

Contents

1 �{trees 4

1.1 �{sets : 4

1.2 �{signatures : 4

1.3 De�nition of a �{tree : 5

2 Examples of representation of patterns by �{trees 6

2.1 Example 1: representation of hierarchical patterns by �{trees 7

2.2 Example 2: letters : 11

3 �{algebras 15

3.1 Algebraical operations on �{sets : : : : : : : : : : : : : : : : : 16

3.2 �{algebras : 16

3.3 Example of a �{algebras : 16

3.4 Morphisms of �{algebras : 17

3.5 �{tree morphism associated with a �{algebra : : : : : : : : : 17

4 Representation of �{tree classes by �-tree automata 18

4.1 �{tree classes and �{tree automata : : : : : : : : : : : : : : : 18

4.2 An example of a �{tree class which is represented by some

�{tree automaton : 19

5 Minimal �{tree automata 26

5.1 Congruences on �{algebras : : : : : : : : : : : : : : : : : : : 26

5.2 The congruence Rf
: 27

5.2.1 Derivative unary operations : : : : : : : : : : : : : : : 28

5.2.2 De�nition of the congruence Rf on the �{algebra (Q; �) 29

5.2.3 Properties of the congruence Rf
: : : : : : : : : : : : : 31

5.3 Construction of a minimal �{tree automaton for a given �{

tree class : 32

6 Conclusion 33

1

Introduction

Trees are used in most areas of computer science, both practical and theoret-

ical, such as for example in mathematical logic, compiling theory, program

veri�cation theory, pattern recognition (see [4], [5], [18], [19], [24], [27]).

One of the most important problems related to trees is a problem of tree

classes representation. For example, in structural pattern recognition theory

a class C of trees can be considered as a set of various representatives of a

some concept, and the following problem has a big importance: to construct

a representation of the class C, such that the problem of checking is a tree t

a representative of this concept, or no (i.e. is t 2 C or t 62 C) is decidable in

real time.

Many methods and tools can be fruitfully applied to the de�nition and

study of tree classes: grammars, systems of substitutions, congruences, etc.

(see for example [15]) One of them is tree automata approach.

Tree automata have been studied for a long time (see [13] [17], [9], [10],

[12], [14], [31], [32], [33], [35], [36]). In logic tree automata theory has used for

characterization of decidable second order theories (see [30]). In computer

science it was established dependency between complexity of decision proce-

dures for most temporal and dynamic logics, and the complexity of testing

of emptiness of corresponding tree automata(see [26]).

The present paper is related to the generalization of a tree automaton to

the concept which is appropriate for representation of classes of typed trees.

Typed trees are related to representation of objects associated with some

type system. A type system classi�es objects under consideration according

to their speci�c structure or properties. The notion of type expresses the

fact that one just cannot apply any operator to any value. The concept of a

typed structures in mathematics and computer science have been studied for

a long time (see, for example, [1], [2], [6], [8], [11], [20], [22], [23], [25], [28]).

In computer science, the earliest type systems, beginning in the 1950s

(e.g., FORTRAN), were used to improve e�ciency of numerical calculations

by distinguishing between natural-number-valued variables and arithmetic

expressions and real-valued ones. In the late 50s and early 60s, the classi�-

cation was extended to structured data (arrays, lists, etc.) and higher-order

functions. At the present time many areas of active research in computer sci-

ence related to type approach: for example, in the theory of object-oriented

programming there are investigated the concepts of polimorphism (which

2

allows a single term to be used with many di�erent types, subtyping and ob-

ject types (which address the special needs of object-oriented programming

styles), etc.

We consider algebraic formalization of a concept of a typed tree, i.e. trees

in the present paper are actually terms over �nite typed signature. The al-

gebraic structure on the set of trees is necessary for discussing recognizable

classes of trees. We de�ne a typed tree automata that accept the recog-

nizable these classes. The concept of a typed tree automaton is a natural

generalization of the concept of an ordinary tree automaton. One of the

most essential de�ciencies of the concept of an ordinary tree automaton is

its untyped structure, that not allows represent classes of typed trees in a

natural way.

We generalize the language of tree automata by introducing the concept of

a typed set of states and typed transition functions. For typed tree automata

we prove an analog of the well-known theorem (see [17], [7], [16], [21]) about

construction of a minimal tree automaton which represents given class of

trees.

We now describe the content of the present paper.

The paper consists of �ve sections and conclusion. In the �rst section,

we give some basic de�nitions related to the concept of a typed tree. In

the second section we represent two examples of encoding of some classes

of patterns (pictures with hierarchical structure and letters) by typed trees.

In the third section we recall some de�nitions related to typed universal

algebra. In the fourth section we de�ne the notion of typed tree automata and

give example of a typed tree automaton that represents some class of typed

trees. In the �fth section we introduce the necessary algebraic de�nitions

and prove the central results of the paper: the theorem about minimal typed

tree automaton that represents given class of typed trees. In conclusion we

discuss possible future directons of the research.

3

1 �{trees

In this section we represent some basic de�nitions related to the concept of

a typed tree.

1.1 �{sets

We assume that there is given some set �, elements of which are called data

types.

The concept of a data type in our model is a generalization of the same

concept as it appears in programming languages. For example, the following

entities can be considered as types: real numbers, integer numbers, lists, sets,

etc.

A �{set is an arbitrary �{tuple M of disjoint sets of the form

M = fMi j i 2 �g;

some of which can be empty.

For every i 2 � the set Mi is called a domain of data of the type i.

Below we will identify the �{tuple M = fMi j i 2 �g with the disjoint

union
F
fMi j i 2 �g and will denote this disjoint union by the same symbol

M .

For every x 2M the symbol type(x) denotes an element i 2 � such that

x 2Mi.

Let M = fMi j i 2 �g and N = fNi j i 2 �g be a pair of �{sets.

A �{mapping from M to N is an arbitrary �{tuple f of mappings of

the form

f = ffi : Mi ! Ni j i 2 �g:

1.2 �{signatures

Remind (see [29]) that an algebraic �{type is any n + 1{tuple T of the

form

(i1; : : : ; in; j);

where n � 0 and i1; : : : ; in; j 2 �. If n = 0, then T has the form (; j).

The concept of an algebraic �{type is a generalization of the concept of

an arity of an algebraic operation.

4

A �{signature is a set �, every elememt � of which is associated with

some algebraic �{type T (�).

Elements of the �{signature � are called operational symbols.

An example of a �{signature related to the problem of a class description

will be presented below.

For every � 2 � the algebraic �{type T (�) is called a type of the

operational symbol �.

1.3 De�nition of a �{tree

We assume that there is given some �{signature �.

De�ne a �{set Tr(�), elements of which are called �{trees:

� 8i 2 � every operational symbol � 2 � such that T (�) = (; i) is a

�{tree of the type i (i.e. is an element of the domain Tr(�)i),

� for

{ every n � 1,

{ every � 2 �, such that T (�) is of the form (i1; : : : ; in; j),

{ and every n{tuple (E1; : : : ; En) of �{trees, such that

type(E1) = i1; : : : ; type(En) = in;

the string �(E1; : : : ; En) is a �{tree of the type j.

The �{trees can be represented by pictures as follows:

� every �{tree E of the form � 2 �, where T (�) = (; i) for some i 2 �, is

represented by a one-node graph without edges, and the unique node

of this graph has a label �: �����

Figure 1

5

� every �{tree E of the form �(E1; : : : ; En), where n � 1, is represented
by the graph gr(E) of the form

��������� ����

�
�
��

�
�
��

A
A
AA

A
A
AA

��� HHj

gr(E1) gr(En)

Figure 2

where gr(E1); : : : ; gr(En) are the graphs that represent the �{trees

E1; : : : ; En correspondingly.

2 Examples of representation of patterns by

�{trees

The language of �{trees is a powerful formalizm for representation of pat-

terns. In this section we consider examples of representation of geometrical

patterns by �{trees.

6

2.1 Example 1: representation of hierarchical pat-

terns by �{trees

We consider the patterns with hierarchical structure like the following:

�
�
A
A

�
�
A
A

�
�
A
A

�
�
A
A

'

&

$

%

'

&

$

%
�

�

�

�

�
�
�

Figure 3

Every pattern is some set of geometrical �gures: triangles, circles, squares

and rectangles, which can contain each in other. Every geometrical �gure in

the pattern is associated in a natural manner with some number, which is

called a depth, and represents its level of inclusion.

We are interesting only the relation of inclusion on the �gures, i.e. our

rules of encoding of patterns by �{trees must respect only the relation of

inclusion of �gures, and no more.

The patterns of the above form can be obtained, for example, from anal-

ysis of geographical maps, satellite photographies, etc.

Let

� the set � of data types consists of the following elements:

{ arrow,

{ node,

� the set � of operational symbols consists of the following symbols:

7

{ t (triangle); T (t)
def
= (node; arrow),

{ c (circle); T (c)
def
= (node; arrow),

{ s (square); T (s)
def
= (node; arrow),

{ r (rectangle); T (r)
def
= (node; arrow),

{ 8n � 0 the symbol n belongs to the set �, and

T (n)
def
= (arrow; : : : ; arrow| {z }

n

; node):

The above pattern can be represented by the following �{tree, nodes of

which are corresponded to the subpatterns of this pattern, and structure of

which is corresponded to the hierarchy on the subpatterns:

�
�
�
�4

�
�
�
�0

�
�
�
�c

�
�
�
�1

�
�
�
�s

�
�
�
�1

�
�
�
�c

�
�
�
�0

�
�
�
�t

�
�
�
�1

�
�
�
�c

�
�
�
�1

�
�
�
�r

�
�
�
�0

�
�
�
�t

�
�
�
�1

�
�
�
�c

�
�
�
�0

�
�
�
�t

�
�
�
�0

�
�
�
�t

�
�
�
�2

�
�
�
�r

?

?

?

?

?

?

? ?

? ? ? ?

? ?

? ?

???

��������

HHHHHHHj

�
��	

@
@@R

�
�	

@
@R

Figure 4

The algorithm of construction of the �{tree for the geometrical patterns

with hierarchical structure consists of the following steps:

8

1. draw a node with a label n, where n is a number of �gures of the depth

1 in the pattern, this node has a level 0, i.e. is a root of the �{tree,

2. draw n edges from the root of level 0, where every edge is associated

with some �gures of the depth 1 in the pattern,

3. draw nodes at the end of every edge with corresponding label (i.e. if

the �gure associated with this edge is a circle, then the label of the end

of this edge is "c", etc.), these nodes have a level 1,

4. for every node N of the depth 1 draw one edge,

� beginning of which is this node,

� and end of which is a node with a label n(N), where n(N) is a

number of �gures of the depth 2 in the pattern, which contain in

the �gure associated with the node N ,

5. et cetera.

Note that a geometrical pattern can be represented in general case by

several �{trees, for example the above pattern can be represented also by

9

the following tree:

�
�
�
�4

�
�
�
�0

�
�
�
�c

�
�
�
�1

�
�
�
�s

�
�
�
�1

�
�
�
�c

�
�
�
�0

�
�
�
�t

�
�
�
�1

�
�
�
�c

�
�
�
�1

�
�
�
�r

�
�
�
�0

�
�
�
�t

�
�
�
�1

�
�
�
�c

�
�
�
�0

�
�
�
�t

�
�
�
�0

�
�
�
�t

�
�
�
�2

�
�
�
�r

?

?

?

?

?

?

??

????

??

??

???

��������

HHHHHHHj

�
��	

@
@@R

�
�	

@
@R

Figure 5

10

2.2 Example 2: letters

Letters in the arrow representation are the patterns of the following forms:

�
�	

@
@R

�
�	

@
@R

? ?

? ?

- -

Figure 6: the letter "A"

-
@
@R
�

�	-
@
@R

?
�

�	-

?

?

?

Figure 7: the letter "B"

�
�	

@
@R

-
@
@R

-

?

?

�
��

Figure 8: the letter "C"

11

-
@
@R
@
@R

-

?

?

?

?

�
��
�
��

Figure 9: the letter "D"

Let

� the set � of data types consists of the following elements:

{ arrow,

{ node,

� the set � of operational symbols consists of the following symbols:

{ N (north arrow);

T (N)
def
= (node; arrow),

{ S (south arrow);

T (S)
def
= (node; arrow),

{ W (west arrow);

T (W)
def
= (node; arrow),

{ E (east arrow);

T (E)
def
= (node; arrow),

{ NW (north-west arrow);

T (NW)
def
= (node; arrow),

{ NE (north-east arrow);

T (NE)
def
= (node; arrow),

{ SW (south-west arrow);

T (SW)
def
= (node; arrow),

12

{ SE (south-east arrow);

T (SE)
def
= (node; arrow),

{ 8n � 0 the symbol n belongs to the set �, and

T (n)
def
= (arrow; : : : ; arrow| {z }

n

; node):

{ Let C be a set of symbols of the form

C

def
= fc1; c2; : : :g

Then 8n � 0; 8k � 1 the pair (n; ck) belongs to the set �, and

T (n; ck)
def
= (arrow; : : : ; arrow| {z }

n

; node):

An idea of encoding of patterns in the arrow representation by trees is

the following.

Let AR be an arrow representation of some pattern.

The tree Tree(AR) corresponded to AR is a development of AR with a

labelling of nodes.

More detail, for every node N of AR there is de�ned a set TreeNodes(N)

of corresponding nodes in the tree Tree(AR):

� if N has at most one incoming arrows, then the set TreeNodes(N) con-

sists of one node with the label \n", where n is a quantity of outcoming

arrows from the node N ,

� if N has m incoming arrows, where m > 1, then the set TreeNodes(N)

consists of m nodes, every of which is associated with some arrow in-

coming from N :

{ one node \(n; c(N))", where

� n is a quantity of outcoming arrows from the node N ,

� and c(N) is an element of the above set C,

{ andm�1 nodes with the label \(0; c(N))", (the second component

of the label (0; c(N)) is the common for all nodes from the set

TreeNodes(N)).

13

We assume that if N1 and N2 are the pair of di�erent nodes in AR with

several incoming edges, then c(N1) 6= c(N2).

Every arrow E in AR is encoded by a node TreeNode(E) in Tree(AR)

with the label that displays a direction of this arrow.

For every arrow E in AR there is de�ned a pair of corresponding edges

in the tree Tree(AR): let the beginning of E is N1, and the end of E is N2,

then the tree Tree(AR) contains the edge

� beginning of which is a node TN1 2 TreeNodes(N1) such that its label

is \n" or \(n; c)", for some n > 0,

� and end of which is the node TreeNode(E),

and the edge

� beginning of which is the node TreeNode(E),

� and end of which is a node in the set TreeNodes(N2) which is associated

with E.

The correspondence between AR and Tree(AR) can be realized from the

following example encoding of the above arrow representation of the letter

"A":

14

�
�
�
�2

�
�
�
�SW

�
�
�
�1

�
�
�
�SW

�
�
�
�1

�
�
�
�S

�
�
�
�2

�
�

�
�= �
�
�
�E

�
�
�
�1

�
�
�
�S

�
�
�
�0

�
�
�
�E

�
�
�
�(0; c1)

�
�
�
�SE

�
�
�
�1

�
�
�
�SE

�
�
�
�1

�
�
�
�S

�
�
�
�(1; c1)

�
�
�
�S

�
�
�
�0

�
�	

@
@R

? ?

? ?

? ?

? ?

? ?

? ?

? ??

?

?

Figure 10: the encoded letter \A"

3 �{algebras

In this section we recall some de�nitions related to typed universal algebra.

15

3.1 Algebraical operations on �{sets

Let

� Q = fQi j i 2 �g be a �{set,

� and T

def
= (i1; : : : ; in; j) be some algebraic �{type.

An algebraic operation on Q of the type T is an arbitrary mapping !

of the form

! : Qi1 � : : :�Qin ! Qj:

If n = 0, i.e. T is of the form (; j), then the mapping ! has the form

! : 1 ! Qj; where 1 = feg is a one-element set. In this case the element

!(e) 2 Qj is denoted by the same symbol !.

3.2 �{algebras

Let � be some �{signature.

A �{algebra is an arbitrary pair of the form (Q; �), where

� Q is a �{set,

� �

def
= f�� j � 2 �g is a �{tuple of algebraic operations on Q, such that

8� 2 � a type of the operation �� is equal to T (�).

A result of applying of the operation �� (where T (�) is of the form

(i1; : : : ; in; j)) to the n{tuple (q1; : : : ; qn) of elements of corresponding

types will be denoted by the symbol �(q1; : : : ; qn) (or �, if n = 0),

without mention of �.

3.3 Example of a �{algebras

One of examples of �{algebras is the �{algebra

(Tr(�); �);

where �
def
= f�� j � 2 �g is the �{tuple of the following operations:

16

� if T (�) = (; j), then the operation

�� : 1! Tr(�)j

maps a unique element of the set 1 to the �{tree

� 2 Tr(�)j,

� if T (�) = (i1; : : : ; in; j), where n � 1, then the mapping

�� : Tr(�)i1 � : : :� Tr(�)in ! Tr(�)j

maps every n{tuple (E1; : : : ; En) of �{trees of corresponding types to

the �{tree �(E1; : : : ; En).

3.4 Morphisms of �{algebras

Let (Q; �) and (Q0
; �

0) be a pair of �{algebras.

Amorphism from (Q; �) to (Q0
; �

0) is an arbitrary �{tuple f of mappings

of the form

f = ffi : Qi ! Q
0

i j i 2 �g;

such that for every � 2 �

� if T (�) is of the form (; j), then

fj(��) = �
0

�;

� if T (�) is of the form (i1; : : : ; in; j) where n � 1, then 8q1 2 Qi1 ; : : : ; 8qn 2

Qin

fj(��(q1; : : : ; qn)) = �
0

�(fi1(q1); : : : ; fin(qn)):

For every i 2 � and every q 2 Qi the element fi(q) has the equivalent notation

f(q).

3.5 �{tree morphism associated with a �{algebra

For every �{algebra (Q; �) there exists a unique morphism from (Tr(�); �)

to (Q; �), which is called a �{tree morphism associated with (Q; �) and

will be denoted by the symbol ��.

The morphism �
� can be described by induction:

17

� for every E 2 Tr(�) which has the form �, where � 2 � is such that

T (�) is of the form (; i),

�
�(E)

def
= ��;

� for every E 2 Tr(�) which has the form

�(E1; : : : ; En),

�
�(E)

def
= ��(�

�(E1); : : : ; �
�(En)):

It is not so di�cult to prove that the �{subset

�
�(Tr(�))

def
= f�

�(E) j E 2 Tr(�)g

of the �{set Tr(�) is closed with respect to algebraic operations on the �{

algebra (Q; �), i.e. the �{subset ��(Tr(�)) can be equipped by the structure

of a �{algebra:

(��(Tr(�)); �)

(we denote the �{tuple of corresponding operations on �
�(Tr(�)) by the

same symbol �).

4 Representation of �{tree classes by �-tree

automata

In this section we de�ne the notion of typed tree automata and give example

of a typed tree automaton that represents some class of typed trees.

4.1 �{tree classes and �{tree automata

A �{tree class is any subset C � Tr(�) of the set Tr(�).

A �{tree automaton is a pair M
def
= ((Q; �); �), where:

� (Q; �) is a �{algebra,

� � is a subset of the �{set Q.

A �{tree class C(M) associated with M is a subset C(M) � Tr(�),

which is de�ned as follows:

C(M)
def
= fE 2 Tr(�) j ��(E) 2 �g:

18

4.2 An example of a �{tree class which is represented

by some �{tree automaton

Consider the �{tree class that consists of all patterns that represent the letter

\A" in the arrow representation that was considered above. These patterns

correspond to all possible hand-written letters \A" which can contain some

deformations.

Any pattern from this class can be obtained by the following procedure:

� draw a point on the plane,

� draw a pair of disjoint vector traces starting from this point, which are

called "a left trace" and "a right trace",

� choose an internal point A on the left trace and an internal point B on

the right trace,

� draw a vector trace, the beginning of which is A and the end of which

is B, and which has no intersictions with the legt trace and with the

right trace.

For example, this class contains the following patterns:

@
@I �

�	

�
�	

�
��@

@R? �
��@

@R
@
@R�

��

?

�
�	

�
�	

?
�

�	

@
@R

?
@
@R
@
@R

?

Figure 11: the letter "A" with some deformations

19

?

@
@R
@
@R

-

�
��

?
�

�	
�

�	

?

?

?
@
@R

?
@
@R
@
@R

?

-�
��

-�
��

Figure 12: the letter "A" with some deformations

Let � be the above �{signature, where � = farrow;nodeg:

� = fN; S;W;E;NW;NE; SW; SEg [

[fn j n � 0g [f(n; c) j n � 0; c 2 Cg:

De�ne the �{algebra (Q; �) as follows.

The �{set Q consists of the following domains Q
node

and Qarrow:

Q
node

def
= fQ

i
node

j i = 1; : : : ; 10g;

Qarrow

def
= fQ

i
arrow

j i = 1; : : : ; 5g;

where the meaning of the elements Qi
node

and Q
i
arrow

can be realized from

the following graphical interpreration (below the symbol \ " denotes the

garbage states in Q
node

and Qarrow)

� Q
1
node

def
= Q

1
arrow

def
=

� Q
2
node

def
=
����

� Q
3
node

def
= c

� Q
4
node

def
= ����
����
? Q

2
arrow

def
= ����?

20

� Q
5
node

def
=

c

����
?

Q
3
arrow

def
=

c

?

� Q
6
node

def
=

c

����?

� Q
7
node

def
=

����
?
c

?���� Q
4
arrow

def
=

?
c

?����

� Q
8
node

def
=

����
@@R
c

��	����

� Q
9
node

def
=

����
?����
@@R
c

��	���� Q
5
arrow

def
=

?����
@@R
c

��	����

� Q
10
node

def
=

����
@@R
c

?����

��	���� -

����?

The �{tuple � of mappings is de�ned as follows.

� The mappings �N ; �S; �W ; �E; �NW ; �NE; �SW ; �SE are equal mappings of

the form Q
node

! Qarrow and are de�ned as follows:

{ 7!

{
���� 7! ����?

{ c 7! c

?

{ ����
����
? 7! ����?

21

{
c

����
? 7!

c

?

{

c

����? 7!

?
c

?����

{

����
?
c

?���� 7!

?
c

?����

{

����
@@R
c

��	���� 7!

?����
@@R
c

��	����

{

����
?����
@@R
c

��	���� 7!

?����
@@R
c

��	����

{

����
@@R
c

?����

��	���� -

����? 7!

� The symbol �0 is interpreted by the state
����

the symbol �(0;c) is interpreted by the state c for every c0 2 Cnfcg

the symbol �(0;c0) is interpreted by the state

� The mapping �1 has the form �1 : Qarrow ! Q
node

and is de�ned as

follows:

{ 7!

{ ����? 7! ����
����
?

{ c

? 7! c

����
?

22

{

?
c

?���� 7!

����
?
c

?����

{

?����
@@R
c

��	���� 7!

����
?����
@@R
c

��	����
� The mapping �(1;c) has the form �(1;c) : Qarrow ! Q

node
and is de�ned

as follows:

{ ����? 7!

c

����?
{ all other states from Qarrow �(1;c) maps to the garbage state .

� The mapping �2 has the form �2 : Qarrow � Qarrow ! Q
node

and is

de�ned as follows:

{ (����? ; c

?) 7!

����
@@R
c

��	����

{ (

?����
@@R
c

��	���� ;

?
c

?����) 7!

����
@@R
c

?����

��	���� -

����?
{ all other pairs from Qarrow�Qarrow the mapping �2 maps to the

garbage state .

� all other mappings from the �{tuple � maps all its arguments to the

garbage state .

The �{tree automaton which is associated with the class of all arrow

representations of the letter "A" is the pair M
def
= ((Q; �); �), where

� (Q; �) is the above �{algebra,

� and � is the one-element subset f

����
@@R
c

?����

��	���� -

����? g of the �{set Q.

23

The procedure of working of the �{tree automaton M on a �{tree t

consists of parallel computation of states for every node of the tree t "bottom-

up", starting from the leaves:

1. at �rst every leaf of the tree t is associated with an element of the set

Q, which is an interpretation of the label of this leaf in the �{algebra

(Q; �),

2. for every node N of the tree t, such that states for all its childs

N1; : : : ; Nk are already computed and are equal to q1; : : : ; qk corre-

spondingly, the state for the node N is equal by de�nition to the state

�label(N)(q1; : : : ; qk),

3. after completing the procedure of computation of states for the nodes

of the tree t we check the formula q 2 �, where q is a state associated

with the root of the t: if this formula is hold, then t belongs to the

class C(M).

The above procedure can be realized from the following example of work-

ing of the �{tree automaton on the above �{tree representation of the letter

"A":

24

����
@@R

c

?����

��	���� -

����?
�
�
�
�2

?����
@@R

c

��	����
�
�
�
�SW����

?����
@@R

c

��	����
�
�
�
�1

?����
@@R

c

��	����
�
�
�
�SW����

?����
@@R

c

��	����
�
�
�
�1

?����
@@R

c

��	����
�
�
�
�S

����
@@R

c

��	����
�
�
�
�2

�
�

�	 �
�
�
�E

�
�
�
�1

����? ����?

c

����?

?
c

?����

����
?
c

?����

?
c

?����

����
?
c

?����

?
c

?����

�
�
�
�S

���� ����
�
�
�
�0

c
?

c

����
?

c
?

�
�
�
�E

c

�
�
�
�(0; c1)

�
�
�
�SE

�
�
�
�1

�
�
�
�SE

�
�
�
�1

�
�
�
�S

�
�
�
�(1; c1)

�
�
�
�S

�
�
�
�0

?

HHHHHHj

? ?

? ?

? ?

? ?

? ?

? ?

? ??

?

?

Figure 13: the procedure of working of the �{tree automaton on the �{tree

In this picture we write the computed states near from passed nodes of

the �{tree.

25

The picture provides some explanation of our notations for states: all

states of the automaton are represent some essential properties of subpatterns

of analysed patterns. Every node of the �{tree is associated in a natural way

with a subtree which represents some subpattern of the original pattern, and

the state which is associated with this node reects some properties of this

subpattern. Computation of states in the process of functioning of the tree

automaton reects an idea of aggregation of subpatterns.

5 Minimal �{tree automata

The present section deals with the following problem: given a �{tree class

C, �nd a minimal (in a certain meaning) �{tree automaton M , such that

C = C(M).

5.1 Congruences on �{algebras

Let (Q; �) be a �{algebra.

A congruence on (Q; �) is a �{tuple

R = fRi � Qi �Qi j i 2 �g

of equivalency relations on domains of the �-set Q, such that for

� every � 2 �, such that T (�) is of the form

(i1; : : : ; in; j), where n � 1,

� and every n{tuple of pairs of the form

(q1; q
0

1) 2 Ri1 ; : : : ; (qn; q
0

n) 2 Rin

the pair (��(q1; : : : ; qn); ��(q
0

1; : : : ; q
0

n)) belongs to Rj.

Let

� Q=R

def
= fQi=Ri j i 2 �g

� and �

def
= f�i : Qi!!(Qi=Ri) j i 2 �g

26

be the �{tuples of the factor-sets and canonical projections corresponded to

the equivalency relations fRi j i 2 �g.

It is not di�cult to prove that there exists a unique �{tuple

�
0 def
= f�0� j � 2 �g of algebraic operations of corresponding types on the

�{set Q=R, such that the �{tuple � is a morphism from (Q; �) to (Q=R; �0).

The set of all congruences on the �{algebra (Q; �) can be considered as

a partially ordered set: for every pair R0 = fR0

i j i 2 �g; R
00 = fR00

i j i 2 �g

of congruences on (Q; �)

R
0
� R

00
, 8i 2 � R

0

i � R
00

i :

5.2 The congruence Rf

Let

� (Q; �) be a �{algebra,

� Y be a �{set,

� and f be any �{mapping from Q to Y :

f = ffi : Qi ! Yi j i 2 �g:

De�ne the �{tuple of equivalency relations

Ker(f)
def
= fKer(f)i � Qi �Qi j i 2 �g

as following:

8i 2 � Ker(f)i
def
= f(q; q0) 2 Qi �Qi j fi(q) = fi(q

0)g:

Below we de�ne a congruence Rf on the �{algebra (Q; �), which will be

a greatest (with respect to the above relation of partial order) congruence

among all congruences R on (Q; �) which satisfy the condition R � Ker(f).

27

5.2.1 Derivative unary operations

Let there is given

� a pair i; j 2 �

� an element � 2 �, such that

{ T (�) is of the form (i1; : : : ; in; j); where n � 1,

{ i = ik for some k 2 f1; : : : ; ng,

� a (n� 1){tuple

fqs 2 Qis j s = 1; : : : ; k � 1; k + 1; : : : ; ng

of elements of the �{set Q.

An elementary derivative unary operation of the type (i; j) on

the �{set Q is a mapping

u : Qi ! Qj

such that for every x 2 Qi

u(x) = ��(q1; : : : ; qk�1; x; qk+1; : : : ; qn):

The fact that u is of the type (i; j), is denoted by the symbol T (u) = (i; j).

It is clear that if

� R = fRi j i 2 �g is any congruence on the �{algebra (Q; �),

� q; q
0 are elements of the domain Qi, such that

(q; q0) 2 Ri,

� and u : Qi ! Qj is an elementary derivative unary operation,

then (u(q); u(q0)) 2 Rj.

Let i; j 2 �.

A derivative unary operation of the type (i; j) on the �{algebra (Q; �)

is

� either identical mapping idQi
: Qi ! Qi

(in this case the equality i = j must be hold),

28

� or a composition un�: : :�u1 of a n{tuple of elementary derivative unary

operations on (Q; �), such that

{ T (u1) = (i; i1),

{ T (u2) = (i1; i2),

{ : : :

{ T (un) = (in�1; j).

The set of all derivative unary operations of the type (i; j) on (Q; �) will

be denoted by the symbol

DUO(Q; �)(i;j):

It is not so di�cult to prove (by induction) that if

� R = fRi j i 2 �g is any congruence on the �{algebra (Q; �),

� q; q
0 are elements of the set Qi, such that (q; q0) 2 Ri,

� and u 2 DUO(Q; �)i;j,

then (u(q); u(q0)) 2 Rj.

5.2.2 De�nition of the congruence R
f on the �{algebra (Q; �)

The congruence Rf on the �{algebra (Q; �) is the �{tuple

R
f def
= fR

f
i j i 2 �g :

for every i 2 �

R

f
i

def
= f(q; q0) 2 Qi �Qi j 8j 2 �; 8u 2 DUO(Q; �)(i;j)

(fj � u)(q) = (fj � u)(q
0)g:

It is clear that 8i 2 � R

f
i is an equivalency relation, and R

f � Ker(f).

Theorem.

R
f is a congruence on the �{algebra (Q; �).

Proof:

It is necessary to prove that for

29

� every � 2 �, such that T (�) is of the form

(i1; : : : ; in; j), where n � 1,

� and every n{tuple of pairs of the form

(q1; q
0

1) 2 R

f
i1
; : : : ; (qn; q

0

n) 2 R

f
in

the pair (��(q1; : : : ; qn); ��(q
0

1; : : : ; q
0

n)) belongs to R
f
j , i.e. that for

� every k 2 �

� and every u 2 DUO(Q; �)(j;k)

(fk � u)(��(q1; : : : ; qn)) = (fk � u)(��(q
0

1; : : : ; q
0

n)):

De�ne the following n{tuple of elementary derivative unary operations:

� u1 2 DUO(Q; �)(i1;j);

u1 : x 7! ��(x; q2; q3; : : : ; qn),

� u2 2 DUO(Q; �)(i2;j);

u2 : x 7! ��(q
0

1; x; q3; : : : ; qn),

� : : :

� un 2 DUO(Q; �)(in;j);

un : x 7! ��(q
0

1; : : : ; q
0

n�1; x).

We have:

(fk � u)(��(q1; : : : ; qn)) =

= (fk � u)(u1(q1)) = (fk � (u � u1))(q1) = ((q1; q
0

1) 2 R

f
i1
)

= (fk � (u � u1))(q
0

1) = (fk � u)(u1(q
0

1)) =

= (fk � u)(��(q
0

1; q2; q3; : : : ; qn)) =

= (fk � u)(u2(q2)) = (fk � (u � u2))(q2) = ((q2; q
0

2) 2 R

f
i2
)

= (fk � (u � u2))(q
0

2) = (fk � u)(u2(q
0

2)) =

= (fk � u)(��(q
0

1; q
0

2; q3; : : : ; qn)) = : : : =

= (fk � u)(��(q
0

1; : : : ; q
0

n)):

30

5.2.3 Properties of the congruence Rf

As it was stated before, there exists a unique �{tuple �f
def
= f�f� j � 2 �g of

algebraic operations of corresponding types on the �{set Q=Rf , such that the

�{tuple � of canonical projections is a morphism from (Q; �) to (Q=Rf
; �

f).

Also it is clear that Rf � Ker(f), and this inequality implies existence of

a �{tuple g = fgi j i 2 �g, such that the following diagrams are commutative

for every i 2 �:
Qi

?
�i

@
@
@R

fi

(Q=Rf)i -gi
Yi

Theorem.

R
f is a greatest congruence (with respect to the above relation of partial

order) among all congruences R on (Q; �) which satisfy the condition

R � Ker(f).

Proof:

Let R be a congruence on (Q; �) such that R � Ker(f).

Prove that R � R
f , i.e. prove that if an element i 2 � and a pair

q; q
0 2 Qi are such that (q; q0) 2 Ri, then

� for every j 2 �

� and every u 2 DUO(Q; �)(i;j)

(fj � u)(q) = (fj � u)(q
0):

As stated above, the formula (q; q0) 2 Ri implies the formula (u(q); u(q0)) 2

Rj for every j 2 � and every u 2 DUO(Q; �)(i;j).

The formula

(u(q); u(q0)) 2 Rj

and the inequality

R � Ker(f)

imply the desired equality

(fj � u)(q) = (fj � u)(q
0):

31

5.3 Construction of a minimal �{tree automaton for

a given �{tree class

Let there is given a class C � Tr(�), i.e. C = fCi j i 2 �; ci � Tr(�)ig.

Let Y = fYi j i 2 �g be a �{set, such that 8i 2 � the set Yi consists of

two elements: Yi = f0i; 1ig.

De�ne the following �{mapping f : Tr(�)! Y :

8i 2 �; 8E 2 Tr(�)i fi(E)
def
=

(
1i; ifE 2 Ci;

0i; ifE 62 Ci;

Let R
f = fR

f
i j i 2 �g be a greatest congruence on the �{algebra

(Tr(�); �) with the property Rf � Ker(f), and (Qf
; �

f) be a factor-algebra

of (Tr(�); �) corresponded to this congruence, i.e. a �{algebra such that

� Q
f is the �{set of classes of the congruence Rf on (Tr(�); �),

� �
f is a unique �{tuple of algebraic operations of corresponding types

on the �{set Qf , such that the �{tuple � = f�i : Tr(�)i!!Q

f
i j i 2 �g

of canonical projections is a morphism from (Tr(�); �) to (Qf
; �

f).

The required minimal �{tree automatonMf is the pairMf def
= ((Qf

; �
f); �f),

where

� (Qf
; �

f) is the above �{algebra,

� �
f is (a unique) �{mapping such that the diagram

Tr(�)

?
�

@
@
@R

f

Q
f -�f

Y

is commutative.

It is not so di�cult to prove that

� C(Mf) = C,

32

� for every �{automaton M = ((Q; �); �), which represents the same

class C, there exists a surjective morphism � of �{algebras of the form

� : (��(Tr(�)); �)!!(Qf
; �

f);

and this epimorphism makes the following diagram be commutative:

�
�(Tr(�))

?
�

@
@
@R

�

Q
f -�f

Y

In particular, if the �{automaton Mf = ((Qf
; �

f); �f) is such that the

set Qf is �nite, then for every �{automaton M = ((Q; �); �), which

represents the same class C and is such that the set Q is also �nite, the

following inequality holds:

jQ
f
j � jQj;

i.e. in this case Mf has minimal possible number of states.

6 Conclusion

In the paper is delivered a generalization of the representation of classes of

trees by automata. We have introduced a concept of a typed tree automa-

ton (�{tree automaton), and generalized the theorem about minimal tree

automata related to tree classes.

Representation of �{tree classes by typed automata

� displays essential aspects of the structure of the class which it represents

(like topological invariants of objects of the class),

� provides an e�cient distributed implementation of a recognition pro-

cess.

In the following papers we will generalize the proposed constructions on

the case of fuzzy classes of �{trees. The problem of representation of fuzzy

classes of trees by fuzzy tree automata still not was considered in the research

33

works on automata theory even for untyped case. We will show that the

solution of the problem of construction of canonical fuzzy �-tree automaton

for representation of a class of fuzzy �{trees can be obtained using topos

theory and general theory of systems in categories of Anderson B.D.O., Arbib

M.A. and Manes E.G. (see [3]). We will introduce the concept of a fuzzy

distributed agent and will construct ones for distributed implementation of

fuzzy �-tree automata.

References

[1] M.Abadi, L. Cardelli, B.Pierce, G.Plotkin: Dynamic typing in a

statically typed language, Transactions on programming languages and

systems, 13(2): 237-268, April 1991.

[2] M. Abadi, L. Cardelli, B.Pierce, D.Remy: Dynamic typing in

polymorphic languages, Journal of functional programming, 5(1):111-

13-, January 1995.

[3] Anderson B.D.O., Arbib M.A., Manes E.G.: Foundations of sys-

tem theory : �nitary and in�nitary conditions, Lecture Notes in Eco-

nomics and Mathematical Systems, 115, Berlin-Heidelberg-New York,

Springer-Verlag (1976).

[4] M.A. Arbib and E.G. Manes: Tree transformations and semantics

of loop-free programs. Acta Cybernetica, 4:11-17, 1978.

[5] B.S. Baker: Generalized syntax directed translation, tree transducers,

and linear space. Journal of Comput. and Syst. Sci., 7:876-891, 1978.

[6] H.Barendregt: Introduction to generalized type systems, Journal of

Functional programming, 1992.

[7] Walter S. Brainerd: The minimalization of tree automata. Informa-

tion and Control, 13(5):484-491, November 1968.

[8] L. Cardelli: Type systems, In Allen B. Tucker, editor: Handbook of

Computer Science and Engineering, CRC Press, 1996

34

[9] J.L. Coquide, M. Dauchet, R. Gilleron, and S. Vagvolgyi:

Bottom-up tree pushdown automata : Classi�cation and connection

with rewrite systems. Theorical Computer Science, 127:69-98, 1994.

[10] B. Courcelle: On Recognizable Sets and Tree Automata, chapter Res-

olution of Equations in Algebraic Structures. Academic Press, m. Nivat

and Ait-Kaci edition, 1989.

[11] L. Damas, R.Milner: Principal type schemes for functional programs.

In Proceedings of the 9th ACM Symposium on Principles of Program-

ming Languages, pages 207-212, 1982.

[12] M. Dauchet: Rewriting and tree automata. In H. Comon and J.-P.

Jouannaud, editors, Proc. Spring School on Theoretical Computer Sci-

ence: Rewriting, Lecture Notes in Computer Science, Odeillo, France,

1994. Springer Verlag.

[13] J. E. Doner: Tree acceptors and some of their applications. Journal of

Comput. and Syst. Sci., 4:406-451, 1970.

[14] S. Eilenberg and J. B. Wright: Automata in general algebras. In-

formation and Control, 11(4):452-470, 1967.

[15] K.S.Fu: Syntactic Pattern Recognition and Applications. Prentice Hall,

Englewood Cli�s, NJ, 1982.

[16] J.H. Gallier and R.V. Book: Reductions in tree replacement sys-

tems. Theorical Computer Science, 37(2):123-150, 1985.

[17] F. G�ecseg and M. Steinby: Tree Automata. Akademiai Kiado, 1984.

[18] F. G�ecseg and M. Steinby: Tree languages. In G. Rozenberg and

A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages

1-68. Springer Verlag, 1996.

[19] R. Gilleron and S. Tison: Regular tree languages and rewrite sys-

tems. Fundamenta Informaticae, 24:157-176, 1995.

[20] M. Hofmann, B.Pierce: A unifying type-theoretic framework for ob-

jects Journal of Functional programming, 5(4): 593-635, October 1995.

35

[21] D. Kozen: On the Myhill-Nerode theorem for trees. Bulletin of the Eu-

ropean Association of Theoretical Computer Science, 47:170-173, June

1992.

[22] X. Leroy: Manifest types, modules and separate compilation. In Con-

ference record of POPL'94: 21st ACM SIGPLAN-SIGACT Symposium

on principles of programming languages, pages 109-122, Portland, OR,

January 1994.

[23] X.Leroy: A syntactic theory of type generativity and sharing, Journal

of functional programming, 6(5): 667-698, September 1996.

[24] Denis Lugiez and Jean-Luc Moysset: Tree automata help one to

solve equational formulae in ac-theories. Journal of Symbolic Computa-

tion, 18(4):297-318, 1994.

[25] R.Milner: A theory of type polymorphism in programming, Journal of

Computer and system sciences, 17: 348-375, August 1978.

[26] D.Muller, A.Saoudi and P, Schupp: Weak alternating automata

give a simple explanation of why most temporal and dynamic logic are

decidable in exponential time. Proc. of the 3rd Annual Symp. on Logic

in Computer Science, July, 1988.

[27] M. Nivat and A. Podelski: Resolution of Equations in Algebraic

Structures, volume 1, chapter Tree monoids and recognizable sets of

�nite trees, pages 351-367. Academic Press, New York, 1989.

[28] B.Pierce, D.Turner: Simple type-theoretic foundations for object-

oriented programming, Journal of functional programming, 4(2): 207-

247, April 1994.

[29] B.I.Plotkin: Universal algebra, algebraic logic and databases, 1992.

[30] M.O. Rabin: Decidability of Second-Order Theories and Automata

on In�nite Trees. Transactions of the American Mathematical Society,

141:1-35, 1969.

[31] J.-C. Raoult: A survey of tree transductions. In M. Nivat and A.

Podelski, editors, Tree Automata and Languages, pages 311-325. Else-

vier Science, 1992.

36

[32] K. Salomaa: Synchronized tree automata. Theorical Computer Sci-

ence, 127:25-51, 1994.

[33] G. Slutzki: Alternating tree automata. Theorical Computer Science,

41:305-318, 1985.

[34] G. Slutzki and S. Vagvolgyi: Deterministic top-down tree transduc-

ers with iterated look-ahead. Theorical Computer Science, 143:285-308,

1995.

[35] J.W. Thatcher: Tree automata: an informal survey. In A.V. Aho,

editor, Currents in the theory of computing, pages 143-178. Prentice

Hall, 1973.

[36] W. Thomas: Handbook of Theoretical Computer Science, volume B,

chapter Automata on In�nite Objects, pages 134-191. Elsevier, 1990.

37

