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Abstract. A new algorithm for the linear arrangement problem is described. The goal is to produce linear
arrangements of software model diagrams such that the total length of all connections is reduced as much as
possible. The algorithm uses the same general numbering strategy as existing algorithms for the highly related
problems  of bandwidth and profile reduction but is based on a new heuristic that addresses the unique
requirements of the linear arrangement problem. Extensive testing is performed with graphs derived from
software model diagrams and from structural engineering. The testing indicates that three refinements to the
new algorithm improve the arrangements produced. The new algorithm produces linear arrangements with lower
total weighted edge length for both classes of test graphs in comparison with several bandwidth and profile
reduction algorithms, and for the software model diagrams in comparison with an eigenvalue-based linear
arrangement algorithm. The new heuristic is also shown to require slightly less execution time than the frontal
increase minimization heuristic used by several bandwidth and profile reduction algorithms, and far less
execution time than the eigenvalue-based algorithm.
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1. Introduction. Let G be a graph with node set V of size n and edge set E of size m. Let c(uv)
be an integer greater than zero denoting the weight on the edge uv from node u to node v. Any edge
with unspecified weight is assumed to have a weight of 1. A linear arrangement (or simply
arrangement) of G is a one-to-one function f from V to the integer set {1,2,...,n}. Intuitively, a linear
arrangement orders the nodes of G in a straight line with unit distance between nodes in adjacent
positions. Let w(uv, f ) denote the length of an edge uv with respect to arrangement f, defined as
w(uv, f ) = |f(u)-f(v)| where f(v) denotes the position of v in the arrangement. The weighted length
of the same edge is defined by c(uv)w(uv, f ). Let t(G, f ) denote the total weighted edge length for
G with respect to arrangement f, defined by the following:

t(G, f ) = c(uv)w(uv, f )uv E∈
∑

The linear arrangement problem (LAP) is to find f for a given G so that t(G, f ) is minimized.

The LAP arises in a number of application areas, including error-correcting codes [12] and VLSI
layout [14, 21]. Chung describes the LAP in terms of pins connected with various numbers of wires
[3]. In this context the problem is to arrange the pins in a straight line to minimize total wire length.



A NEW HEURISTIC ALGORITHM FOR LINEAR ARRANGEMENT 2

The motivation for the current research arises in connection with an alternative style for laying
out software diagrams, including for example entity-relationship models [2] and data flow diagrams
[6]. Such diagrams involve objects connected with lines. Thus drawing a diagram is analogous to
drawing a general graph. Traditional layout involves placement of objects (i.e. nodes) anywhere in
two dimensions as in Figure 1. Automatic layout in this context involves considerable complexity (see
for example [16]). One potential alternative is to arrange the objects in a linear fashion as in Figure
2. Connections (i.e. edges) between objects are drawn between the vertical "tails" associated with
the objects rather than between the objects themselves. Layout is 
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FIG. 1. An example graph with two-dimensional layout.

21 3 4 5 6 7 8

FIG. 2(a). Nodes arranged in a linear fashion.
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21 678 3 5 4

FIG. 2(b). An alternative linear arrangement.
simplified in the sense that it is conceptually simple to add or delete any object or connection
regardless of the size and complexity of the diagram. Multiple connections between two objects can
be shown separately as in Figure 2 or by specifying edge weights as in Figure 1, regardless of the
layout style used.

The LAP for this alternative layout style involves ordering the objects to reduce t(G, f ) as much
as possible. Figure 2(b) provides one possible alternative to the ordering in Figure 2(a) that reduces
t(G, f ) from 46 to 30. Reducing t(G, f ) is intended to enhance the presentation of a diagram by (a)
placing highly related objects in close proximity to one another and (b) reducing "visual clutter"
associated with long connecting lines. While these diagram presentation issues provide motivation,
this paper focuses only on the LAP.

Harper [12] provides a solution to the LAP for the class of n-cubes. Solutions are also available
for trees [1, 3, 17]. For general graphs, however, the LAP is known to be NP-hard [7]. There is a
need for heuristic algorithms to address this problem in polynomial time.

An eigenvalue-based algorithm is available for finding linear arrangements of VLSI components
(e.g. logic gates) to reduce the total length of the wires connecting the components [14, 21]. This
problem can be represented as a graph where each node represents a VLSI component and each
edge uv represents the wire(s) connecting components u and v. c(uv) represents the number of
wires between components u and v. c(uv) is considered to be zero if     uv  E. An arrangement is
generated by first creating a square matrix B. Each element bij of B is defined by:

bij = ij  - c(ij)
c ik

ik E

( )
∈

∑









where ij is 1 if i = j, 0 otherwise. The smallest non-trivial eigenvalue of B is found and the
corresponding eigenvector elements are sorted. The indices of the sorted elements are assigned as
the resultant f.

Several heuristic algorithms are available for the related problems of bandwidth reduction and
profile reduction. The bandwidth of a graph with respect to a given arrangement is the length of
the longest edge. The goal of bandwidth reduction is to find an arrangement with the lowest possible
bandwidth. The bandwidths of Figures 2(a) and 2(b) are 6 and 4, respectively. Assume G is stored
in the form of an n  n matrix M where mij  0 iff vivj  E. Storage requirements are reduced and many
matrix operations can be performed more efficiently if M is in small bandwidth form.
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Let p(v, f ) denote the profile  of node v with respect to arrangement f, defined by the following:

p(v, f ) = max(0, (  f(v)-f(u)))uv E∈
max

Intuitively, p(v, f ) is the length of the longest edge extending leftward from v, or zero if no such edge
exists. Let p(G, f ) denote the profile of G with respect to arrangement f, defined by the following:

p(G, f ) = p(v, f )v V∈
∑

The goal of profile reduction is to find an arrangement that reduces p(G, f ) as much as possible. The
p(G, f ) values for Figures 2(a) and 2(b) are 18 and 17, respectively. Reversing the arrangement in
Figure 2(b) reduces p(G, f ) to 14.

The primary application of profile reduction is to aid in solution of large linear systems of the form
Mx = b, where the n  n matrix M corresponding to G is sparse and structurally symmetric (mij  0 iff
mji  0). The solution of a linear system tends to be more efficient when the rows and columns of M
are ordered so that the profile of the associated G is reduced.

A number of heuristic algorithms for bandwidth and profile reduction are available. The reverse
Cuthill-McKee (RCM) algorithm, a modification by George [8] of the algorithm defined by Cuthill and
McKee [4], is perhaps the most widely used. This algorithm was originally developed for bandwidth
reduction. The Gibbs-Poole-Stockmeyer (GPS) algorithm [10] was developed to address both
bandwidth and profile reduction, whereas profile reduction is the primary goal of the Gibbs-King (GK)
[9] and Snay [18] algorithms. These algorithms share the same simple general strategy, as follows:

Step 1. Select a starting node and place this node in position 1.

Step 2. For each remaining position 2 through n, select one of the unplaced nodes for
placement in the current position.

The algorithms differ in the methods used for selecting a starting node and in the criteria used for
selecting nodes in Step 2.

While bandwidth and profile reduction are similar to the LAP, there are two very significant
differences. First, bandwidth and profile are measured using only a subset of edges whereas the LAP
is concerned with all edge lengths. Second, edge weights are irrelevant for bandwidth and profile and
are ignored by the algorithms mentioned above. Edge weights are, however, important for the LAP.

Bandwidth and profile reduction algorithms tend to be efficient in the sense that several have
been implemented to have linear time complexity with respect to m [15]. Thus these algorithms offer
a potential advantage over the comparatively expensive calculation of eigenvalues and eigenvectors.
This paper describes a new algorithm that uses the same general strategy as the bandwidth and
profile reduction algorithms but is based on a new heuristic that addresses the somewhat different
requirements of the LAP. The objective is to provide performance similar to the eigenvalue-based
heuristic in terms of reducing t(G, f ) and similar to the bandwidth and profile reduction algorithms
in terms of execution time.

The rest of the paper is organized as follows. Section 2 provides the rationale for and definition
of a new heuristic. The implementation and time complexity of an algorithm based on the new
heuristic  are presented in Section 3. Several refinements to the new algorithm are proposed in Section



A NEW HEURISTIC ALGORITHM FOR LINEAR ARRANGEMENT 5

4. Section 5 provides experimental results to assess the practical value of the proposed refinements
and to compare the new algorithm with the existing algorithms described above. The results are
compared in terms of t(G, f ) and execution time. Section 6 presents brief conclusions.

2. A new heuristic. One of the most commonly used heuristics for bandwidth and profile
reduction is referred to as frontal increase minimization (FIM). This section presents the rationale
for a new heuristic by first describing the FIM approach and then offering insights into the ordering
process based on examples.

Assume the two-step general strategy described in Section 1 is used. A variety of methods can
be used for selecting a starting node in Step 1. For now assume the use of a simple strategy
suggested by Cuthill and McKee [4], namely to select a node with minimum degree. The degree of
node v is denoted as d(v), defined as the number of nodes adjacent to v. Node u is adjacent to v iff
uvE. Other alternatives for starting node selection are considered in Section 4.

FIM is one possible strategy for node placement in Step 2. Assume 2in and the number of placed
nodes is currently i-1. This means i-1 placements have occurred and placement i is about to occur
in position i. Let Pi denote the set of i-1 nodes placed so far and let Ui = (V-Pi) denote the set of
currently unplaced nodes. Let Fi = {uUi | vPi and uvE} denote the front at placement i. The FIM
strategy is to select for placement i a node that minimizes the size of Fi+1. In other words, select a
node that is adjacent to the fewest nodes in Ui-Fi.

Several profile reduction algorithms incorporate the FIM strategy. They differ in terms of the
subset of Ui considered for each placement. For example the Snay algorithm selects the node for
placement i from all unplaced nodes in or adjacent to Fi. A similar FIM variation is discussed by
Marro [15] where the node for placement i is selected from the nodes in Fi. The GK algorithm uses
FIM in conjunction with a precalculated level structure [9]. A level structure partitions V into levels
L1, L2,...,Lk where for v in any level, all nodes adjacent to v are at most one level away. For each of
L1 to Lk, all nodes in the current level are placed before moving on to the next level. The GK algorithm
determines the order of placement for nodes within a given level using FIM.

Consider applying the FIM strategy to the example graph in Figure 1. Assume node 1 is the
starting node and the node for placement i is selected from the nodes in Fi. The resultant ordering
is shown in Figure 3. Edges are displayed in the same style as Figure 2. t(G, f ) is 39 and p(G, f ) is
reduced to 13. This example illustrates the following observations:

21 783 5 46

FIG. 3. An arrangement resulting from FIM.
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Observation 1.  Reduction of p(G, f ) tends also to reduce t(G, f ), however the two goals are
not always complementary. Between Figures 2(b) and 3, the former provides the smaller
t(G, f ) while the latter provides the smaller p(G, f ).

Observation 2.  The FIM strategy tends to delay placement of a highly connected node until
most of its adjacent nodes are placed. For example node 6 is almost the last node to be
placed in Figure 3. This makes sense for reducing p(G, f ) since only the longest of the
edges extending leftward from such a node impacts p(G, f ). It seems, however, that a
better strategy for reducing t(G, f ) is to distribute the nodes adjacent to a highly connected
node v as equally as possible on either side of v. This is illustrated by the placement of
node 6 in Figure 2(b) but is perhaps better illustrated by the simple example in Figure 4.
Minimum t(G, f ) is clearly obtained by the arrangement (1, 2, 3, 4, 5). Switching any one
of the nodes 1, 2, 4 or 5 to the other side of the highly connected node 3 increases t(G, f
).

Observation 3.  Edge weight has no impact on p(G, f ) and thus is not used by the FIM (or
other) profile reduction algorithms. Edge weight is, however, an important factor in
determining t(G, f ). Consider F3 = {3, 6, 8} during the creation of Figure 3. The FIM
strategy selects node 3 for position 3 since this node is connected to only one unplaced
non-front node (5) while nodes 6 and 8 are connected to three and two such nodes,
respectively. However, since c28 = 3 is greater than c23 = 1, it is more important in reducing
t(G, f ) that node 8 (rather than node 3) should be placed close to node 2 as in Figure 2(b).
Similarly, when reducing t(G, f ) for Figure 4, nodes 2 and 4 should be preferred over
nodes 1 and 5 for placement next to node 3 in the resultant arrangement.

21
2

4 53
2

FIG. 4.

Let d'(v) denote the weighted degree of v, defined by the following:

d'(v) = c(uv)uv E∈
∑

For a single vUi define tli(v) as:

tli(v) = c(uv)u P , uv Ei∈ ∈
∑

It follows that tli(v) > 0 iff vFi. Define tri(v) as d'(v) - tli(v). For example in Figure 1 d(2) = 4 and
d'(2)= 7. Assuming node 1 as the starting node, then tl2(2) = 1 and tr2(2) = 6.

Assume 2in and vUi. tli(v) and tri(v) provide measures of how highly connected v is to Pi and
(if v is selected for placement in position i) Ui+1, respectively. Based on the three observations above,
a method for selecting a node v for each placement is desired so that on average |tri(v)-tli(v)| = |d'(v)-
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2tli(v)| tends to be as small as possible. This objective is referred to in this paper as equal
distribution. A new selection factor sf i(v) is defined to aid in accomplishing this objective, as follows:

sf i(v) = d'(v) - 2tli(v)

This new selection factor is used with the same two-step general strategy described above. For each
placement i in Step 2, select vFi with minimum sf i(v). This strategy produces the arrangement in
Figure 2(b) for the graph in Figure 1. There are two components to the rationale for using sf i(v).

(1) As i increases and v remains unplaced, tli(v) increases and tri(v) decreases with each
placement of a node adjacent to v . If tli(v) < tri(v) (i.e. sf i(v) > 0) then each such
placement tends to move the partial f closer to the state where placing v helps to achieve
equal distribution. If tli(v) > tri(v) (i.e. sf i(v) < 0) then each such placement tends to move
f further from that state. It follows that (a) the likelihood of placing v should increase as
sf i(v) decreases, and (b) if sf i(v) > sf i(u) then u should be preferred over v for placement
i.

(2) Let tpui denote the total weight of all edges between Pi and Ui, defined as follows:

tpui = tli(v)v Fi∈
∑

An alternative definition of t(G, f ) for a completed f is:

t(G, f ) = tpui
i

n

=
∑

2

It follows that t(G, f ) is minimized if f is constructed so the average tpui is minimized.
Furthermore t(G, f ) should tend to be reduced if the node for each placement i is selected
so that tpui+1 is minimized. For placement 1 it is obvious that selecting v with minimum d'(v)
as the starting node minimizes tpu2. If 2in and vFi is selected for placement i then tpui+1

= tpui - tli(v) + tri(v) = tpui + sf i(v). Since tpui is a constant for placement i, then tpui+1 is
minimized by selecting v with minimum sf i(v).

3. Implementation and time complexity. Marro [15] shows that FIM implementations with
linear time complexity with respect to m are possible based on the following two insights:

(1) For u  Ui, tli(u) differs from tli-1(u) iff v is placed in position i-1 and u  ADJ(v). Therefore
only those tli(u) values that change based on placement i-1 need to be adjusted prior to
placement i.

(2) It is possible  to select a node with minimum sf i(u) in constant time if several lists of nodes
are maintained. Each list contains all nodes u  Fi that have the same value for sf i(u). An
array of lists sflist is maintained so that the list for any specific sf i(u) value (denoted
sflist[sf i(u)]) can be accessed directly. A separate variable minsf also keeps track of the
current minimum sf i(u) value. Thus a node with minimum sf i(u) can be selected in constant
time by choosing the first node in sflist[minsf].

The Algorithm LA (short for "linear arrangement") defined below results from applying Marro's
insights to the new heuristic. Note that tli(u) and sf i(u) values are maintained throughout the
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algorithm, rather than calculated for each distinct i value. The expressions tl(u) and sf(u) are used
in the algorithm definition to represent their current values.

ALGORITHM  LA
Input: A general graph G.
Output: A linear arrangement f of G that approximates the minimum t(G, f ).
Method:

1. For each v  V:
1.1 Calculate d'(v) and ADJ(v).
1.2 tl(v)  0.

2. F  .  U  V.
3. For i = Min_Possible_sf_Value to Max_Possible_sf_Value: sflist[i]  empty list.
4. minsf  Max_Possible_sf_Value + 1.
5. Select a starting node v  U.  f1  v.  U  U - v.
6. For i = 2 to n:

6.1 Update: For each u  (ADJ(v)  U):
6.1.1 If tl(u) > 0, then:  sf(u)  d'(u) - 2tl(u),  Remove u from sflist[sf(u)].

Else: F  F  u.
6.1.2 tl(u)  tl(u) + c(uv).  sf(u)  d'(u) - 2tl(u).
6.1.3 Insert u at tail of sflist[sf(u)].
6.1.4 If sf(u) < minsf, then: minsf  sf(u).

6.2 Select:  v  First node in sflist[minsf].  Remove v from sflist[minsf].
6.3 Place: f i  v. U  U - v. F  F - v.
6.4 If sflist[minsf] is empty, then:

6.4.1 If F = , then: minsf = Max_Possible_sf_Value + 1.
Else: Search for the smallest minsf such that sflist[minsf] is non-empty.

Assuming a starting node is selected as any node with minimum d '(v) then Steps 1 to 5
collectively are (m). Since each v  V is placed in only one position, then ADJ(v) is examined in Step
6.1 only once per ordering for each v. In Step 1.1 each edge uv results in the addition of u to ADJ(v)
and v to ADJ(u). It follows that the total number of nodes in all ADJ(v) for v  V is 2m. Since each
of Steps 6.1.1 to 6.1.4 is (1), then the Update step is (m). Each of Steps 6.2 and 6.3 is (1). 

The impact of Step 6.4.1 on the time complexity of the algorithm depends on (a) the number of
searches required for G, and (b) the average number of iterations required per search. The number
of searches obviously cannot exceed n-1. The example graph pattern in Figure 5(a) shows that the
number of searches required can be as small as zero. Following each placement, F =  is always true
in Step 6.4.1. The example graph pattern in Figure 5(b) shows that in the worst case the number of
searches for G is (n). Assume the pattern continues to the right for some arbitrarily large number of
nodes, with odd numbered nodes in the top row and even numbered nodes in the bottom. Node 1 is
the starting node and Algorithm LA places the nodes in ascending order by node number. Assume
node i > 3 has just been placed in Step 6.3. Prior to beginning Step 6.4 minsf = 0, sflist[minsf] is
empty, F = {i+1}, sf(i+1) = 2 and sflist[2] = (i+1). Therefore a search occurs in Step 6.4.1 which
increases minsf from 0 to 2. Since this occurs for each value of i, the number of searches required
is (n).
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1 2 3 4 5

FIG. 5(a). Number of searches required is zero.

1 2 5 7 9

3 4 6 8

FIG. 5(b). Number of searches required is O(n).

Let d'max(G) denote the maximum d'(v) for any v  V. The maximum number of minsf values
to be searched for any single search is the difference between the largest and smallest possible
values for sf(v), which is 2d'max(G). Assuming a linear search is used in Step 6.4.1, the worst case
time complexity for Step 6.4 is O(d'max(G) n) and for Algorithm LA is O(m + d'max(G) n). An
alternative to a linear search is to maintain the lists in a priority queue, which reduces the worst case
time complexity to O(m + log2(d'max(G)) n). A linear search, however, is considered to be a
reasonable  strategy in Step 6.4.1 for graphs resulting from software model diagrams. The graphs tend
to be sparse (i.e. relatively few edges per node) and c(uv) values tend to be small. For example, the
largest c(uv) is 3 for any edge in the 20 sample graphs described in Section 5. These two factors tend
to keep |sf(v)| values small, which means that if u is placed in Step 6.3 (i.e. minsf = sf(u)) and v  F
in Step 6.4 then sf(v)-minsf tends to be small. The practical effectiveness of a linear search for this
step is evaluated with empirical data in Section 5.

4. Refinements. This section introduces four possible refinements to Algorithm LA together
with their impact on time complexity. The potential value of the refinements is evaluated in Section
5 based on empirical results. The refinements include a tie breaking strategy, two alternative methods
for selection of a starting node and a strategy where the node placed in position i is not always in Fi.

4.1. Tie breaking strategy:  It is possible in Step 6.2 of Algorithm LA for there to be several
nodes in sflist[minsf]. Each sflist is maintained as a queue where insertions are performed at the tail
and removals are from the head of the list. Thus when several nodes have the same minimum value
for sf i(u) the tie is broken by selecting the node for which sf i(u) has been equal to minsf the longest.
This is the tie breaking strategy used by Marro [15]. An alternative strategy is suggested by Figure
6. Assume in Figure 6(a) that node 1 has been placed in position i-1 and either 2 or 3 is to be selected
for position i. minsf = sf i(2) = sf i(3) = 1. However, (tli(2)/d'(2) = 1/3) < (tli(3)/d'(3) = 2/5) < 0.5 and
thus in this sense node 3 is closer to achieving equal distribution than is node 2. One can argue that
node 3 should be selected first. Figure 6(b) depicts a similar situation where node 4 is placed in
position i-1 and minsf < 0. minsf = sf i(5) = sf i(6) = -1. In this case 0.5 < (tli(6)/d'(6) = 3/5) <
(tli(5)/d'(5) = 2/3) and thus in this sense node 5 is farther past achieving equal distribution than is node
6. One can argue that node 5 should be selected first. The following tie breaking strategy results:

If minsf > 0, then:
v  Any node in sflist[minsf] with the largest d'(v).

Else:
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v  Any node in sflist[minsf] with the smallest d'(v).

Modifying Step 6.2 in Algorithm LA to use this strategy necessitates examining the entire
sflist[minsf] for each selection. Marro shows that time complexity is increased by a factor of log2(n).

1

2

3

2
2

FIG. 6(a). Tie breaking when minsf > 0.

4

5

6

2

3

FIG. 6(b). Tie breaking when minsf < 0.

4.2 Selection of starting node: The results provided by profile reduction algorithms can vary
significantly depending on the choice of starting node [15]. It is reasonable to investigate whether a
similar variance is shown by Algorithm LA and, if so, to determine an effective method for selecting
a starting node. One of the most widely used methods was first introduced for the GPS algorithm
[10]. This method is used directly for other algorithms [9, 15] and is very similar to the method used
by Snay [18]. The GPS algorithm finds a pseudodiameter of G, an end-node of which is used as the
start node. The algorithm for finding a pseudodiameter involves creating several rooted level
structures. Let LS(v) denote a level structure rooted at v. LS(v) can be generated as follows:

1. L1  v.
2. For i > 1, Li is the set of all nodes adjacent to any node in Li-1 not yet assigned to a level.

The depth  of a level structure is the number of levels and the width is the number of nodes in
the largest level. The algorithm for finding a pseudodiameter first generates LS(v) for v with minimal
d(v). Then LS(u) is generated for each node u in the deepest level of LS(v). If any LS(u) is found
to be deeper than LS(v), u replaces v and the process begins again. If no LS(u) is found to be deeper
than LS(v), then u is selected as the node whose associated LS(u) has the smallest width. The
process terminates with u and v the endpoints of a pseudodiameter. The endpoint with the smallest
degree is the starting node.

The generation of a level structure is equivalent to a breadth-first search of G and is achieved
in (m) time. It is difficult to characterize the number of level structures that must be generated to find
a pseudodiameter. However, it can be shown that the number of level structures generated has an
upper bound of n as follows. Assume LS(v) is generated. For LS(v) to be generated again, v must
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be in the deepest level of some LS(u) where LS(u) is deeper than LS(v) and u  v. The minimum
distance between u and v must be greater than the depth of LS(v), which is impossible. Therefore
LS(v) is generated only once and the worst case time complexity for finding a pseudodiameter is
O(mn).

Turner [20] suggests another method for selecting a starting node: generate f using an arbitrary
start node and then generate a second arrangement starting with the rightmost node in f. Probability
theory is used to show that this strategy has a high probability of producing an arrangement that is
close to optimal when used with existing profile reduction algorithms. This strategy doubles execution
time.

4.3 Deferred placement. A potential weakness of Algorithm LA is that f i is always selected
from Fi. In certain cases it is advantageous to select f i from (Ui-Fi). This case arises in "star" pattern
graphs, such as the example in Figure 7. This pattern is also sometimes referred to as a "claw".
Examination of the sample graphs described in Section 5 shows that similar patterns are quite
common in graphs derived from software models. Algorithm LA assigns node 4 in Figure 7 to f2

regardless of which other node is selected as the starting node since F2 = {4}. However, as per the
discussion in Section 2, the equal distribution objective is best achieved if node 4 is placed closer to
the middle of the arrangement. This situation is characterized by selection of a node v for placement
in position i where the following three conditions are met:

(1) tl(v) is less than half of d'(v), i.e. sf(v) > 0;
(2) v is highly connected, which can be interpreted as d(v) is higher than average; and
(3) At least two nodes adjacent to v remain unplaced.

If Condition (3) is not true, then placing v in a higher position means that v will be positioned to the
right of all nodes in ADJ(v). Taken together, these three conditions indicate that deferring placement
of v is likely better in terms of the equal distribution objective. In other words, if v is selected in Step
6.2 of Algorithm LA and v meets the three conditions above, then v is not assigned to f i. Instead,
remember v as a deferred node. Place subsequent nodes starting in position i as if v had been placed.
This means that while a deferred node exists, the ith node selected must be placed in position i-1.
When sf(v) becomes zero or less, then v is placed. If a subsequent node u is identified for deferral
before v is placed, then place immediately whichever of u or v has the smallest selection factor and
retain the other as a deferred node. 

1

2

3

3

2 4

5

6

7

3

2

FIG. 7. A "star" pattern graph.
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The deferred placement strategy is realized by Algorithm DLA (short for "deferred linear
arrangement"). In the definition of this algorithm, w denotes a deferred node and dl(v) denotes
number of nodes in ADJ(v) that have so far been selected for placement, defined as dl(v) = |ADJ(v)
(V-U)|. The expression ceiling(2m/n) represents the smallest integer not less than the average number
of edges per node, and approximates the average d(v).

ALGORITHM  DLA
Input: A general graph G.
Output: A linear arrangement f of G that approximates the minimum t(G, f ).
Method:

1. For each v  V:
1.1 Calculate d'(v) and ADJ(v).
1.2 tl(v)  0. dl(v)  0.

2. F  .  U  V.  w  -1.
3. For i = Min_Possible_sf_Value to Max_Possible_sf_Value: sflist[i]  empty list.
4. minsf  Max_Possible_sf_Value + 1.
5. Select a starting node v  U.  f1  v.  U  U - v.
6. For i = 2 to n:

6.1 Update deferred node: If w  ADJ(v):
6.1.1 tl(w)  tl(w) + c(wv).  sf(w)  d'(w) - 2tl(w).
6.1.2 dl(w)  dl(w) + 1.

6.2 Update: For each u  (ADJ(v)  U):
6.2.1 If tl(u) > 0, then: sf(u)  d'(u) - 2tl(u), Remove u from sflist[sf(u)].

Else: F  F  u.
6.2.2 tl(u)  tl(u) + c(uv).  sf(u)  d'(u) - 2tl(u).
6.2.3 dl(u)  dl(u) + 1.
6.2.4 Insert u at tail of sflist[sf(u)].
6.2.5 If sf(u) < minsf, then: minsf  sf(u).

6.3 Place deferred node: If w  -1 and sf(w)  0, then: f i-1  w, w  -1.
6.4 Select:  v  First node in sflist[minsf].  Remove v from sflist[minsf].



A NEW HEURISTIC ALGORITHM FOR LINEAR ARRANGEMENT 13

6.5 If sf(v) > 0 and d(v) > ceiling(2m/n) and (d(v)-dl(v)) > 1, then:
6.5.1 Defer placement of v: If w = -1, then:

w  v.
Else (there already is a deferred node):

If sf(v) < sf(w), then: f i-1  v.
Else: f i-1  w, w  v.

Else (placement of v is not deferred):
6.5.2 Place: If w = -1, then:  f i  v.

Else:  f i-1  v.
6.6 U  U - v. F  F - v.
6.7 If sflist[minsf] is empty, then:

6.7.1 If F = , then: minsf = Max_Possible_sf_Value + 1.
Else: Search for the smallest minsf such that sflist[minsf] is non-empty.

Algorithm LA produces f = (1, 4, 3, 5, 2, 6, 7) with t(G , f ) = 29 for the graph in Figure 7.
Algorithm DLA produces f = (1, 3, 5, 4, 2, 6, 7) with t(G, f ) = 21, which is close to the optimal result
(1, 2, 3, 4, 5, 6, 7) with t(G, f ) = 20.

The asymptotic time complexity of Algorithm DLA is the same as that of LA. Steps 6.1 and 6.2
of DLA require a single examination of ADJ(v), as does Step 6.1 of LA. Step 6.7 of DLA is the
same as step 6.4 of LA. All other subparts of Step 6 in DLA are (1).

5. Empirical results. This section illustrates the performance of the new heuristic algorithm on
a collection of empirical test cases. The basic Algorithm LA is compared with the refinements
described in Section 4 to determine the practical value of the refinements. Comparisons are made
with results obtained from the eigenvalue-based approach to linear arrangement as well as existing
bandwidth and profile reduction algorithms.

The motivation for this work is in arranging software model diagrams. To test applicability in this
domain, the test cases include 20 graphs derived from sample diagrams. The types of diagrams
include entity-relationship diagrams, data flow diagrams and object models. The diagrams were
obtained from a variety of sources including textbook examples and documentation from commercial
software development projects. The examples range in size and complexity from a single page with
12 graphical objects to models made up of multiple diagrams and including over 100 distinct graphical
objects. 

The graphs are derived from the software models as follows. Each distinct graphical object (e.g.
an "entity" or an "object class" icon) is represented as an arbitrarily numbered node. Each line (e.g.
an association or a data flow) drawn between two graphical icons corresponds to an edge. A case
where two objects are connected by two or more lines results in an edge with a weight equal to the
number of distinct connections. A ternary connection (involving three objects) is represented as a
separate edge between each pair of participating objects. This set of 20 graphs has been submitted
in matrix form to the Rutherford-Boeing sparse matrix collection [5] so the graphs can be made
freely available to other researchers. These 20 test cases are designated as type M in Tables 1 and
2.

Fourteen additional test cases are also included from domains often used for evaluation of profile
reduction algorithms. Five cases are from the Cannes collection of finite element structures problems
in aircraft design and are designated as type C in Tables 1 and 2. Nine cases are from Everstine's
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collection of structural engineering problems, designated as type E in Tables 1 and 2. Inclusion of
these cases broadens the types of tests used and provides much larger examples than those derived
from software models. These fourteen test cases are available from the Rutherford-Boeing sparse
matrix collection [5], are used by Marro to compare the performance of several profile reduction
algorithms [15] and are referred to collectively as "structures problems" in the ensuing discussion.

Table 1 provides the average edge length defined as t(G, f )/m resulting from several refinements
of Algorithm LA for each test case. Section 4 describes four refinements of LA: a tie breaking
strategy, two alternative methods of starting node selection and Algorithm DLA. Table 1 indicates
that the latter three refinements provide improved arrangements while the tie breaking strategy
appears to be of limited value. DLA improves performance for the software models but not for the
structures problems. This is not a surprising result. DLA provides an advantage over LA only when
specific types of patterns are present in G, such as star patterns similar to Figure 7. Similar patterns
are present in many of the software models but tend not to be present in the structures problems.

Given that three of the refinements provide improved results, it is reasonable to investigate
whether combinations of refinements provide further gains. The rightmost two columns in Table 1
show the results provided by the two combinations found to provide the best performance. The first
combination involves Algorithm DLA executed twice and uses the rightmost node from the first
arrangement as the starting node for the second execution. The second combination extends the first
by using a pseudodiameter to select the starting node for the first execution. The results are
comparable in that the two combinations return arrangements with exactly the same t(G, f ) in 26 of
34 cases and there is only one case (#33) with a marked difference in the result. The second
combination provides a 15 percent reduction in total average edge length compared with the basic
LA algorithm for the 34 test cases.

Table 2 compares five existing algorithms to a refined version of Algorithm LA, namely the
second combination of refinements described above. The FIM algorithm selected for comparison is
as similar as possible to the refined version of Algorithm LA. The FIM algorithm is executed twice
and a pseudodiameter is used to select the starting node for the first execution. Deferred placement
does not apply since FIM does not attempt to achieve equal distribution. The FORTRAN code
provided by Lewis and Poole is used for the GPS and GK algorithms [13]. The MATLAB
environment from The Mathworks, Inc. is used as the implementation of the RCM algorithm [11].
The eigenvalue-based approach is also implemented using MATLAB, which uses a variant of the
Arnoldi method for finding eigenvalues and eigenvectors [19].

For the software models, the new algorithm provides the best arrangement for 17 of the 20 test
cases and provides an improvement of approximately 19 percent in overall average edge length over
the nearest competitor, the eigenvalue-based approach. The situation is not as simple for the
structures problems. The new algorithm provides superior performance compared with the four
bandwidth and profile reduction algorithms in that a better arrangement is found in 12 of the 14 cases
and the overall average edge length is lower. In comparison with the eigenvalue-based approach,
however, the new algorithm is less consistent (e.g. case #27), results in a higher overall average edge
length, but still returns a better solution in 5 of 14 cases.

Execution times are provided in Figure 8 for the test cases involving n > 600. The trials depicted
in Figure 8 were executed on an IBM RS/6000 100 MHz model E20. To increase accuracy each
timing involves ten consecutive executions. The total execution time is divided by ten to give the times
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shown. The two bottommost data sets in Figure 8 compare the most basic versions of the LA and
FIM algorithms, which involve single execution, a minimum degree starting node and no deferred
placement. Both algorithms select the node for placement i from Fi. These two algorithms are
implemented with the same C++ code, with the exception of the selection factor used for each
placement. The additional time required for FIM is due to the updates required after each placement
of node v. LA requires examination of each u  ADJ(v) whereas FIM requires in addition examination
of ADJ(u) for each such u.
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TABLE 1
Average edge length obtained with various refinements of Algorithm LA

# n m Type LA TieBrk PD 2 DLA DLA2
  PD+
DLA2

1 12 10 M 3.5 3.5 3.5  3.5  3.0  3.0  2.9

2 16 19 M 4.0 4.0 4.0  3.6  3.0  3.0  3.0

3 17 20 M 2.4 2.3 2.4  2.1  2.4  2.1  2.1

4 19 31 M 6.2 4.3 6.2  6.0  6.0  5.9  5.9

5 19 33 M 3.1 3.1 3.1  3.1  3.2  3.2  3.2

6 20 27 M 3.3 3.3 3.3  3.3  3.4  3.4  3.4

7 21 38 M 10.8 10.8 10.8  8.2  7.7  7.7  7.7

8 23 35 M 5.3 4.9 5.3  4.7  5.2  4.7  4.7

9 29 53 M 6.7 6.5 6.7  5.8  6.7  5.8  5.8

10 30 51 M 5.0 5.0 4.2  4.3  4.9  4.3  4.2

11 32 43 M 4.4 4.3 4.4  4.4  4.3  4.1  4.1

12 33 57 M 4.4 4.4 4.2  4.4  4.4  4.4  4.2

13 47 111 M 10.4 10.7 10.4 10.4 10.4  9.4  9.4

14 55 80 M 6.1 6.0 6.1  5.3  6.0  5.4  5.4

15 56 74 M 6.4 6.5 5.4  5.4  5.7  5.1  5.1

16 66 88 M 4.9 4.9 5.3  4.9  4.6  4.6  4.6

17 72 146 M 8.4 8.4 8.4  8.4  7.9  7.9  7.9

18 74 145 M 10.3 10.3 7.3  7.3  9.7  7.1  7.1

19 93 151 M 14.5 13.4 10.8 11.9 12.6 11.7 10.7

20 119 241 M 8.0 7.8 8.0  8.0  8.0  8.0  8.0

21 634 3297 C 39.4 39.0 39.4 39.4 39.4 39.4 39.4

22 715 2975 C 27.0 26.8 26.5 24.7 26.3 24.7 26.2

23  758  2618 E 10.0 10.0  6.1  6.1 10.0  6.1  6.1

24 838 4586 C 39.1 39.2 37.3 33.9 39.1 33.9 33.9

25  869  3208 E 10.9 10.9 10.9 10.7 10.9 10.7 10.7

26  878  3285 E 14.2 14.2 14.2 14.2 14.2 14.2 14.2

27  918  3233 E 34.3 33.6 34.3 34.3 34.3 34.3 34.3

28  992  7876 E 22.7 22.7 22.7 22.7 22.7 22.7 22.7

29 1005  3808 E 27.9 28.2 27.9 27.9 27.9 27.9 27.9

30 1007  3784 E 16.3 16.3 16.3 14.1 16.3 14.1 14.1

31 1054 5571 C 46.8 46.7 46.6 36.2 46.8 36.1 36.1

32 1072 5686 C 48.9 48.9 35.8 36.6 48.9 36.5 33.4

33 1242  4592 E 40.6 42.8 26.8 35.1 40.6 35.1 26.8

34 2680 11173 E 35.7 37.6 24.6 24.6 35.7 24.6 24.0

Subtotals: M 128.1 124.4 119.8 115.0 119.1 110.8 109.4
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C/E 413.8 416.9 369.4 360.5 413.1 360.3 349.8

Totals: 541.9 541.3 489.2 475.5 532.2 471.1 459.2

Type: M = Software Model, C = Cannes collection, E = Everstine's collection
LA: Basic Algorithm LA. TieBrk: LA with tie break strategy.
PD: LA with pseudodiameter used to 2: LA executed twice.

select starting node. DLA: Algorithm DLA
DLA2: DLA executed twice. PD+DLA2: Pseudodiameter added to DLA2
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TABLE 2
Existing algorithms compared with the new algorithm

# n m Type RCM FIM GPS GK Eigen
LA: PD+

DLA2

1  12  10 M  2.9  4.1  2.9  3.0  3.4  2.9

2  16  19 M  5.1  4.1  4.3  4.1  4.5  3.0

3  17  20 M  3.5  2.9  2.6  2.7  2.4  2.1

4  19  31 M  4.8  5.0  4.7  4.6  4.0  5.9

5  19  33 M  5.1  3.4  4.8  4.5  3.1  3.2

6  20  27 M  5.1  3.7  4.8  4.5  3.3  3.4

7  21  38 M 12.4 11.4 10.2 10.2 10.2  7.7

8  23  35 M  7.3  5.3  7.2  5.3  6.4  4.7

9  29  53 M  7.8  7.8  7.2  6.6  5.8  5.8

10  30  51 M  6.9  4.6  5.3  4.9  4.7  4.2

11  32  43 M  5.9  4.7  4.6  4.8  6.5  4.1

12  33  57 M  7.2  5.8  6.5  5.9  5.2  4.2

13  47 111 M 12.9 14.0 12.6 10.6 12.1  9.4

14  55  80 M 13.4  6.5 10.7  9.4  7.8  5.4

15  56  74 M 11.5  6.9  8.0  7.9  6.0  5.1

16  66  88 M  9.9  6.2  8.3  8.4  7.6  4.6

17  72 146 M 12.9 10.4 10.8 10.3 10.1  7.9

18  74 145 M 11.5 10.4 11.4 13.0  8.4  7.1

19  93 151 M 23.3 15.3 16.8 15.2 14.8 10.7

20 119 241 M 18.8 10.2 15.5 13.8  9.5  8.0

21  634  3297 C 43.7 53.2 39.9 39.7 33.0 39.4

22  715  2975 C 44.5 31.5 41.9 41.6 35.7 26.2

23  758  2618 E  7.8  7.0  7.3  7.3  6.0  6.1

24  838  4586 C 49.9 39.9 46.0 41.9 31.9 33.9

25  869  3208 E 16.8 12.2 13.7 13.4 11.9 10.7

26  878  3285 E 18.8 17.0 16.2 16.1 15.0 14.2

27  918  3233 E 18.4 50.4 16.3 16.0 12.8 34.3

28  992  7876 E 25.8 24.7 23.0 23.0 23.3 22.7

29 1005  3808 E 32.1 47.1 31.1 29.5 22.7 27.9

30 1007  3784 E 17.9 16.1 16.2 16.0 14.3 14.1

31 1054  5571 C 37.2 43.8 33.6 35.1 27.1 36.1

32 1072  5686 C 52.6 39.9 45.3 46.0 29.7 33.4

33 1242  4592 E 32.1 30.5 35.1 32.4 22.4 26.8

34 2680 11173 E 28.7 39.0 26.7 26.4 23.0 24.0

Subtotals: M 188.2 142.7 159.2 149.7 135.8 109.4
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C/E 426.3 452.3 392.3 384.4 308.8 349.8

Totals: 614.5 595.0 551.5 534.1 444.6 459.2

Algorithms:
RCM: Reverse Cuthill-McKee. FIM: Frontal increase minimization.
GPS: Gibbs-Poole-Stockmeyer. GK: Gibbs-King.
Eigen: Eigenvalue-based linear arrangement.
LA: DLA executed twice, pseudodiameter used for the first starting node.
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FIG. 8. Execution times: FIM versus three variations of the new algorithm.

Both the LA and FIM implementations exhibit growth in execution time suggestive of time
complexity that in practical terms approximates (m). Marro [15] provides an analysis that shows FIM
to be (m), however this analysis does not mention any step equivalent to Step 6.4.1 in Algorithm LA.
This is that only step not shown to be (m) in Section 3. For the 34 test cases, a search is necessary
in this step during 57 percent of the placements. On average the number of iterations per search is
1.56. This average seems small enough to justify the use of a linear search in Step 6.4.1, at least for
this set of test data. The worst case time complexity of this step is O(d'max(G) n). However the
average number of iterations required for the test graphs is 0.88n. Thus it is not surprising that m is
a reasonable predictor of execution time for the basic LA and FIM algorithms in Figure 8.

Times for Algorithm DLA executed twice are shown as a third data set in Figure 8. Not
surprisingly, the times are approximately twice those for LA. Deferred placement seems to have no
effect on asymptotic time complexity, as predicted in Section 4.3.

The final (topmost) data set in Figure 8 shows the effect on execution time of generating a
pseudodiameter for selection of a starting node. The differences in execution times between the third
(DLA2) and the topmost data sets are due entirely to starting node selection. The time required for
generation of the pseudodiameter varies between 18 and 85 percent of total execution time for the
14 cases in Figure 8.

Direct comparison of our implementation of Algorithm LA with the RCM, GPS and GK
implementations in terms of execution time is not possible since different hardware and software
environments are involved. However, Marro shows that execution times for these three algorithms
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tend to be comparable with FIM [15]. In addition, Table 3 lists the execution times for the two
algorithms implemented using MATLAB. These trials were executed on an 85 MHz Sun
Microsystem SPARC 1000. Even allowing for the difference in execution speed of the two machines
involved, the times for the RCM algorithm are comparable with the times depicted in Figure 8 for the
FIM, LA and DLA algorithms in the sense that all times are less than one-half second. The total time
required for the 14 cases with the eigenvalue-based approach, however, is more than 500 times that
required with RCM.
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TABLE 3
MATLAB execution times in seconds

# n m RCM Eigen

21  634  3297 0.06 21.36

22  715  2975 0.07 22.68

23  758  2618 0.04 20.63

24  838  4586 0.12 29.42

25  869  3208 0.07 26.01

26  878  3285 0.05 29.60

27  918  3233 0.05 33.08

28  992  7876 0.16 46.71

29 1005  3808 0.08 47.05

30 1007  3784 0.10 38.10

31 1054  5571 0.10 47.76

32 1072  5686 0.15 48.19

33 1242  4592 0.08 57.24

34 2680 11173 0.23 236.83

Totals: 1.36 704.66

6. Conclusions. The results in Section 5 provide strong evidence that the heuristic described in
this paper is an improvement over existing profile and bandwidth reduction algorithms for the linear
arrangement problem, especially when Algorithm LA is refined as per Section 4. The new heuristic
is shown to be slightly more efficient in terms of execution time than the FIM approach. The results
also show that the most effective linear arrangement algorithm depends on the type of application.
Algorithm DLA refined with two executions per graph and the use of a pseudodiameter for starting
node selection provides the best overall results for the software model test cases. If execution speed
is not a concern for a given structural engineering application, then the eigenvalue-based approach
provides somewhat better overall results. For time-critical applications, however, the new algorithm
offers competitive performance in reducing total weighted edge length plus a considerable advantage
over the eigenvalue-based approach in terms of execution speed.
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