

A (possibly infinite) sequence ((&,0) = (T, Po)), (71,P1),-- ., {L; Pu), ... of hyper
tableaux for § is called a derivation, where (Tj, Py) is obtained by an initialization step,
and for i > 0 the tableau (7;,P;) is obtained from (7;_1,P;—;) by a single application of
one of the other inference rules. A derivasion of {T,,P,) is a finite derivation that ends
in {7,,,Pn). A refutation of § is a derivation of a closed tableau. |

This definition is an extension of previous ground versions of hyper tableaux (mentioned
in the introduction) by bringing in an inference rule for merge paths. Below it will be
further extended to explicity handle minimal models.

The introduction of non-ancestor metge paths requires to explicitly keep track of
the ancestor merge paths as well. Without non-ancestor merge paths all nodes along
a branch are always visible and the calculus uses the “standard” branch semantics of
setting all atoms on a (consistent) branch true. No computational overbead is intro-
duced for checking legality. The same holds if only right hooks (or only left hooks) are
used. This explains from our viewpoint the possibility of doing complement splitting
[Manthey and Bry, 1988].

The purpose of the hyper extension step rule is to satisfy a clause that is not satisfied
in the selected branch b. An implicit legality check for the ancestor paths added in an
extension step is carried out by excluding those atoms from the branch semantics that
would cause illegality when drawing an ancestor path to them. Lemma 3.3-(i) below
explains more generally that every derivable hyper tableau is equipped with a legal path
set.

The applicability condition (iii) in the definition of hyper extension step expresses
that all body literals By, ..., B, are required to be present in the context b; this similarity
to hyper resolution gave the name hyper tableaux.
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An obvious invariant of the inference rules is that every open branch b is labeled
with positive literals only. Thus J5];» conforms to our convention of representing inter-
pretations as the set of atoms being true in it. On the other side, due to merge path steps
there are also closed branches whose semantics consists of positive literals only.

The purpose of the merge path step inference rule is to close branches because a
“proof” or a model is to be found in the branch where the drawn merge path is pointing
to. In the applicability condition (iii) we insist that a non-ancestor merge path is never
drawn to the tail node of another merge path. Without this condition, the clause set
consisting of the single clause 4,4 < would admit a refutation, and this would be
unsound of course (these two merge paths would form a legal set, and hence condition
(iv) would not prevent us from this “refutation”).

Example 3.2 (Hyper tableaux with merge paths)

(1) As a first example consider Figure 3 in Example 2.3 again. Closed branches are
marked with the symbol “x” as closed. Only the tableau in the middle is constructible
by the calculus, because the calculus rules forbid the derivation of a tableau with an
illegal set of merge paths. In this middle tableau the left branch gets closed by a hyper
extension step with the clause < C, and the right branch is closed by a non-ancestor
merge path step as indicated. This application of a non-ancestor merge path step corre-
sponds to a folding-up step in model elimination [Letz et al., 19941.

The right tableau shows that it would not be sound to check only non-ancestor merge
paths for legality, because without ancestor merge paths legality would hold, and the
tableau would be closed, although the underlying clause set is satisfiable.

(2) Figure 4 serves as an example to demonstrate the change of branch semantics as the
derivation proceeds and the computation of models.

Suppose that the hyper tableau | 1 | has been constructed. The semantics of the right
branch b = (B,E,C) is [b]p = {B,E,C}. Suppose that this branch can be extended
further. Suppose that the left subtree contains an open branch b that makes 4 and C
true. This is indicated by the set [b_]; = {4,C,...}. Further suppose that this is a
minimal model.

Next, let a merge path step be applied with non-ancestor merge path p to the tableau
yielding the tableau . By this step, b is closed and hence its interpretation is
rejected for the time being. A second effect of this step is that the node labeled with
becomes invisible in b_. Thus [b, ], = {C,...}. Now, this new interpretation has
to be “repaired” by bringing in 4 again. This is done in the next step by extending with
AV B yielding a tableau |3 | (which is not depicted). Notice that the minimal model
[5..]5 is indeed reconstructed, only in a different order. In order to reconstruct the
rejected interpretation {B,E,C} from above that was rejected by the merge path step,
a hyper extension step below the new B node with E is carried out. This leads to the
tableaux . Notice that the new branch with semantics {C,...,B,E} possibly contains
more elements than the corresponding one with semantics {B, E,C} before.

In other words, the search of all these extra elements, which would have been car-
tied out below b when the merge path step would not have been carried out, has been
replaced by the two hyper extension steps leading from |2 to . Of course, this in-
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A B A B A B
C E C E C E
C C C
{4,C,...} {C,...} X 4 B X
{B,E,C} A invisible -
(C,...,4) l
E
{C,...,B,E}

Figure 4: A snapshot from a hyper tableau derivation with merge paths. The sets represent the
interpretations extracted from the branches written above them.

volves search as well, but it can be much shorter. Indeed, from a practical point of view
this observation is the main point of the whole approach. The diagnosis application
above in Section 1.2 was mentioned in support of this argument.

It is worth emphasizing that the re-computation of models happens only in the case
of non-ancestor merge paths with their head in open branches. Merge paths into closed
branches are “cheap” in that no re-computation is necessary. Thus, in a sense, refu-
tational theorem proving, which would stop with failure after the first open finished
branch (cf. Def. 4.3 below) is found, is “simpler” than computing models. O

Some more comments on the inference rules: in the applicability condition (iii) of the
merge path step we insist that a non-ancestor merge path is never drawn to the tail node
of another merge path. This is needed to guarantee soundness. Without this condition,
the clause set consisting of the single clause 4,4 + would admit a refutation by draw-
ing two such non-ancestor merge paths from one 4-node to the other. Since these two
non-ancestor merge paths are not related in the <-relation, the resulting path set would
be legal. Thus condition (iv) would not prevent us from this “refutation”.

Obviously, it would be useful to “reuse” the leaf A of a branch that was closed by a
merge path step with some merge path p. This can be done within the bounds of legality
by choosing a merge path to the head of p — which is also labeled with 4 — instead to
the tail of p.
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Lemma 3.3 (Basic invariants of inference rule applications)
For every hyper tableau (T,P) the following holds:

(1) P is Iegal.

(i} For every A € [b]y for given open branch b of T, there is a unique node Ny in b
with M(N4) = A and such that Ny is visible from the leaf last(b) of b.

Ttem (i) is relevant for the soundness of the overall calculus; item (if) proves the exis-
tence of the ancp function as used in the definition of hyper extension step.

Proof. Suppose that (7,P) is constructed by the derivation (7y,Po), ..., ((Tn, Pm) =
(T,P)). For both items the proof is by induction on m.

(i). The base case with m = 0 is trivial. Hence we turn to the induction step, let m > 0
and assume the result to hold for derivations of length < m.

If (7,5, P ) is obtained by a merge path step, then legality of Py, is part of the appli-
cability condition of the merge path step. If (7,,,P,,;) is obtained by a hyper extension
step with clause A + By,...,B,, we think of P, as given by the sequence

?0 =‘:]:'i'a".:—l
P = POU {ancp((b,~B1))}

P = P = P {ancp((5,-Bx))}

By induction on » we show that P” is legal and that [5]p» = [b]po. The case with n = 0
being trivial (P® = P, is legal by the outer induction hypothesis) we turn immediately
to the induction step. Hence suppose that n > 0 and that the resuit holds for » — 1.
B, € [b]4» holds by definition of hyper extension step. By the induction hypothesis
thus also B, € [6]ps-1. Equivalently, the node Np, in b labeled with B, is visible from
last(b). It is straightforward to show that N, is visible from the new node labeled with
—B, as well. Hence P71 U {ancp((b,—B,))} == P" is legal as well.

Lemma 2.5-(i) immediately gives us [6]p, = [b]gpn-1. By the induction hypothesis
[]pn-1 = [B]p,. Together thus [6]pn = [b] 0 as claimed.

(il). The base case with m = 0 is trivial. Hence we turn to the induction step, leim > 0
and assume the result to hold for derivations of length <C 2.

It suffices to consider hyper extension steps only, and thereby consider the extended
branch b only, because in all other cases the interpretation of an open branch either
remains the same or is becoming smaller. Consequently, since 7,1 does not contain
multiple occurrences of 4 in any one of these branches by the induction hypothesis, this
also holds for T,,.

The single critical case is that a hyper extension step was applied to the open branch
b1 in T,—1 with clause A <~ B. Suppose, to the contrary, that the open branch b =
{bm_1,4) in T, contains two nodes N; and N both labeled with 4 for some 4 € A and
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both are visible from last{((b,,—1,4)) in P,. By the induction hypothesis, property (ii)
holds for b,,_1 and P,,_,. Hence, one of these two nodes, say Ni must be the new leaf
last((by—1,4)), and the other one — Ny — must be some node from 5,,_1. Since M, is
visible from last{({by—1,4)) in Py, it is visible from Jast(b,—1) in Pr—1 as well (because
Pm—1 C Pp). In other words, 4 € [byn—1]p,_,- But then, the considered hyper extension
step is not applicable because condition (iv) in the definition of hyper extension step is
violated. Coniradiction, |

By simply leaving out merge path steps in derivations one recognizes that the new
calculus is a generalization of previous ground versions of the hyper tableaux calculus.
The branch semantics of previous versions was to collect the positive literals along an
open branch. This coincides with the new calculus then, because without non-ancestor
merge paths all predecessor nodes of a leaf are visible, and hence true. Furthermore,
due to the absence of a legality test in hyper extension steps no computational overhead
is introduced.

4 Finite Derivations

As expected, we are interested in a complete calculus. This requires to introduce a
notion of fzirness. Whenever one has to cope with infinite derivations, defining fairness
requires some technicalities that would seem like an overkill for the propositional case
which is “expected” to terminate (see [Baumgartner et al., 1996; Baumgartner, 1998;
Baumgartner et al., 1999] for first-order versions of related calculi).

Unfortunately, our calculus does not terminate in general, i.c. there are infinite
derivations (for finite clause sets), although we employ the “regularity” test (cf. Def. 3.1).
This is due to deep merge paths — without them, termination is straightforward to prove.

Example 4.1 (Nontermination) Consider the satisfiable clause set {(4,B <« ),(B,C «
),{4,D « ),(C + 4)}. Its minimal models are J; = {4,C} and I, = {B,D}.

Figure 5 shows steps of a non-termination derivation. Tableau| 1 |is obtained by two
hyper extension steps and a merge path step as drawn. No further hyper extension step
is applicable to the branch (4,C). Suppose that branch (B) is selected next. Two further
hyper extension steps yield the tableau . To the branch (B, 4,C) no more hyper ex-
tension step is applicable®. We apply a merge path step pointing into the branch (4,C).
Since in the target branch the atom 4 becomes invisible, further extension on (4,C) is
possible. This is done and the result is tableau . In this and the subsequent tableaux,
“old” merge paths and closed subtrees are only indicated using dots. Tableau |4 |is ob-
tained from tableau | 3 | by a merge path step as indicated and subsequent extension with
A,B + . Similarly, tableau | 5 | is obtained by a merge path step and a hyper extension
step with B,C < . A final application of a merge path step to tableau | 5 | yields tableau

6]

5This example thus also demonstrates the — well-known — fact that hooks and related techniques such
as complement splitting are too weak to guarantee minimal model soundness.
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Now,-a circular situation is obtained: tableau @ contains two open branches. ‘The
one, by = (4,C,4,C) in the left subtree has the branch semantics {4,C}, and the other,
by = (B, D, B) in the right subtree has the branch semantics {B}. This constitutes a loop,
because tableau | 1 [has the same semantics. O

e AN

A B A B A
B C B C A D
’ * /\
[ | A
b

B C
X

Figure 5: Steps from a non-termination hyper hyper tablean derivation with merge paths.

The previous example demonstrates that merge paths have to be applied with care in
order to get a terminating calculus,
As a consequence we propose the following technique:

Theorem 4.2 (Sufficient Termination Criteria)
Every derivation (Ty, Po),-- - {Tn, Py), . .. satisfying one of the following criteria is fi-
nife,
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(i) Forevery (T},P;), wherei > 0, an applicable merge path step with merge path p is
not carried out if for some open branch b in T; more than an a priori fixed number
max of occurences of some label 4 is invisible from last() in P; U {p}.

(ii) Forevery (T;,P;), wherei > 0, an applicable merge path step with merge path p is
not carried out if P; {p} contains a chain py < --- < p, of non-ancestor merge
paths, where m is greater than an a priori fixed number max.

P’m not so sure about (ii) any more: taking only merge path steps into consideration
might be too weak — they could be connected by ancestor paths in alteration, therefore
admitting chains of unbounded length. On the other side, taking ancestor paths info
consideration would prevent us from some hyper extension steps. That cannot be
allowed. I'm not sure whether Joe’s proof solves the problem.

Criterion (1) avoids infinite derivations by bounding repetitions of the same literal along
branches. A trivial instance is max = 0. Then no deep merge paths but only hooks are
possible, Observe that the derivation in Example 4.1 still conforms to the limit #zax = 1.

The idea underlying Criterion (1) is that one should not too often be forced to repeat
the derivation of an atom that becomes repeatedly invisible on a branch.

Criterion (2) avoids infinite derivations by monitoring the length of chains. Clearly,
when attempting to insert a non-ancestor merge path p into P it suffices to check for
those non-ancestor merge paths in P that form a chain wrt. < containing p.

Observe that both criteria are made such that they never prevent a hyper extension
step from being carried out. This is important to guarantee that fair derivations still exist
(cf. Definition 4.3). Essentially, this implies together with the termination property that
the completeness results hold.

Proof. (i). With the criteria, the length of branches is bound to be less or equal to
(max+1)-|Z|. For, suppose that some atom 4 occurs m > max+ 1 times in some branch
bin some tableau of the derivation. Consider the point in time i where the m-th (for some
arbitrary m > max -+ 1) occurrence of 4 was introduced to 5 by a hyper extension step
to a prefix (i.e. rooted partial branch) b; of 5. Let (7}, P;} be that tableau containing b;.
By the applicability condition (iv) of hyper extension step, no node labeled with 4 in b;
can be visible from Zast(b;). Since we consider the case that A was infroduced the m-th
time to b, it must be that m — 1 > max occurences of 4 occur in b;, and each of them
is invisible from last(b;) in P;. Since hyper extension steps do not affect visibility (cf.
Lemma 2.5), there must have occured in the derivation a merge path step that cansed
what was just concluded. But then the derivation would not conform to (i).

(if).

[2 |

Due to this criterion we consider from now on only finite derivations.
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Definition 4.3 (Redundancy, Fairness)

Suppose as given some hyper tableau (7, P) for 8. A clause A + B is called redundant

in an open branch b of T wrt. P iff [b]y = A « B (iff B C [5], implies AN [5]y # 0).
A branch b of T is called finished wrt. P iff

(i) b is closed, or else

(ii} every clause A < B € § is redundant in b wrt. P.

The term unfinished means “not finished”,
Now suppose as given a finite derivation D = (75, Po), . .., (T, P,) from § with se-
lection function f. D is called fair iff

(i) D is a refutation, i.e. 7}, is closed, or else
(i) f{T,) is finished wrt. P,,.

The selection function f is called a model computation selection function iff f maps a
given open hyper tableau (T, P) to an unfinished branch wrt. P, provided one exists, else
f maps T to some other open {finished) branch.

Quite often we omit the term “wrt. P and let P be given by the context O

The existence of fair derivations is straightforward because we insist on finite deriva-
tions. Notice that any input clause not redundant so far in a branch 5 can be made
redundant by simply carrying out an extension step with,

The idea behind a model-computation selection function is that no derivation should
stop with an unfinished branch. Since finished open branches constitute models, with
such a selection function every model will be computed. The next section makes this
more precise.

5 Soundness and Minimal Model Completeness

First we prove soundness. Instead of a refutational soundness formulation we use the
contrapositive formulation and in a stronger form. It is stronger than a refutational
formulation, because it not only says that a satisfiable clause set $ admits no refutation,
but also that any minimal model of 8 is actually computed (in a sense). This in turn is
needed to prove minimal model completeness.

This is the main technical lemma:

Lemma 5.1 (Soundness lemma)
Let (T, P) be a hyper tableau for satisfiable clause set 8. Then for every minimal model
J of § there is an open branch b of T such that [b], C J. :

5.1 Proof of Lemma 5.1 — Simulation by “atomic cuts”

Let us first deal with the trivial case that 7 consists of a root node alone. There is only
one branch in 7', namely (Np), it is open and [(Ng)]p = 0 proves the claim. Henceforth
assume that T’ does not consist of a root node alone.

‘We extend the calculus by the following inference rule:
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Atomic cut: Let 7 be an open hyper tableau with merge path set P for § with selected
open branch . If 4 € X is an atom, then the tree T” is a hyper tableau for 8 with
merge paths set P, where 7" is an extension of 7 at b with —4 v A4°.

Now define hyper tableau with cut like hyper tableau with merge paths as in Defini-
tion 3.1, but extended by the new inference rule. The tableaux of the old calculus are
called hyper tableau without cut. Atomic cuts have also been used in [Letz er al., 1994]
to prove the soundoess of the folding up/folding down inference rules in model elimi-
nation.

Notice that now branches contain negative literals in other as leaf positions as well,
and branches containing negative literals may well be open. We do not introduce a
closure rule, according to which a branch & is marked as closed if its semantics contains
two complementary literals. This would complicate matters unnecessary.

Instead we temporarily define a branch b= (Ng,N1,...,N,) as inconsistent iff {4,-4} C

{AM), ..., A(N,)} for some atom A; consistent means “not inconsistent”, This defini-
tion is 1ntent10nally not based on visibility {cf. Def, 2.4)

In order to come to a semantics definition comparable fo the calculus without the
atomic cut rule, we simply forget about the negative literals, More formally, define

[6]4 = {4 € [b]p | A is a positive literal }

for any consistent and open branch b in a hyper tableau with cut’.

The plan now is the following: we show that all non-ancestor merge paths can be
transformed away in a semantical preserving way by using atomic cuts. The claimed
property in the lemma statement is proven for the resulting tableau and translated back
for the original tableau T using an invariant of the transformation.

We work with this mapping to hyper tableau with cut, because (a) the cut rule is
a standard tool for proving soundness of refinements like the ones we consider, (b) it
might be interesting in its own right how cuts can simulate our non-ancestor merge
paths (cf. also Section 5.2 below).

We approach the proof top-down. The transformation ¢ to be defined below takes
a hyper tableau with cut (7,%P) and returns a hyper tableau with cut (7, P) = (I", 7).
The transformation ¢ satisfies the following property:

Imvariant of ¢: for every consistent and open branch & of (77, ') there is a consistent
and open branch b of (7,P) such that

1685 C [5'T3 - ()

The transformation itself is defined, provided that P contains at least one non-ancestor
merge path; it leaves us with P’ containing exactly one non-ancestor merge path less.

%Notice that we do not have a restriction such as 4 ¢ [, that would enforce that a cut with the same
atom is carried out only once along a branch; indeed, we couid not afford such a restriction, because the
transformation below would violate it in general.

"This definition could thus be also applied to branches closed in a merge path step, but it does not play
1o role.
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Hence, when applied to the initially given tableau (7, P) (without any cuts) it will leave
us after finitely many, say, z steps with a hyper tableau with cut (Toye, Poyr) where Py
contains no single non-ancestor merge path. Since no non-ancestor merge paths are
present, we can forget wrt. branch semantics about the ancestor merge paths and safely
set Py = 0. More formally, it holds [bew]ly = [beutl ., for any branch bey of (Touts Pout)-
The technical justification for this step is given by Lemma 2.5-(11).

Below we show that for some consistent and open branch by of (Ziut, Peue) it holds
[[bmﬂ;' C J. Using (1) » times then gives us the existence of a consistent and open branch
b of (T,P) such that [5]% C [bew]s . Now, since (T,P) is a hyper tableau without cut,
the property of b being open and consistent means that [5]4 consists of positive literals
only. In other words, [5] = [6]5. Now putting the just obtained results together we get
[£lp C I as claimed in the lemma statement. This completes the first step of the proof.

The next subgoal to be shown is the following:

Existence of a consistent and open branch by of (T, Peyr) with [[E:'cl;u]]@)F Cl: In
this subproof we can write instead of “consistent and open” simply “consistent”, because
without the presence of non-ancestor merge paths “consistent” implies “open”. Toy
contains at least one consistent branch by, such that the following holds

A4 & [beu]y foreveryd €T, and ~ (2)
A [beut]y forevery -4 € —J, where -J = {-4 |4 € X\ T} 3)

That is, [besi]ly contains no contradiction to J. Notice that J is a model for —3 by con-
vention of representing interpretations.

Reason for the existence of such a by suppose, to the contrary, that for every
consistent branch by there is a4 € I such that ~4 & [[bey], or there is a =4 € —J such
that 4 € [beut]y. This means that every consistent branch would be inconsistent after
extending with some positive unit clause 4 € J or some negative unit clause ~4 € 7.
Let T/, be that tableau. 7y, is a “standard” tableau with cut (cf. e.g. [Fitting, 1990])
for the input clause set $ UJU-J. Hence, by the well-known soundness result for
such tableau®, $ UJU—J must be unsatisfiable. This, however, immediately yields a
contradiction to the given assumption that J is a model for . Hence Tgy¢ contains at
least one consistent branch b, with the claimed properties (2) and (3).

Now let bgy be any such branch. Next we claim that [bey]y € IJU-T. Let by be
the rooted partial branch of be; of maximal length which is in order with JU —J. That
is, if bewt = (No, N1, .., Np) then b, = (No, M1, ..., Ny for some maximal m < » and
such that and ], € JU T (trivially 8., is consistent as well, because we have no
non-ancestor merge paths).

It is clear that n > 0, because T was assumed to be different from the tree consisting
of a root node alone, and the transformation ¢ does not produce this situation.

Now, either m = n and the claim holds, or else m < n. In the later case b, exists
indeed, since with m = 0 we have [(Ng)], = @ € JU =T and the condition is satisfied
(m = 0 it might be not maximal, though). Thus let m < # be maximal now. This case
leads to a contradiction.

8What we call “inconsistent™ here is often called “closed” in the literature.
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Since m < n there is at least one successor node Ny, of Ny, in &, and by maxi-
mality we know that A(Ny4.1) & JU -7 although M{Nu+1) € [Peutly.

Now, if A{Np4.1) = 4 is a positive atom then 4 ¢ TU -7 is the same as 4 & J which
implies ~4 € —J by definition of —J. But then, by (3) we conclude that 4 & [bey],
which is a plain contradiction to what was just concluded by the maximality assump-
tion. The case that A(N,.1) = -4 labels a negative atom yields a contradiction by
symmetrical arguments.

Hence, the assumption m < » must have been wrong, Therefore m = n and the
claim above holds. With respect fo positive atoms the claim can be slightly rewritten as
[[bcut]]g C J, which is nothing but the claim of the current subgoal.

4 f w14 -C C
| ﬂ |
| : / l
C C 4; 46
o < ¢

Figure 6: The transformation ¢

The transformation r; The left side in Figure 6 displays the most general situation.
As said, we assume that P contains at least one non-ancestor merge path p. It is the one
drawn in the depicted tree and that is transformed away by ¢.

Figure 6 is to be read as follows: dashed lines mean partial branches. For instance,
the top leftmost dashed line leading to B means the partial branch pp from the root to the
node (inclusive) labeled with B. Triangles are certain forests. The top leftmost triangle
T8 means the forest that is obtained from 7 by deleted the branch pp and the whole
subtree below the node B. The most appropriate intuition is to think of trees as branch
sets. Then the triangle 75 is simply the set of the branches obtained from T by deleting
all branches that contain pp.

The solid lines, just like the ones below B indicate a hyper extension step; here, it is
supposed that a hyper extension step with clause C = 44,...,4, ¢ B has been carried
out to node pp, and all the literals short of 4; and 4; (for some £,j € {1,...,n} and
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i # j) are attached to nodes in the forest 7T5. The assumed non-ancestor merge path p is
indicated with taif node C (left) and head node C (right) and turn point B,

There might be other non-ancestor merge paths in P, in particular some where the
head of p is an inner node of. This possibility is indicated in Figure 6 as well, by the
arrow pointing into T The tail of this non-ancestor merge path, say pc is a leaf node
N somewhere in 7. _

Inconsistent or closed branches are marked by “x”.

The effect of the transformation ¢ is shown on the right. The non-ancestor merge
path p is removed. Instead a cut with C — the label of the head and tail of p — is inserted
at pg, i.e. the turn point of p. The subtree below T¢ (excluding C) is moved to the
node labeled with C that was introduced by the atomic cut step. These operations are
understood to move merge paths as well. For example, the non-ancestor merge path p¢
still has the same head and tail node, but they are possibly located in different places in
7' now, and also a different turn point might result.

Several properties have to be argued for:

Initially, legality of P holds by Lemma 3.3-(i). Stnce P’ C P, P" is trivially legal as
well. In other words, legality is preserved by ¢. ;

Since P is legal, the subtableau 7¢ in T’ cannot depend from any node in (B, 4;,...,C),
because an ancestor merge path to any of these nodes would violate the given legality
of P due to the presence of p. More precisely, all branches closed via ancestor merge
paths in T during hyper extension steps remain closed after application of ¢t (moving T
below the C node from the atomic cut step), because none of those branches was closed
by an ancestor merge path to an atom in (B,4;,...,C). This proves that the hyper ex-
tension steps in T after transformation indeed exist. Hence (7, P’} is a hyper tableau
with cut.

Notice that the branch {...,B,~C,4;,...,C) is inconsistent as indicated. It is impoz-
tant that this branch becomes inconsistent, since the Invariant requires that there is no
open and consistent branch (after the transformation) that does not have a counterpart
before the transformation®

The set of ancestor nodes visible from a node in 7> or any other node below B is
possibly increased by the transformation, because the removal of p can render nodes in
the branch (..., B} visible that were formerly invisible due to a merge path with the head
in (4;,...,C) (C excluded). This is explains the “C” instead of a possibly expected “="
in the Invariant.

The critical part of the construction is the move of T, Observe that all the nodes in
(4;,...,C) in (T,P) are invisible from all nodes in T due to the presence of p. Hence,
the invariant also holds for branches the branches going into 7.

After transformation some branches might become inconsistent due to the presence
of =C. This is indicated by “{x}”; this causes no problems, as the Invariant does not
require preservation of open branches in the forward direction of the transformation,

91t might be that —C is not visible from C due to some non-ancestor merge path, ¢.g. one containing B
with the same head node € as p. This motivates our definition above not to take visibility into account in
the definition of “inconsistent branch”.
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In sum, we defined a transformation ¢ that satisfies the properties needed to complete
the proof of Lemma 5.1. Hence the proof of Lemma 5.1 is completed |

Some concluding remarks.

(i} What if P would not be legal? Then, there would be no guarantee that all the branches
in 7z closed during hyper extension steps remain closed by the transformation. If the
transformation would nethertheless be applied (with possibly some modifications) to an
unsoundly closed tableau T, then an open tablean T would result, because the atomic
cut rule is sound.

(ii) Since 7 is legal it is extendible to a partial order <. Let p be any minimal element,
- This implies that there is no non-ancestor merge path p’ € P such that the head of p' is
; an inner node of p. When modifying the transformation # such that it is applied to such
- a minimal p, then 1 in the Invariant can be strengthened towards [6]5 = [6]3 because
using a minimal p for the transformation grarantees that the visibility of ancestor nodes
: of the turnpoint B remains the same after removing p. With this strengthened invariant
| the result would be provable as well, but we prefer the free choice of the next non-
ancestor merge path to be transformed away. This might turn out advantageous for
% implementations. They could mimic non-ancestor merge paths by atomic cuts in the
: temporal order they are constructed.

Theorem 5.2 (Refutational Soundness) Let D be a refutation of 8. Then § is unsatis-
fiable.

Proof. Sketch: basically, use the soundness results in [Horton and Spencer, 1997a]
on clause trees. To do so, write down a closed hyper tableau 7' with merge paths P as
a clause tree refutation with merge paths. Thereby use phantom edges, and model the
simyltaneous operation on all the body literals in hyper extension steps by a sequence
of ancestor merge paths. T is thus transformed into a clause tree refutation, In this
mapping the legality of merge paths P (cf. Lemma 3.3) carries over to the clause tree
refutation. Now use the soundness result for clause trees with merge paths. It suffices
to sketch this possibility, because there is an alternative proof from scratch:

Alternative proof: 'We prove the contrapositive direction. So let § be satisfiable, and
let 7 be a minimal model. By Lemma 5.1 then every hyper tableau for 8 contains an
open branch, Hence no refutation of § exists, which was to be shown. [ |

The interest in the alternative proof, and in particular Lemma 5.1 comes from the ap-
plication of Lemma 5.1 in proving minimal model completeness. For this we need the
stronger claim of Lemma 5.1, but not just the non-existence of refutations for satisfiable
clause sets.

Theorem 5.3 (Minimal Model and Refutational Completeness) Let f be a model com-
putation selection function and D be a finite, fair derivation from 8 of the hyper tableau
(T, P). Then, for every minimal model 5 of § there is an open branch b in T such that
6]y = 7 (mninimal model completeness).

;
H
;
:
i
:
}
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If no minimal model 9 of § exists (that is, § is unsatisfiable) then D is a reﬁxt&fion,
ie. T is closed (refutational completeness).

Proof, First suppose that § is satisfiable, and let J be any minimal model of $. By
the soundness lemma (Lemma 5.1) we know that 7 confains an open branch & with
2] C J. For this particular b even [5], = J holds. For, suppose to the contrary, that
[5])p # 7 holds, i.e. [b]p C J. We are given that D is fair. Since f is a model computation
selection function, this means that 5 is finished. This in turn means that every clause
from 8 is redundant in b. In other words, [5], is a model for 8. Since [b], C 7 we have
a contradiction to the given minimality of . Hence the assumption that [5], # J must
be wrong, and thus the first part of the theorem holds.

Now, suppose that 8 is unsatisfiable, but that 7 is not closed. Let & be any open
branch of 7. Since § is unsatisfiable, J = [b], must falsify some clause A « B from
8. In other words, B C J and ANJ = 6. This shows that a hyper extension step is
applicable to b with clause A <+ B (cf. applicability conditions (iii) and (iv) in the
defintion of hyper extension step). Hence & is not finished and thus D is not fair. But D
was given as fair. Contradiction. ' |

Notice that our definition of fairness does not insist on carrying out merge path steps.
Consequently, the minimal model completeness result holds whether merge paths are
applied or not. In other words, merge path steps are completely optional. Indeed, as
shown above, insisting on certain merge paths can easily cause nontermination.

5.2 Why Merge Paths and not “Atomic Cuts”

In the proof of Lemma 5.1 we indicated how atomic cuts can be used to simulate non-
ancestor merge paths. So, the question might arise why not directly use these cuts. The
answer is manifold. First, by the mere fact that the simulation exists we get insights
how merge paths relate to atomic cuts. Second, the graphical notation might be a help-
ful metaphor to study the topic. Third, merge paths correspond only to cerfain cuts,
much like folding-down or related techniques also correspond only to certain cuts. It
is generally accepted that analytic or even atomic cuts should be applied with care in
order not to drown in the search space. This is our viewpoint as well. We emphasize one
particular propetty of the transformation ¢ (cf. the figure in the proof of Lemma 5.1} in
the cut simulation, the subtree T¢ is moved to a different place in the tree. By the bare
fact that the considered non-ancestor merge path p is legal in the merge path set contain-
ing it, we can be sure that the destination of 7 (the C node) contains enough ancestor
literals so that T remains a hyper tableau — that all branches with negative leaves can
still be be closed by ancestor merge paths. Clearly, opening branches again would be
undesirable as it is unclear if any progress is achieved then. The alternative, forgetting
about T would cause a lot of recomputation.

Of course, this and other effects and how to avoid them could be formulated as
conditions on cuts as well. Non-termination would result if the same atomic cut occurs
without bound on a branch.
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In sum, these considerations were thought as an argument why things don’t get
simpler when using cuts, neither conceptually nor algorithmically. In particular, the test
for legality would have to have a counterpart when using cuts. A general test for legality
is included in [Horton and Spencer, 1997b], that is linear in the size of the clause tree.

6 A Calculus Variant for Circumscription

In the sequel, I always denotes some subset of the signature X, i.e. a subset of the atoms
occuring in a clause set under consideration.

Minimal models are of central importance in various fields, like (logic) programming
language semantics, non-monotonic reasoning (e.g. GCWA, WGCWA) and knowledge
representation. Of particular interest are I'-minimal models, i.e, minimal models only
wit. the F-subset of Z. From a circumscriptive point of view, I is thus the set of atoms
to be minimized, and Z\ T varies.

In this section, we modify the calculus in two ways: first, we are concerned with
I'-minimal models instead of “general” minimal models. That this is a generalisation
is casily seen by taking I' = . Henceforth, by a minimal model we mean a Z-minimal
model. Second, we extend the calculus so that only (I'-)minimal models wil be retumed
as the result of a derivation. This property is referred to as minimal model soundness'
in [Bry and Yahya, 1996].

Definition 6.1 (I"-Minimal Models)

For any atom. set M define the restriction of M to T as M{I" = M NT. In order to relate
atom sets M) and M, define My <y M iff M| [T’ C Ma|T, and My = Mo iff M [T =M |T.
As usual, the relation M <r M is defined as M} <r M5 or M) =r M,. We say that a
model J for a clause set M is T-minimal (for M) iff there is no model 7’ for M such that
J<rd - O

It is easy to see that < is a partial order and that =r is an eqivalence relation. An
obvious consequence of this definition is that every minimal model is also a I'-Minimal
model (but the converse does not hold in general). '

From Theorem 5.3 we know that every minimal model can be computed in some
branch. Hence, from what was just observed, every I'-minimal model can be computed
as well. However, example 4.1 shows that the calculus defined so far cannot achieve
minimal model soundness. It should be noted that all the other mentioned approaches
also need an added-on technique to ensure minimal model soundness.

In order to rule out non minimal models some extra test is added. This is done next
for the more general case of I'-minimal models.

6.1 The Calculus

Definition 6.2 (MM-Hyper Tableaux with Merge Paths)
From now on, branches are labeled either as “open”, “closed” or with some subset of .
In the latter case, & is called a MM-branch, and MM(5) denotes that set, which is called

10Notice that this notion of soundness is only loosely related to the notion of soundness in Section 5.
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the minimal model of b.
MM-Hyper tableaux T for 8 with merge path set P —or (T, P) for short —are deﬁned
inductively as follows (the text taken literally from Définition 3.1 is set in footnotesize).

Initialization step: as in Definition 3.1.
Hyper extension step with C: as in Definition 3.1,
Minimal Model Test If

(i) {7,P) is an open MM-hyper tableau for 8 with selected branch 5, and
(i) [5]p is a I-minimal model of

then (77, P} is a MM-hyper tablean for 8, where T” is the same as 7’ except that b
is labeled with [5]|T"

If applicability conditions (i) and (ii) hold, we say that the minimal model test
inference rule is applicable (to b). '

Merge path step with p: If _
@) {T,P)is an open hyper tablean for 8 with selected branch &, and

(i) p = mergep(h,b™) is a non-ancestor merge path from &, for some rooted partial branch 5
of T, and

(i) Zast(»7) is not the tail of a merge path in F, and
(iv) . PU{p)} islegal,
then (77, P') is a hyper tableau for S, where

(D) 7" is the same as T, except that & is labeled as closed in 7/, and every MM-branch &'
of T with [§ ]]fPU ([T C MM(%') is labeled as open in 7", and

G ¥ =PU{p}
The definition of derivation and refutation are literally the same, except that we talk
about MM-derivations and MM-refutations now. O

The purpose of the minimal model test rule is to remember that a [-minimal model is
computed in the selected branch b. Since usually one is interested only in the T™-subset
of models, we keep only the I'-atoms. Notice that for MM-branches, a hyper extension
step is not applicable, because MM-branches are not open. For the same reason merge
path steps are also not applicable to MM-branches.

In the course of a derivation a previously computed I'-minimal model MM(5) of a
branch b might no longer be the same as [b];|I" because, of a merge path step with head
node (for instance) in . Therefore, the label MM(5) has to be rejected and the branch
has to be opened again for further extension. This is expressed by the new text in (1) in
the result description of the merge path step inference rule. Notice, however, that this
happens only if some atom 4 € I" becomes invisible in [5], not if some other literal
from Z\ I becomes invisible. Thus, some deep merge paths can still be drawn without
causing recomputation.

Example 6.3 (MM-hyper tableaux) We continue on Example 3.2-(2). In order to demon-
strate the effect of the minimal model test inference rule let now I'= {C,E}. We start
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with tableau [1]. For the branch b, the minimal model [5_}p = {4,C,...} was sup-
posed. Suppose that E is not contained in that set. Then [b_ ][I = {C} is a I'-minimal
model, because [5_ ], is a minimal model. According to the minimal model test infer-
ence mle, the branch b can be labeled with {C} then.

Now, consider tableau . The merge path p there eliminates the I'-minimal model
candidate in the right branch by closing it. Concerning the left branch 4 _, although 4
has been removed from its previous interpretation [b_ o = {4,C,...}, its I-minimal
modet {C} has not been changed, ie. [6.]p|I" = [b.]pysn T = {C}. Consequently
the branch fabel {C} has not to be removed and 5 has not to be opened again. This
is reflected by the result description (i) in the definition of merge path step. If I" would
be taken to, say X, the branch b would have to be opened again and the computation
could continue as in Example 3.2-(2) and lead to the tableau . O

The I'-minimal models are thought to be the output of the computation. In order to
achieve minimal model completeness and soundness by reading off models from MM-
branches only, the old faimess Definition 4.3 has to be changed slightly:

Definition 6.4 (MM-Fairness)
Suppose as given some MM-hyper tablean (7, P) for 8. A branch & of T is called MM-
Jfinished wrt. P iff

(i) b isclosed, or
(i) b is a MM-branch, or ¢lse
(iii} the minimal model test inference rule is not applicable to b and every clause A «— B € § is redun-
dant in b wrt. P.
The term MM-urfinished means “not MM-finished”.

MM-fairness is defined exactly like fairness, except for the replacement of “deriva-
tion” by “MM-derivation” and the replacement of “finished” by “MM-finished”. O

According to this definition, the only possibility to be unfair is to terminate an MM-
derivation with a selected open branch that could be either labeled with a I'-minimal
model or extended further.

Notice that it is possible, athough not mandatory according to fairess, to apply the
minimal model test inference rule to non-finished branches as well. Implementations
are thus free to carry out the minimal model test “every now and when”. If successful,
the branch is turned into a MM-branch and it will not be extended any further.

The next theorem is our main result.

Theorem 6.5 (Minimal Model Soundness and Completeness) Let f be amodel com-
putation selection function and D be a finite, fair MM-derivation from satisfiable clause
set § of the MM-hyper tableau (T,P). Then

{MM() | & is a MM-branch of T} = {J|I" | J is a T-minimal model of 8}

Furthermore, if S is unsatisfiable then T is closed (refutational completeness).
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Proof. Minimal modei soundness — the first theorem statement in the “C-direction
— is an immediate consequence of the applicability condition (if) in the minimal model
test inference rule and the result description (i) in the new merge path step inference
rule.

Regarding minimal model completeness — the first theorem statement in the “2-
direction —, suppose to the contrary that for some I'-minimal model J of § there is no
MM-branch of T such that [5] =r J.

Clearly J|I" C 7 for some minimal model J of 8. Now, label all MM-branches of T
as open and let 77 be the resulting tableau. By the soundness lemma (Lemma 5.1) we
know that 7' contains an open branch b with [56], C J.

In the first case, b is an MM-branch of 7. The case [b];, =r J is impossible by the
assumption to the contrary. Hence from [5]5 #r J and [5], C T it follows [b]5 <r J.
This, however, is impossible by soundness, as it contradicts the given fact that J is a
T-minimal model.

Therefore & is not an MM-branch in 7. Since it is open in 77 it must be open in
T as well. We are given that D is MM-fair. Since f is a model computation selection
function, this implies that & is MM-finished. '

For this particular b we show next that [5] =r J holds. For, suppose to the contrary,
that [5] 5 #r J holds. Again, with [5], C J it follows [b] <r J. Since & (of T') is open
— i.e. neither closed nor a MM-branch — and MM-finished the minimal model test rule
is not applicable and every clause from & is redundant in b wrt. P. In other words,
[6]5 = 8. With [b]p <1 J this is a contradiction to the given I-minimality of J. Hence,
[2]p =r 7.

But then the minimal model test inference rule is applicable to b, because J is given
as a I-minimal model, and so [5]; is a T-minimal model as well. Hence & is not
finished, contradicting the given fairness of D. So the outermost assumption to the
contrary must have been wrong, and the theorem follows.

Refutational completeness is proven as follows: suppose that & is unsatisfiable but
T is not closed. By the minimal model soundness result then T' must contain an open
branch 5 (because MM-branches are impossible). Since [6] is an interpretation and 8
is unsatisfiable, [b] falsifies some input clause from 8. But then a hyper extension step
is applicable to b with this clause. This contradicts the given fact that D is fair. ]

6.2 Minimal Model Test

Calculi like ours and related calculi need some extra test or device to ensure I'-minimal
model soundness as well. This is hidden in the purely semantical definition of the
applicability condition (ii) of the minimal model test inference rule. One option is to
use the technique from [Bry and Yahya, 1996] which relies on comparing minimal-
model candidates against previously computed minimal models, The same technique
was used successfully in [Baumgartner ef al., 1997a] for diagnosis applications. To do
so within the new calculus, we siill have to ensure that the “first” model encountered is
a I-minimal model.
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This technique of turning minimal models into input clauses is not nicely applicable
to our case. The reason is that we occasionally have to re-open MM-branches again.
Now, when MM-branches would be closed instead, we could no longer distinguish the
reason why a branch was closed — due to merge path/hyper extension steps or due to the
discovery of minimal models. But only in the latter case branches have to be re-opened
again. Therefore we decided to introducy the new label type for branches.

The idea of re-using previously computed I'-minimal models can be used in our
case as well, Intentionally, the test for minimal modelship (condition (ii) in the minimal
model test rule) is given purely semantically. One strategy is simply to compare the
current model candidate against the labels of the previously computed MM-branches.
Alternatively, a once computed I"-minimal model (or simply the I"-subset thereof) can
be remembered elsewhere, say in a table or appropriate data structure. This would have
the advantage that the model is preserved during the whole computation.

The drawback of this approach is that it might consume to much memory. In worst
case, there are exponentially many minimal models wrt. |X|, which would all have to
be kept. Therefore, Ilkka Niemeld developed in [Niemeld, 1996a} to replace the com-
parison by testing individually each minimal model candidate for minimality by call-
ing a theorem prover instead. The technique was generalized towards circumscriptive
reasoning in [Niemeld, 1996b]. A similar technique was proposed in [Aravindan and
Baumgartner, 19971 for database applications.

The crucial idea of that test is formulated in the following lemma; it traces back to
[Reiter, 19871.

Lemma 6.6 (Minimization Lemma, [Aravindan and Baumgartner, 19971)
Suppose I is partitioned as T = AUA, i.e, ANA = 0. Define —=A 1= {~4 | 4 € A}. Let
M be a set of formulas. Then

(1a) MU ~A |= A and (1b) MU —A is satisfiable
iff
(2a) M) ~AUA s satisfiable and (2b) A is C-minimal for this property.

Property (2b) using an explicit wording shall mean “there is no partition I' = A’ UA?
with A’ C A such that MU —A/ U A’ is satisfiable”.

Proof. (1) = (2): Let J be a model for MU -A, which exists by (1b). By (1a), J is
a model for A as well. Hence (2a) holds. It remains to show (2b). Suppose, to the
contrary, that A is not a minimal set such that (2a) holds. Hence, there is an 4 € A such
that MU —-AU {=4} UA\ {4} is satisfiable. Trivially, MU—AU {4} is satsifiable as
well. But then, MU =-A [£ 4, and consequently, MU—-A ¥ A. Contradiction to (1a).
Hence the claim follows.

(1) <= (2) Assume that (2a) and (2b) hold. Hence, (11)) follows trivially. Suppose, to
the contrary, that (1a) does not hold. That is, MU —-A = 4, for some 4 € A. Hence,
X = M\U—AU{-A4} is satisfiable. Let J be a model for X. According to our convention
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of representing models by atom sets, J is also implicitly an interpretation for A\ {4}.
Next define

A'={BeA\{4}|T =B}
N =RU{A}U{Be A\ {4} |7 =B}
X =MU-AUA .

Since J = X it follows immediately that J |= X" as well. By construction, we also have
I'=AUA and A NA’ = 0. From A’ D A (by construction) it follows A’ C A, and we
have a contradiction to the minimality of A (2b). Hence the claim follows. ]

The interesting application of the lemma is this:

Proposition 6.7 (Minimality Test)

Let(T,P) be aMM-hyper tablean for clause set 8. Suppose that b is an open branch with
[6]y = 8. Then [b] is a T-minimal model of 8 if § U—~AU{V 4¢5 —A4} is unsatisfiable,
where A = [b]p|I" and A=T\ A. .

The precondition [b]5 |= 8 is satisfied in particular for those branches where fairness
insists that they are turned into MM-branches, if possible. Hence the mmimality test
indeed can be used to realize condition (ii) in the minimal model test rule.

Proof. From the definitions it follows immediately that [] |= A (as defined in the
statement of Lemma 6.6). Since we are given that [b], |= 8 it holds [6] = —AUS.
Hence ~AU S is satisfiable and Condition (1b) in Lemma 6.6) is satisfied. We are given
that Condition (1a) holds as well (in a slightly different but equivalent formulation).
Hence from now according due to Lemma 6.6 the Properties (2a) and (2b) stated there
holds for the sets A and A determined in the statement of the proposition.

Now we claim slightly more general than in the proposition statement that any
model 7 of § with J|T" = A is a T'-minimal model of §. From the definitions it fol-
lows immediately that J = —A. The interpretation [5], is such a model we are talking
about, but there can be many more, of course.

Suppose, to the contrary that the claim is false. Hence there is some model I’ of §
such that 7 <y J. Since J|I" = A this means that A’ = J|T" C A. As before, it follows
immediately from the definitions that I’ |== ~A’, Together then conclude that MU —A'UA’
is satisfiable (as shown by the existence of J'). This is in plain contradiction to the
minimality property of A in Lemma 6.6-2. Hence, any model of 8 with JT =Ais a
I'-minimal model of 8, and so is [b] . |

The precondition [b], = 8 is satisfied in particular for those branches where fair-
ness insists that they are turned into MM-branches if possible. Hence the minimality
test indeed can be used to realize condition (ii) by reducing the test to a theorem-proving
task (unsatisfiability of the stated set). Essentially, this is the approach suggested as the
“oroundedness test” in [Niemeld, 1996a; Niemeld, 1996b]. In {Aravindan and Baum-
gartner, 1997] it was employed to ensure minimality of certain database updates. The
motivation for this technique is its low (polynomial) memory consuraption. The next
section contains some more thoughts on this.
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6.3 Memory Consumption

In order to guarantee low (polynomial) memory consumption, proof procedures can be
based on a “one-branch-at-a-time™ approach employing the “local” minimality test from
above. Calculi without non-ancestor merge paths would delete closed branches from
memory, and once computed models are simply passed to the application environment
(without deep merge paths closed branches are of no use).

Now, the same strategy is conceivable in presence of non-ancestor merge paths,
namely by allowing to delete MM-branches as well. Of course, deleted branches can
no longer be used for merge path steps. From a practical point of view, we propose to
fall back to this scheme only when running into memory problems in the course of a
derivation with deep merge paths. A half-way compromise would be fo allow left/right
hooks only, because then only one branch together with its siblings needs to be kept in
memory af a time (this suffices because MM-branches are not opened again by adding
just hooks and ancestor merge paths).

However, some important applications such as the mentioned diagnosis application
typically admit only view minimal models, so that space consumption should not be a
problem at all.

7 Conclusions

In this paper we extended previous versions of the hyper tableau calculus by inference
rules for merge paths, a device that was originally conceived to speed up refutational
theorem proving in the context of clause trees [Horton and Spencer, 1997a]. Our pri-
mary goal was to investigate the consequences for model computation purposes. Our
main result is therefore a minimal model sound and complete calculus to compute cir-
cumscription in the presence of minimized and varying predicates. There is no obstacle
to include fixed predicates as well, but we did not do it so far. The motivation was given
by the potential to solve a certain problem in diagnosis applications.

We argued that the new calculus generalizes other approaches developed in compa-
rable calculi (folding-up/down, complement splitting), but at the same time we propose
to build on known techniques to realize the minimal model test (cf. Section 6.2).

We understand this paper to lay down the theoretical background; how to apply the
new technique practically, in particular in the envisaged diagnosis domain, is subject to
further investigations, Of particular interest will be restricted cases of merge paths that
allow for cheap legality tests, as the ALP algorithm of [Horton and Spencer, 1997a], or
the Allpaths algorithm of [Sharpe, 1996].
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