Combining Rank/Activity with Set of Support,
Hyperresolution and Subsumption

J. D. Horton and Bruce Spencer

Faculty of Computer Science, University of New Brunswick
P.Q. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
jdh@unb.ca, bspencer@unb.ca, hitp://www.cs.unb.ca

Abstract. The rank/activity (R/A) restriction of binary resolution spec-
ifies that literals in clanses have ranks, and are either active (can be re-
solved) or inactive. When a literal is resolved, literals in the new clause,
that were of lower rapk in the parent clause than the resolved literal,
become inactive in the child clause. Literals that merge or factor with
literals from other clauses become active, Two derivations are equivalent
if they consist of the same resclutions, possibly in a different order, but
resulting in the same clause. It is known that with R/A, no two equiv-
alent derivations are found (uniqueness), but that one derivation from

" each equivalence class is found. In this paper, R/A is combined with the
set of suppert strategy, with hyperresolution, and also with subsumption.
In the first two cases, both completeness and uniqueness are maintained.
In the subsumption case, completeness and uniqueness can. be retained
if full rank/activity is kept, but subsumption of small clanses by bigger
clauses is not done. With full subsumption, and a restricted version of
R/A, completeness is kept but uniqueness is lost.

1 Introduction

Resolution proof procedures start with a set of clauses corresponding to the
negation of the expression to be proved, and then resolve pairs (hyperresolving
sets} of clauses to form new clauses until the empty clause is found. If the parent
clauses are recorded, then the derivation of each clause can be readily found.
Thus one can think of a proof procedure as searching through the space of all
derivations of all clauses starting from the set of input clauses.

Derivations can be represented in several ways: as a sequence of clauses, as
a proof tree which we call a binary resolution tree[8], or as a clause tree[3].
Simply reordering resolutions does not change the essence of the derivation, but
this not readily detectable when the derivetion is just a sequence of clauses.
The clauses in two equivalent derivations may not even be the same. However
in binary resolution trees and clanse trees, it is readily detectable. Two binary
resolution trees are defined to be rotation equivalent if there is a reordering of the
resclutions that transforms one tree to the other. Two clause trees are said to be
reversal equivalent if there is a sequence of path reversals that transform one to
the other. These two concepts, rotation equivalence classes of binary resclution

trees and reversal equivalence classes of clause trees, both partition the set of
derivations into the same equivalence classes, in which derivations are considered
to be equivalent if the same resolutions are perforimed in both.

The simplest restriction, which is assumed through the remainder of the
paper, is to disallow the same resolution twice. If) is resolved with Cs, then
'y will not later be resolved with .

Subsumption, which rejects clauses that are subsumed by other clauses, re-
moves a large portion of the search space itself, but clearly retaing completeness
as there always exist derivaions equally good or better than any derivation
that has been removed. Regularity {9], and its generalization minimality [8], pre-
vent some redundant refutations from being produced but always leave some
smaller refutations. The set of support straiegy (SOS) prevents the resolution of
two clauses outside the set of support [5]. Hyperresotution allows only positive
clauses to be produced, forcing all negative literals to be resolved at once. Many,
hut not all, refutations cannot be reached by any of these restrictions. All the
above restrictions allow some refutations to be constructed many times.

The major focus of this paper is the rank/activity restriction (R/A) intro-
duced in [4], and its interaction with the various restrictions mentioned above.
In the R/A restriction, the Literals in each clause are ordered by a rank function
which assigns an integer value to each literal. This rank function must be con-
sistent between a parent clause and a child clause, in that if rank(ae) < rank(b)
in a parent clause, then renk(a) < rank(d) in the child clause as well. When a
clause is resolved on a literal of a given rank, in the newly created child clause all
literals of a lesser rank (rank as defined in the parent clause) are deactivated, and
hence are not allowed to be resolved again. This activity condition also must be
inherited from parent literal to child literal, with the following exception. When
two literals that come from different parents merge (or factor) in a child clause,
the literal becomes active, regardless of whether the literals in the parent clauses
are active or inactive. This exception is very important as completeness is lost
if this is not done. An implementation need not actually facior unifiable literals
immediately, but just assign a rank to the set of unifiable literals. The rank can
be anything, but one possibility is to make the rank of the set equal to the rank
of the lowest ranked literal,

In: contrast to all the other restriction mentiocned above, no equivalence class
of refutations is removed by R/A (strong completeness), but only one refuta-
tion per class is found (uniqueness). We investigate how R/A interacts with the
above restrictions. We already know that R/A and minimality combined is both
complete and unique [4]. R/A, slightly weakened, combined with SOS is shown
to be complete and unique in section 3. Another slightly weakened form of R/A
combined with hyperresolution is also complete and unique, as shown in sec-
tion 4. R/A and subsumption is investigated in section 5: full R/A with a much
weakened subsurnption is shown to be both complete and unique; a weakened
form of R/A and full subsumption is complete but not unique.

2 Background

We use standard definitions [1] for atom, literal, substitution, unifier and most
general unifier. Much of this section originated from [8]. In the following a clause
is an unordered disjunction of literals. An atom a occurs in a clause C if either «
or - 1s one of the digjuncts of the clause. The clause ' subsumes the clause D
if there exists a substitution # such that €8 C D, Two clauses are stendardized
apart if no variable occurs in both. Given two parent clauses Ci Va1 V.. .Vay, and
Cov—b1 V. . Vb, which are standardized apart (a variable renaming substitution
may be required) their resolvent is the clause (Cy V Cz)# where # is the most
general unifier of {a1,...,4m,81,. .., by }. The atom resolved upon is a1 8, and the
set of resolved literals is {a1,...,am,—b1,...,~bn}. An implementation is free
to merge or factor literals if desired. Factoring may be seen as an optimization
if the factored clause can be used in several resolution steps, since the factoring
15 done only once.

A fair resolution procedure is does every resolution not otherwise restricted,
and does it exactly once. No resolution is deferred forever. Thus if no clauses are
rejected, a fair resolution procedure produces every possible derivation.

2.1 Binary resolution tree definitions

A binary resolution derivation is represented by a binary tree, drawn with its root

_at the botiom. Each edge joins a parent node, drawn above the edge, to a child
node, drawn below it. The ancestors {descendants) of a node are defined by the
reflexive, transitive closure of the parent {child) relation. The proper ancestors
(proper descendants) of a node are those ancestors (descendants) not equal to
the node itself. Thus the root is a descendani of every node in the tree.

Definition 1. A binary resolution tree on a set § of input clauses is o labeled
binary tree. Each node N in the tree is labeled by a clause label, denoted cl(N).
Each node either has two parents and then its clause label is the result of a
resolution operation on the clause labels of the parents, or has no parents and is
labeled by an instance of an input clause from S. In the case of a resolution, the
atom resolved upon is used as another label of the node: the atom label, denoted
al(N). Any substitution generated by resolution is applied to all labels of the tree.
The clause label of the root of the binary resolution tree is called the result of
the tree, result(T). A binary resolution tree is closed if its result is the empty
clause, 0.

For the binary resolution tree in Figure 1 § = {aVd,~aV bV e, cvVd, eV
FVg,avbVv-e,~aVh,—h,—b g} The labels of a node N are displayed beside
the name of the node and separated by a colon if both labels exist. For example
the node N4 has atom label ¢, and clause label a VAV EYV FV 4.

We can trace what happens to a literal from its occurrence in the clause label -
of some leaf, down through the tree until it is resolved away. Clearly if all literals
are eventually resolved away, the clause label of the root is empty. I this case by

Ny avd My —avhv—e

/
M abvdv—e M ov—d
AN
M dbvev—e M evfvg
\

Ny ebvovfir My avbv—e = —avh

N | ~

Ny aav bvbvfug M, h—a

\

Ne awbvbvfvg Ms b

My —g

No Bifv
N

N gf

Fig.1. A binary resolution tree.

soundness of resolution, the clause labels of the leaves is an unsatisfiable set of
clauses. Thus we are primarily concerned about tracing the “history” of a literal
starting from its appearance in a leaf.

For example in Figure 1, (M1, Na, N3) is a history path for ¢ which closes
at Ns. The two history paths for b in Figure 1, corresponding to the two occur-
_rences of b, are (M3, N3, Ns} and (Mg, N1, Ng, N3, Na, N5). Both of these close
at Ng. The only history path which does not close is the one for f, which is
(M2, N3, Ny, Ny, Ng, Ny).

A over B —cvevp B—gvevp D—evd
C c:evavi D —evd Ao E a—evpvd
E aiavfivd Coovpvb
N .
.\ ‘__
~, A
F F

Fig. 2. A binary tree rotation

Operation 1 (Edge Rotation} Let T be a binary resolution tree with an edge
(C, E) between internal nodes such that C' is the parent of E and C' has two
parents A and B. Further, suppose that no history path through A closes ot E.
Then the result of a Totation on this edge is the binary resolution tree T defined
by resolving cl(B) and cl(D) on al(E) giving cl(E) in T' and then resolving

cl{) with el(A) on al(C) giving cl(C) in T'. Any history path closed at C in T
is closed at C in TY; similarly any history path closed at E in T is closed at E in
T, Also, the child of E in T, if it exists, is the child of C in T'. (See Figure 2}.

A rotation may introduce tautologies to clause labels of internal nodes. For
instance, if al(C} occurs in ¢l(D) then ¢I(E) in T’ may be tautological. However
the clause label of the root is not changed (Corollary 1).

Corollary 1. Given a binary resolution tree T with an internal node C and
its child E, the rotation of edge (C, E), Operation 1, generates a new binary
resolution tree and ¢l(C} = cl(E) up to variable renaming.

N add My —avbv—e
M \a:bé—‘e My ov—d M ovbv—e —avh
N dbvev—e M oeyfig —h . N>:{£cvk
N: e:bvr%g My ke b|\f—|c
o
Ny o bvbufeg M —b

\bﬁ,/ e
N B i
N

Ny ogf
Fig. 3. From Figure 1 rotate (Va, N5), then (M, N3}

A rotation changes the order of two resolutions in the tree. Rotations are
invertible; after a rotation, no history path through I closes at C, so another
rotation at {E, C) can be done, which generates the original tree again. We say
that two binary resolution trees are rotafion eguivalent if one can be generated
from the other by a sequence of rotations. For instance, the binary resolution
tree in Figure 1 is rotation equivalent to the tree in Figure 3, which is produced
by rotating the edge (N, N5) in Figure i and then the edge {34, Ns). Rotation
equivalence is an equivalence relation.

A rank function must assign a value to every literal in the clause at each
node i a given binary resolution tree, in such a way that it orders history paths
consistently. Moreover it must assign values to sets of literals if they are unified
by a resolution closer to the oot of the hinary resolution tree. In the following
definition & rank function is required to assign values to every set of unifiable
literals, even if they are not unified until later in the tree. The rank of a set of
literals could be given as the minimum of the ranks of the literals unified, the
maximum, or any other number. In the following, if H is set of history paths

in a binary resolution free T' with unifiable literals and they have some node in
common, let literal(H) be the multiset of these literals.

Definition 2 (Rank function). Let F be a set of binary resolution trees, closed
under taking subtrecs. Let v assign a value to every set of unifiable literals at
every node of every tree. Then » is a rank function for F if r satisfies the
following condition in every binary resolution tree T':

For every pair of disjoint sets H, and Hs of history paths which have two
nodes N1 and Ny in common:

r(literal(H1), N1) < r(literal(Hy), N1) <
r{literal{H1), Na) < r(literal(H>), Ny).

Thus # is a rank function if it orders the sets of history paths consistently. In
fact the reflexive transitive closure of this relation between sets of history paths,
is a partial order.

Next we wani to define those binary resolution trees which can be built using
the R/A restriction. Let JV be a node other than the root of a binary resolution
tree T. Let H{N) be the set of history paths with V as their head. Then these
paths cloge at the child of .

Definition 3 {r-compliant}. Let » be a rank function for a binary resolution
tree and all its subtrees. Then T is r-compliant if the following cendition is true:
Let N and M be any two nodes such that H(N) also have M in’ common. Thus
M is an ancestor of N. Then r(literal(H(M)), M) < r(literal(H(N)}, M).

The resolution at M’s child does not deactivate the set of history paths with
head at N. Moreover, this set of history paths is not affected by what happens
before they are drawn together at some node by a resolution. Therefore it is
created as an active set of literals. Hence the set is active in N and can be resolved
by a R/A procedure at N’s child. Thus the r-compliant binary resolution frees
are precisely those trees which can be constructed using the R/A restriction of
binary resolution, using the function r as the rank function.

2.2 Clause tree definitions

The definition of clause tree in this paper differs from that in [3]. There the
definition is procedural, in that operations that construct clause trees are given.
Here the definition is structural.

Definition 4 (Clause Tree). T = (N, F, L, M} is a clause tree on a set § of
input clauses if

1. {N, E) is an unrooted tree.

2. L is a labeling of the nodes and edges of the tree. L : NUE — SUAU{+, -},
where A is the set of instances of atoms in S. Each node is labeled either by
a clouse in § and called a clause node, or by an atom in A and called an
atom node, Fach edge is labeled + or —.

. No atom node is inctdent with two edges labeled the same.
. Each edge e — {a,c} joins an atom node a and a clause node ¢; it is associ-
ated with the literal L{e)L(a).

5. For each clause node ¢, {L(a,c)L{a)|{a,c} € E} is an instance of L(c). A
path {vo,€1,v1,...,¢6n,Un) where 0 < 4 < n, v; € N and ¢; € F where
1 < 7 < n is a merge path if L(e;)L{vg) = Lien)L(vy). Path {vy,...,vn)
precedes (<) path {wo,..., Wm) if vy =w; for somei=1,...,.m—1

6. M is the set of merge paths called chosen merge paths such that:

(a) the taidl of each is a leaf {called a closed leaf),

(b} the tails are all distinct and different from the heads, and

(¢} the relation < on M can be extended to a partial order.

F L

S

b

T + _ + + _Mp +b
M o d—g——a N

a’ T e
ST
* - - FTARNG
g My

Ms

Fig.4. A clause tree corresponding o the binary resolution trees in.f‘igures 1 and 3.

In this paper we disallow merge paths of length two since they correspond
to factoring an input clanse, which can be the clause of a clause node. A set
M of paths in a clause tree is legal if the < relation on M can be extended to
& partial order. A path P is legal in T = (N, E, L, M) if M U {P} is legal. If
the path joining t to h is legal in T', we say that h is wisible from ¢. A path
{vo,€1,%1,.--,6n,Un) where v; € N and ¢; € F is a tautology path if L{v) =
L(v,) and Lie1) # L{en). A path is a unifieble tautology path if L(ei) # L(ey)
and there exists a substitution § such that L(vg}¢ = L{v,)8. A path is a unifiable
merge path if there exists a substitution & such that L(e1)L(v0}8 = Lien)L(vn)o.

A clause tree with a single clause node is said to be elementary. An open
leaf is an atom node leaf that is not the tail of any chosen merge path. The

disjunction of the literals at the open leaves of a clause tree T is called the
clause of T, cl(T).

Definition 5§ (Minimal clause iree). A clause tree (N, E, L, M} is minimal
if it contains no legal merge path not in M and no legal tautology path.

Operations that can be applied to clauses include:

1. Construction of elementary clause trees from {an instance of) an input clause
with one clause node and one atom node leaf for each literal in the clause.

2. Resolution of two clause trees by identifying the open leafs, one from each
clause tree, of the literals to be resolved.

3. Choosing a merge path between two open leaves that correspond to the same
literal.

4_ Taking an instance of a clause tree by applying a substitution to each of the
atom labels.

In this paper, taking instances and choosing merge paths are only done Im-
mediately before a resolution.

3 Set of Support with Rank/Activity

The SOS strategy, or restriction, requires that the unsatisfiable set 5 of clanses
be partitioned into two parts: a set of support §’ and a set § =5 — 5§’ that is
satisfiable. It restricts pairs of clauses from S” from resolving. An SOS binary
resolution tree is one in which each internal node has at least one leaf ancestor
from the set of support. It is well known that the SOS restriction preserves
completeness [5] and so an SOS binary resolution tree refutation must exist.

Rank/activity needs to be slightly weakened to be combined with SOS. When
a clanse from S is resolved (with a clause from the set of support) the literals
from it are all active in the resulting clause. Thereafter the R/A restriction
is applied as usual. In effect, these literals are not ranked until their clause is
resolved with a clause from the set of support.

Theorem 2. Let § be an unsatisfieble set of clauses and 8’ be a subset of §
such that § — §' is satisficble. Let v be a rank function of the binary resolution
trees of 5. There exists an r-compliant 508 binary resolution tree refutation on
S with set of support 5.

Proof. Let T be a binary resolution tree on § with set of support S’. We construct
T* that is rotation equivalent to T' and r-compliant. Assume T has three or more
nodes, since a one node tree is r-compliant.

For each leaf L define an internal node P(L) that L points to. If L is labeled
with 2 clause from § — §7, let I point to its child. Otherwise L is labeled with
a clause from §’ and the node it points to is assigned as follows: Consider the
descendants Py, ..., Dy of L that resolve away only literals from L. Thus a de-
scendant IJ; is in this set if for each history path H in H(D;), tail(H) = L.
These descendants are not merged with literals from other leaves before they are
resolved. There must be at least one of these. Now consider that descendant D;
of L such that r(literal(H(D;)), L) is minimal over j = 1, ..., k. The child of D;
resolves the lowest ranked set of literals in L. Let L point at the child of D;.

Because there is one more leaf than internal nodes, some internal node ¥ is
pointed at by (at least) two leaves Ly and Lo. (In fact there must be exactly
two.) If both leaves are not from the SOS then T is not an S80S binary resolution
tree, so at least one of these leaves must be from the SOS. Construct Tp, rotation
equivalent to T', but where ¥ is the child of two leaves. If this is not already true,
without loss of generality let L; be the leaf ancestor from the set of support,
and let B and C be the grandparent and parent, respectively, of E, that are

descendants of L. Note that the SOS leaf ancestor must be at least two levels
from £ because a non-SOS leaf ancestor of £ is a parent of £. A rotation of the
edge (C, E) must be possible because there are no merges on literals resolved at
E. After the rotation L, and s both still point to E and F has fewer ancestors
b is constructed after a finite number of such rotations.

From 7, construct a smaller tree 1) by removing Ly and Ls, making ¥ a
new leaf. Note that r is still a rank function on T;. By induction I3, which
has fewer nodes, is rotation equivalent to a binary resolution tree I that is
r-compliant. Construct 7¥ from T by replacing the leaf nodes L; and L; above
E. T' is rotation equivalent to T, as is seen by performing on T those rotations
performed on Ti. Thus T is rotation equivalent to 7.

It remains to show that 7" is r-compliant. The only nodes that must be
checked are the new nodes L, and Ij, as a possible M in the definition of r-
compliant. Consider any non-root node N’ such that the history paths H(N’)
have Ly in common. Then r{literal(H (L)), L1) < r(literal(H(N')), L1} by the
definition of P({L1), so that the r-compliant condition is always satisfied at Ly.
The same situation applies at Ls. Thus 77 is r-compliant. ‘This proves complete-
ness.

If the condition is added that the rank function r does not map two digjoint
sets of literals at any node to the same value, then the pointer function chooses
a unique node P(L) for any leaf L. Let L and D; be as defined above. Let T*
be any binary resolution tree that is r-compliant and rotation equivalent to T
The history paths H(L) close at the child of L. Then r{literal(H(L}),L) <
r(literal(H(D;)), L) for ¢ = 1,2,..., k, because T™ is r-compliant. But by the
uniqueness condition on 7, these ranks must all be distinct. Thus there is a
unique j such that H(L) = H(D;), and P{L) is the child of D;, by the definition
of P(L). Hence D; = L, and P(L) must be the child of L in T*.

This argument shows that each leaf of T has a unique child. The argument
can be extended to all the nodes of 7™, by inducting on the height of the subtree
above the node. Thus every node, other than the root node, has a uniquely
defined child node. It follows that the binary resolution tree T¥ is unique. 0

Corollary 2. Any fair SOS procedure, when combined with B/A, will generate
exactly one binary resolution tree from each class of rotation equivalent SOS
binary resolution treas,

4 Hyperresolution with Rank/Activity

One of the most common restrictions of resolution is hyperresolution{7]. It is
used by many bottom-up resolution theorem provers, like Otter[6] and Blitzen
(de Nivelle). Hyperresolution can be thought of as a restriction of SOS, with
the clauses that have all positive literals being in the set of support, and with
the other clauses {negative and mixed) forming a satisfiable set of clauses; the
empty interpretation is a model. But hyperresolution also adds the restriction
that all the negative literals must be resolved at the same time. The result will

always be a positive clause so that the clauses in the set of support are always
positive. Thus factoring and merging, other than on the input clauses, must
occur only with positive literals. Hence if a hyperresctution proof is represented
as a clause tree, all the merge paths join positive literals. {The converse of this
follows from the completeness theorem helow.] We mention clause trees because
the completeness and uniqueness theorems below appear to easier to prove using
clause trees than using other proof representations.

Rank /activity and hyperresolution can be combined in a way that is similar
to combining B/A and SOS. The literals of the negative and mixed clauses are
not ranked and remain active until the clause is hyperresolved. (de Nivelle [2]
suggested this.} Once the clause has been hyperresolved, the set of unifiable
positive literals from it in the child clause become active and are given ranks,
which can be done in any arbitrary {ashion. The activity and ranks of literals in
the positive clauses are manipulated just as in the pure R/A restriction.

Fairness is again an issue. ¥f any hyperresolution becomes possible, and all
the positive literals are active, then the procedure must eventually perform the
hyperresolution.

Theorem 3. Any fair R/A hyperresolution procedure, when applied to a set S
of clauses, will generate any clause tree T defined on S that has only positive
merge paths. Moreover, T is produced ezactly once by the procedure.

Prosf. Consider and clause tree 7" on a set § of input clauses with a rank func-
tion r. The proof is by induction on the number of nodes in T. The induction
hypothesis is strengthened to assume only that those literals that are not the
head edges of merge path in T are active.

Consider the tree 7' derived from T which has as it nodes the clause nodes
of T. Two (clause) nodes are connected in T” if there is an atom node in 7" that
is adjacent to both. (See Figure 5.)

Consider each edge {v,w} of T'. Let b be the atom node in T between v
and w. If (w, 8) is labeled negatively, and hence (v, b) is positive, then direct the
edge in 7’ from 1w o v. In this way direct all edges of T", except for one edge
at each node that corresponds to a positive input clause. Let C' be the (possibly
factored) positive input clause of one of these positive clause nodes u. Consider
the set of nodes adjacent to u in T that are not the head or tail of any merge
path over u. Let a be the minimally ranked atom label among these atom nodes.
Direct the edge in 77 corresponding to a away from u. (See Figure §.)

Since T' is a directed acyclic graph, it must have a sink, v, at which all in-
cident edges are directed. The node v cannot correspond to a positive clause,
because all positive clauses have one edge directed away. Therefore v must cor-
respond o a negative or mixed clause. A hyperresolution can be performed
involving that clause using its negative literals, and those neighbouring clause
nodes labelled with positive clauses. In Figure 5, u and z are examples of these.
Note that this hyperresolution can deactivate a literal in such a positive clause
only if the literal is the head or tail of a merge path over that clause node.

16

™

" \

&

Df/@é\b
Dg>‘3\n <

Fig.5. An example of the consiruction in Theorem 3

11

Now consider the clause tree 7" corresponding to the tree derived from T
by contracting all edges adjacent to v, to produce a new (clause) node +'. This
action is equivalent to performing the hyperresolution indicated above and using
the resul as a new input clause. Any merge path in T that includes only one
clause node, which can only be ¢/, must be removed, with the path’s tail edge and
adjacent closed leaf being removed as well. Such a merge path is shown in Fig-
ure 5 between 5’s. By the induction hypothesis, the clause tree T% is constructed
by any fair R/A hyperresolution procedure, starting with §U {clause(u)}.

We must now specify what procedure is to be used on SU{clause{u}}. Choose
the same procedure, that is sequence of hyperresolutions, that is done starting
from S, except the hyperresolution that creates {clause(u)}. This procedure is
fair because the original procedure is fair. By the induction hypothesis, 7" must
be constructed. Thus 7 is constructed by the original procedure. Hence R/A
combined with hyperresolution is complete; all clause trees that can be produced
by hyperresolution are produced by any fair R/A hyperresolution procedure.

A similar induction proof shows uniqueness. By an induction hypothesis, the
clause tree corresponding to T is constructed in only one way by the procedure.
There is only one construction of T by hyperresolution with input clauses. In
any other construction of T, one of the positive clauses C that corresponds to a
neighbour of » in 7, must be used in some other hyperresolution. But then the
literal of €' resolved is ranked higher than the literal that connects the node of
C to v. Then this latter literal becomes inactive, and can never be resolved with
the complementary literal of the clause of v. For example in Figure 5 consider
clause(z) = {d,g}. If g were resolved before d, then d would become inactive,
and could not resolve with the —d of clause(v). Thus T' can only occur once in
the sequence of clause trees produced by the R/A hyperresolution procedure. O

Corollary 3. A clause tree T ean be constructed by hyperresolution if and only
if T has no merge paths in negative literals.

The minimality restriction cannot be combined in total with hyperresolution.
Negative merge paths cannot be chosen, but unchosen ones may be created by
hyperresolution. Indeed, if one refutes the set of clauses {aVv b, naVd, aV-b,—~aV
~b} using hyperresolution, the corresponding binary resolution tree would not
be regular. However, one can insist that the clause tree produced not have any
unchesen merge paths on positive literals, nor any tautology path such that the
head is a positive literal and is visible from the tail which is the negation of the
literal of the head.

Theorem 4. Consider any B/A hyperresolution procedure that is fair, except
that it rejects any clause three that contains an unchosen positive merge path
or any tautology path whose head is positive. Then the procedure 15 compleie.
Moreover, any clause tree that does not contain an unchosen positive merge path
nor g tautology path whose head is positive is constructed exactly once by the
procedure,

In effect, half the minimal restriction can be combined with hyperresolution
and RA, while retaining completeness and also uniqueness.

12

5 Subsumption with Rank/Activity and Minimality

Non-minimality and activity both are properties that prevent the construction
of clause trees that would be removed by subsumption. Subsumpiion can be an
expengsive check because it depends on the set of retained clauses, which may be
large. Wos[10] refers to this:

If a strategy could be found whose use prevented a reasoning program
from deducing redundant clauses, we would have a solution far preferable
to our current one of using subsumption.

Minimality and R/A provide a partial solution, but do not remove every sub-
sumed clause. For ingtance there may be redundancy in the input clause set, so
that the same clause is derived from differeni input clauses. The question is, can
the restrictions of minimality and R/A be used in conjunction with subsump-
tion? The answer is only partially. These different techniques interfere with each
other, and lose completeness. In Figure 6, the fair selection strategy is guaran-
teed by constructing all clause trees of one clause node, of two clause nodes, et
cetera. Ranks are indicated by numbers in superscript, and an inactive node is
denoted by *. '

1. plte

2. al —e—b input clause subsumed by 7.
3. a® +e—p input clause subsumed by 6.
4, b 4w —pt input clause subsumed by 5.
5. B te—pte 1. res 4.

6. a® +e—pie 1. res 3.

7. c*—e—bte-pte 2. res 5.

8. Pr—e—ade—p+te 2, res 6.

No more minimal resclutions are possible.

Fig. 6. Subsumption interacts with minimality and rank/activity

We can extend any bottom up clause tree procedure to use subsumption
fully and maintain completeness, at the cost of losing some of the advantages
of minimality and activity. Whenever a clause tree T subsumes a clause tree
T, remove both T and T”, and replace both with the elementary clause tree
of a new input clause cl(7"). The ranks of the leaves of this clause tree are
assigned as for any input clause. All of these leaves must he deemed active.
We call such elementary clause trees contracted and we call this subsumption
contracting subsumption. Figure 7 shows the same example as Figure 6, but
using contracting subsumption.

Contracting subsumption retains completeness, but each contracted clause
tree it introduces has lost the internal structure that allows non-minimality to
be detected, and all leaves in the new clauses are active. Thus the derivations are
no longer unique. However, we can avoid some of this redundancy, because not

13

1. Pt input clause

2. a! —e—3 input clause subsumed by 8.
3. a®+e—p' inpub clause subsumed by 6.
4. b4+ e—p' input clause subsumed by 5.

5.8 +e—p+e 1lresd becomes b +w, subsumes 4.
6.a°+e—p+e 1l.res3 becomes a' + o, subsumes 3.

T.6"—e—b+e 2 resh. inactive, can be ignored
8.8° -e—a-t+e 2 resB. becomes b + o, subsumes 2.
9, e—b4s 5. res 8. Done.

Fig. 7. Contracting subsumption works with minimality and rarnk/activity

all subsumptions need a contracting clause. We compute a size for each clause
free, If the subsumed clause is bigger than the subsuming clause, the subsumed
clause can be safely rejected, just as the usnal form of subsumption. Only if the
subsumed clause is the same size or smaller, do we replace it by a contracted
clause.

Definition 6 (Strict Increasing Subsumption}. A clause tree T' subsumes a
clause tree T* if cl(T) subsumes cl(T™). It is called strict increasing subsumption
if size(T) < size(T™).

There are various size functions that could be used: the number of clause
nodes, the number of edges, the height of the tree, the total size where each
clause node is given a weight, et cetera. For a given problem and selection strat-
egy, different weight functions would give different proportions of confracting
subsumptions.

Definition 7 (Properties of size functions). A size function is consistent
if size(Ty) < size(Ty) implies that size(Ty res T) < size(Ty res T). We say
that a stze function is stable if, for each clause tree T, all admissible derivations
of T agree on the size of T. A size function is increasing if size(Ty res Tz) >
maz(size(T1), size(T2)). It is additive if size(Ty res Tp) = size(Th) + size(T2).

Theorem 5 {Completeness with all properties). Given a fair minimal
clause tree procedure that uses the B/A restriction, uses increasing subsumption
and contracting subsumption otherwise, where the size function is increasing,
consistent and stable. Moreover suppose that the rank ovrder of literals in the
child clause is totally determined by the rank order in the parent clauses. Then
this procedure is refutationally complete.

Proof. The proof is a straightforward induction, omitted to save space.

6 Discussion

The R/A restriction prevents any derivation from being found twice in the search
for a derivation of an empty clause. This is unlike most restrictions of resolution

14

which cut out large portions of the search space, but which allow many different
ways to get to any given restriction. We have shown that R/A can be combined
with both SOS and hyperresolution, and obtain both types of reduction in the
search space. Combining R/A with subsumption is not as clean, but is also
possible, gaining all the power of subsumption with some of the power of the
rank/activity.

Each time a resolution is to be considered, if an activity check is made and
one of the pair of literals is found to be inactive, a resolution (and probably a
subsumption check) is saved. On the other hand, R/A may not be very compati-
ble with some of the standard heuristics in automated theorem provers. Because
there is only one path that leads to a given refutation, if one of the steps does
not score well with some heuristic, that refutation will not be found for a large
number of steps. For example, if a procedure always chooses small clauses before
larger ones, and if the unique path to a given refutation contains a large clause,
then that refutation will not be found until all smaller clauses have been ex-
hausted. Since the smaller clauses may never be exhausted, such a heuristic can
lead to an unfair procedure, and completeness can be lost. On the other hand,
different heuristics, which could take the R/A restriction into account, can be
used instead. Such a heuristic could prefer smaller clause trees, at least to some
extent. Implementations are required to test out various heuristics.

References

1. Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York and London, 1973.

2. Hans de Nivelle, 1998. Personal communication.

3. J. D. Horton and B. Spencer. Clause trees: a tool for understanding and imple-
menting resolution in automated reasoning. Artificial Intelligence, 92:25-89, 1997.

4. J.D. Horton and B. Spencer. Rank/activity: a canonical form for binary resolution.
In C. Kirchner and H. Kirchner, editors, Automated Deduction - Cade-15, mumber
1421 In Lecture Notes in Artificial Intelligence, pages 412-426. Springer-Verlag,
Berlin, July 1998.

5. L. Wos, D. Carson and G. Robinson. Efficiency, completeness and the set of support
strategy in theorem proving. J. ACM, 12:536-541, 1965.)

6. W. W. McCune. Otter 3.0 users guide. Technical Report ANL-94/6, Mathemat-
ics and Computer Science Division, Argonne National Laboratories, Argonne, 1L,
1594.

7. J. A. Robinson. Automatic deduction with hyper-resolution. International Journal
of Computer Mathematics, 1:227-234, 1965.

8. Bruce Spencer and J.D. Horton. Extending the regular restriction of resclution to
non-linear subdeductions. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence, pages 478-433. AAAI Press/MIT Press, 1997.

9. G. 8. Tseitin. On the complexity of derivation in propositional caleulus. In Studies
in Constructive Mathemalics, Seminars in Mathematics: Matematichesldi Institute,
pages 115-125. Consultants Burean, 1$69.

10. Larry Wos. Automated Reasoning ; 33 Basic Research Problems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

15

