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Abdract. A new algorithm for the linear arrangement problem is described. The goal is to produce linear
arrangements of software model diagrams such that the total length of all connectionsis reduced as much as
possible. The algorithm uses the same general numbering strategy as existing algorithmsfor the highly related
problems of bandwidth and profile reduction but is based on a new heuristic that addresses the unique
requirements of the linear arrangement problem. Extensive testing is performed with graphs derived from
software model diagrams and from structural engineering. The testing indicates that three refinements to the
new al gorithmimprovethearrangementsproduced. Thenew al gorithm produceslinear arrangementswithlower
total weighted edge length for both classes of test graphs in comparison with several bandwidth and profile
reduction algorithms, and for the software model diagrams in comparison with an eigenvalue-based linear
arrangement algorithm. The new heuristic is also shown to require slightly lessexecution timethan thefrontal
increase minimization heuristic used by several bandwidth and profile reduction algorithms, and far less
execution time than the eigenval ue-based algorithm.
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1. Introduction. Let G beagraph with node setV of size n and edge set E of szem Let c(uv)
be an integer greater than zero denoting the weight on the edgeuv from node u to node v. Any edge
with unspecified weight is assumed to have a weight of 1. A linear arrangement (or Smply
arrangement) of G isaone-to-onefunctionf fromVto theinteger set { 1,2,...,n}. Intuitively, alinear
arrangement orders the nodes of G in a straight line with unit distance between nodes in adjacent
positions. Let w(uv, f ) denote the length of an edge uv with respect to arrangement f, defined as
w(uv, f ) = [f(u)-f(v)| wheref(v) denotes theposition of v in the arrangement. Theweighted length
of the same edge is defined by c(uv)w(uv, f ). Lett(G, f ) denote the total weighted edge length for
G with respect to arrangement f, defined by the following:

o

a
t(G, f) = wlE c(uv)w(uv, f)

The linear arrangement problem (LAP) isto find f for agiven G so that t(G, f ) is minimized.

The LAParisesin anumber of application areas, including error-correcting codes[12] and VLS|
layout [14, 21]. Chung describes the LAP in terms of pins connected with various numbers of wires
[3]. In this context the problem is to arrange the pinsin a straight line to minimize total wire length.
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The motivation for the current research arises in connection with an aternative style for laying
out software diagrams, including for example entity-relationship models [2] and data flow diagrams
[6]. Such diagrams involve objects connected with lines. Thus drawing a diagram is analogous to
drawing a general graph. Traditional layout involves placement of objects (i.e. nodes) anywhere in
twodimensionsasin Figure 1. Automatic layout in this context involves considerable complexity (see
for example [16]). One potential aternative is to arrange the objects in alinear fashion asin Figure
2. Connections (i.e. edges) between objects are drawn between the vertical "tails' associated with
the objects rather than between the objects themselves. Layout is

Fic. 1. An example graph with two-dimensional layout.
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Fic. 2(a). Nodes arranged in a linear fashion.
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Fic. 2(b). An alternative linear arrangement.
smplified in the sense that it is conceptually smple to add or delete any object or connection
regardless of the size and complexity of the diagram. Multiple connections between two objects can
be shown separately asin Figure 2 or by specifying edge weights as in Figure 1, regardless of the
layout style used.

The LAP for this dternative layout style involves ordering the objects to reducet(G, f ) asmuch
as possible. Figure 2(b) provides one possible dternative to the ordering in Figure 2(a) that reduces
t(G, f ) from 46 to 30. Reducing t(G, f ) is intended to enhance the presentation of adiagram by (a)
placing highly related objects in close proximity to one another and (b) reducing "visua clutter”
associated with long connecting lines. While these diagram presentation issues provide motivation,
this paper focuses only on the LAP.

Harper [12] provides a solution to the LAP for the class of n-cubes. Solutionsare dso available
for trees[1, 3, 17]. For genera graphs, however, the LAP is known to be NP-hard [7]. Thereisa
need for heuristic algorithms to address this problem in polynomial time.

An eigenvaue-based adgorithm isavailable for finding linear arrangements of VLS components
(e.g. logic gates) to reduce the total length of the wires connecting the components [14, 21]. This
problem can be represented as a graph where each node represents a VLSl component and each
edge uv represents the wire(s) connecting components u and v. c(uv) represents the number of
wires between components u and v. c(uv) is considered to be zero if  uv E. An arrangement is
generated by first creating a square matrix B. Each element b, of B is defined by:

& 0
ca clik)+
by =5 Ciki € . c(ij)
where ; is1if i = j, O otherwise. The smallest non-trivial eigenvalue of B is found and the

corresponding eigenvector elements are sorted. The indices of the sorted elements are assigned as
the resultant f.

Several heurigtic dgorithms are available for the related problems of bandwidth reduction and
profile reduction. The bandwidth of a graph with respect to a given arrangement is the length of
the longest edge. The goal of bandwidth reduction isto find an arrangement with the lowest possible
bandwidth. The bandwidths of Figures 2(a) and 2(b) are 6 and 4, respectively. Assume G is stored
intheformof ann n matrix M where m; 0iff vv, E. Storage requirements are reduced and many
matrix operations can be performed more efficiently if M isin small bandwidth form.
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Letp(v, f) denote theprofile of nodev with respect to arrangement f, defined by the following:

max
p(v, f) = max(0, (W'E f(v)-f(u)))

Intuitively, p(v, f ) isthe length of the longest edge extending leftward from v, or zeroif no such edge

exists. Let p(G, f ) denote the profile of G with respect to arrangement f, defined by the following:

o

a
PG, )= VIV p(v, f)

The goa of profile reduction isto find an arrangement that reducesp(G, f ) asmuch aspossible. The
p(G, f) vauesfor Figures 2(a) and 2(b) are 18 and 17, respectively. Reversing the arrangement in
Figure 2(b) reduces p(G, f ) to 14.

The primary application of profilereductionisto aid in solution of large linear systems of theform
Mx = b, wherethen n matrix M corresponding to G is sparse and structurally symmetric (m; 0 iff
m, 0). The solution of alinear system tends to be more efficient when the rows and columns of M
are ordered so that the profile of the associated G is reduced.

A number of heuristic algorithms for bandwidth and profile reduction are available. The reverse
Cuthill-M cK ee (RCM) dgorithm, amodification by George[8] of the algorithm defined by Cuthill and
McKee [4], is perhaps the most widdly used. This agorithm was originaly devel oped for bandwidth
reduction. The Gibbs-Poole-Stockmeyer (GPS) algorithm [10] was developed to address both
bandwidth and profilereduction, whereas profilereductionisthe primary goa of the Gibbs-King (GK)
[9] and Snay [18] algorithms. These algorithms share the same simple genera strategy, as follows:

Step 1. Select atarting node and place this node in position 1.

Step 2. For each remaining position 2 through n, select one of the unplaced nodes for
placement in the current position.

The algorithms differ in the methods used for selecting a starting node and in the criteria used for
selecting nodes in Step 2.

While bandwidth and profile reduction are smilar to the LAP, there are two very significant
differences. First, bandwidth and profile are measured using only asubset of edgeswhereasthe LAP
is concerned with dl edge lengths. Second, edge weights areirrelevant for bandwidth and profile and
are ignored by the algorithms mentioned above. Edge weights are, however, important for the LAP.

Bandwidth and profile reduction agorithms tend to be efficient in the sense that several have
beenimplemented to have linear time complexity with respect to m[15]. Thus these algorithms offer
a potential advantage over the comparatively expensive calculation of eigenvalues and eigenvectors.
This paper describes a new algorithm that uses the same genera strategy as the bandwidth and
profile reduction agorithms but is based on a new heuristic that addresses the somewhat different
requirements of the LAP. The objective isto provide performance similar to the eigenva ue-based
heuristic in terms of reducing t(G, f ) and smilar to the bandwidth and profile reduction agorithms
in terms of execution time.

The rest of the paper is organized as follows. Section 2 provides the rationale for and definition
of a new heuristic. The implementation and time complexity of an algorithm based on the new
heurigtic are presented in Section 3. Severa refinementsto the new agorithm are proposed in Section
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4. Section 5 provides experimental results to assess the practical value of the proposed refinements
and to compare the new algorithm with the existing algorithms described above. The results are
compared in terms of t(G, f ) and execution time. Section 6 presents brief conclusions.

2. A new heuristic. One of the most commonly used heuristics for bandwidth and profile
reduction is referred to as frontal increase minimization (FIM). Thissection presentstherationale
for anew heuristic by first describing the FIM approach and then offering insghts into the ordering
process based on examples.

Assume the two-step general strategy described in Section 1 isused. A variety of methods can
be used for selecting a starting node in Step 1. For now assume the use of a simple strategy
suggested by Cuthill and McKee [4], namély to select a node with minimum degree. Thedegr ee of
node v is denoted asd(V), defined as the number of nodes adjacent to v. Node u isadjacent to v iff
uvE. Other dternatives for starting node selection are considered in Section 4.

FIM isone possible strategy for node placement in Step 2. Assume 2in and the number of placed
nodesis currently i-1. This meansi-1 placements have occurred and placement i is about to occur
in podtion i. Let P, denote the set of i-1 nodes placed so far and let U, = (V-P) dencte the set of
currently unplaced nodes. Let F, = {uU, | vP, and uvE} denote the front at placement i. The FIM
strategy is to select for placement i a node that minimizes the size of F,.,. In other words, select a
node that is adjacent to the fewest nodesin U-F..

Several profile reduction agorithms incorporate the FIM strategy. They differ in terms of the
subset of U, considered for each placement. For example the Snay algorithm selects the node for
placement i from all unplaced nodes in or adjacent to F.. A smilar FIM variation is discussed by
Marro [15] where the node for placement i is selected from thenodesin F,. The GK agorithm uses
FIM in conjunction with a precal culated | evel structure [9]. A leve structure partitionsV into levels
L., L,....L. where for v in any level, dl nodes adjacent to v are at most one level away. For each of
L, toL,, al nodesinthe current level are placed before moving on to the next level. The GK agorithm
determines the order of placement for nodes within a given level using FIM.

Consder applying the FIM strategy to the example graph in Figure 1. Assume node 1 is the
starting node and the node for placement i is selected from the nodes in F.. The resultant ordering
is shown in Figure 3. Edges are displayed in the same style as Figure 2. t(G, f ) is39and p(G, f ) is
reduced to 13. This example illustrates the following observations:

OOOOOOO®

Fic. 3. An arrangement resulting from FIM.
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Observation 1. Reduction of p(G, f ) tends aso to reduce t(G, f ), however thetwo goasare
not always complementary. Between Figures 2(b) and 3, the former provides the smaller
t(G, f ) while the latter provides the smaler p(G, f).

Observation 2. The FIM strategy tends to delay placement of a highly connected node until
most of its adjacent nodes are placed. For example node 6 is almost the last node to be
placed in Figure 3. This makes sense for reducing p(G, f ) since only the longest of the
edges extending leftward from such a node impacts p(G, f ). It seems, however, that a
better strategy for reducing t(G, f ) isto distribute the nodes adjacent to ahighly connected
node v as equally as possible on either side of v. Thisis illustrated by the placement of
node 6 in Figure 2(b) but is perhaps better illustrated by the smple example in Figure 4.
Minimum t(G, f) is clearly obtained by the arrangement (1, 2, 3, 4, 5). Switching any one
of thenodes 1, 2, 4 or 5 to the other side of the highly connected node 3 increases t(G, f
).

Observation 3. Edge weight has no impact on p(G, f ) and thus is not used by the FIM (or
other) profile reduction agorithms. Edge weight is, however, an important factor in
determining t(G, f ). Consider F, = {3, 6, 8} during the creation of Figure 3. The FIM
strategy selects node 3 for position 3 since this node is connected to only one unplaced
non-front node (5) while nodes 6 and 8 are connected to three and two such nodes,
respectively. However, sincec,, = 3 isgreater than c,; = 1, itismoreimportant in reducing
t(G, f) that node 8 (rather than node 3) should be placed closeto node 2 asin Figure 2(b).
Smilarly, when reducing t(G, f ) for Figure 4, nodes 2 and 4 should be preferred over
nodes 1 and 5 for placement next to node 3 in the resultant arrangement.

FG. 4.

Let d'(v) denote the weighted degree of v, defined by the following:

o

a
d'(v) = Wl E c(uv)
For asingle vU, define tl;(v) as:

o

ca
t(v) = "M E euy)
It follows that tl,(v) > 0 iff vF. Define tr,(v) as d'(v) - tl,(v). For examplein Figure 1 d(2) = 4 and
d'(2)= 7. Assuming node 1 as the starting node, then tl,(2) = 1 and tr,(2) = 6.

Assume 2in and vU.. tl,(v) and tr,(v) provide measures of how highly connected v isto P, and
(if v is selectedfor placement in positioni) U,.,, respectively. Based on the three observations above,
amethod for selecting anodev for each placement is desired so that on average |tr,(v)-tl,(v)| =|d'(v)-
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2tl,(v)| tends to be as small as possible. This objective is referred to in this paper as equal
distribution. A new selection factor sf,(v) isdefined to aid in accomplishing this objective, asfollows:

sfi(v) = d'(v) - 2(v)

This new selection factor is used with the same two-step general strategy described above. For each
placement i in Step 2, select vF, with minimum sf,(v). This strategy produces the arrangement in
Figure 2(b) for the graph in Figure 1. There are two components to the rationale for using sf,(v).

@

@

As i increases and v remains unplaced, tl(v) increases and tr,(v) decreases with each
placement of a node adjacent to v. If tl(v) < tr,(v) (i.e. sf(v) > 0) then each such
placement tends to move the partial f closer to the state where placing v helpsto achieve
equal digtribution. If tl,(v) >tr,(v) (i.e. sfi(v) < 0) then each such placement tends to move
f further from that state. It follows that () the likelihood of placing v should increase as
sfi(v) decreases, and (b) if sf,(v) > sf,(u) then u should be preferred over v for placement
i

Let tpu, denote the total weight of all edges between P, and U,, defined as follows:

[o]

a
tpu ="' F tl(v)
An dternative definition of t(G, f ) for acompleted f is.

Qo

t(G,f)=1=2 tpy

It follows that t(G, f ) is minimized if f is constructed so the average tpu, is minimized.
Furthermoret(G, f ) should tend to bereduced if the node for each placementi is selected
so that tpu,,, isminimized. For placement 1 it is obviousthat selecting v with minimumd'(v)
as the garting hode minimizes tpu,. If 2in and VI, is selected for placement i then tpu,,,
=tpuy, - th(v) + tr(v) = tpu, + sf,(v). Since tpu, is aconstant for placementi, then tpu.., is
minimized by selecting v with minimum sf,(v).

3. Implementation and time complexity. Marro [15] shows that FIM implementations with
linear time complexity with respect to mare possible based on the following two insights:

@)

@

Foru U, tl,(u) differsfrom tl,,(u) iff v isplaced in postion i-1 and u ADJ(v). Therefore
only those tl,(u) values that change based on placement i-1 need to be adjusted prior to
placement i.

It is possible to salect anode with minimum sf,(u) in constant time if severd lists of nodes
are maintained. Each list contains dl nodesu F, that have the same value for sf,(u). An
array of lists sflist is maintained so that the list for any specific sf,(u) value (denoted
sflist[sf,(u)]) can be accessed directly. A separate variable minsf also keeps track of the
current minimum sf,(u) vaue. Thusanode with minimumsf,(u) can be selected in constant
time by choosing the first nodein sflistiminsf].

The Algorithm LA (short for "linear arrangement™) defined below results from applying Marro's
insights to the new heuristic. Note that tl,(u) and sf,(u) values are maintained throughout the
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algorithm, rather than calculated for each distinct i value. The expressions tl(u) and sf(u) are used
in the algorithm definition to represent their current values.

ALGORITHM LA

Input: A genera graph G.

Output: A linear arrangement f of G that approximates the minimum t(G, f ).
Method:

1. Foreachv V:
1.1 Caculate d'(v) and ADJ(V).
1.2 tl(v) O.
2 F.UW
3. Fori=Min_Possible sf Valueto Max_Possible sf Value: sflist[i] empty list.
4. minsf Max_Possible sf Value + 1.
5. Sdectadartingnodev U. f, v. U U-w.
6. Fori=2ton:

6.1 Update: For each u (ADJ(v) U):
6.1.1 If ti(u) > O, then: sf(u) d'(u) - 2tl(u), Remove u from sflist[sf(u)].
Elss F F u.
6.1.2 ti(u) ti(u) + c(uv). sf(u) d'(u) - 2t(u).
6.1.3 Insert u at tail of sflist[sf(u)].
6.1.4 If sf(u) < minsf, then: minsf sf(u).
6.2 Select: v First nodein sflistiminsf]. Remove v from sflistfminsf].
6.3Place: f, v.U U-v.F F-v.
6.4 If sflistfminsf] is empty, then:
6.4.1 If F =, then: minsf = Max_Possible_sf Value + 1.
Else: Search for the smallest minsf such that sflistfminsf] is non-empty.

Assuming a starting node is selected as any node with minimum d'(v) then Steps 1 to 5
collectively are (m). Since each v V is placed in only one position, then ADJ(V) is examined in Step
6.1 only once per ordering for each v. In Step 1.1 each edge uv resultsin the addition of u to ADJ(v)
and v to ADJ(u). It follows that the total number of nodesin dl ADJ(v) for v V is 2n Since each
of Steps 6.1.1t0 6.1.4 is (1), then the Update step is (m). Each of Steps 6.2 and 6.3 is (1).

The impact of Step 6.4.1 on the time complexity of the algorithm depends on (a) the number of
searches required for G, and (b) the average number of iterations required per search. The number
of searches obviously cannot exceed n-1. The example graph pattern in Figure 5(a) shows that the
number of searches required can beas small as zero. Following each placement, F = is aways true
in Step 6.4.1. The example graph pattern in Figure 5(b) shows that in the worst case the number of
searches for G is(n). Assume the pattern continues to the right for some arbitrarily large number of
nodes, with odd numbered nodes in the top row and even numbered nodes in the bottom. Node 1 is
the starting node and Algorithm LA places the nodes in ascending order by node number. Assume
node i > 3 has just been placed in Step 6.3. Prior to beginning Step 6.4 minsf = 0O, sflist{minsf] is
empty, F = {i+1}, sf(i+1) = 2 and sflist[2] = (i+1). Therefore a search occursin Step 6.4.1 which
increases minsf from 0to 2. Since this occurs for each value of i, the number of searches required
is(n).
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FiG. 5(8). Number of searchesrequired is zero.

Fic. 5(b). Number of searchesrequired is O(n).

Let d'max(G) denote the maximum d'(v) for any v V. The maximum number of minsf values
to be searched for any single search is the difference between the largest and smallest possible
values for sf(v), which is 2d'max(G). Assuming alinear search isused in Step 6.4.1, the worst case
time complexity for Step 6.4 is O(d'max(G) n) and for Algorithm LA is O(m+ d'max(G) n). An
dternative to alinear search isto maintain the listsin a priority queue, which reducesthe worst case
time complexity to O(m + log,(d'max(G)) n). A linear search, however, is considered to be a
reasonable strategy in Step 6.4.1 for graphsresulting from software model diagrams. The graphstend
to be sparse (i.e. relatively few edges per node) and c(uv) valuestend to be small. For example, the
largest c(uv) is 3 for any edgein the 20 sample graphs described in Section 5. These two factorstend
to keep [sf(v)| values small, which meansthat if u is placed in Step 6.3 (i.e. minsf = sf(u)) andv F
in Step 6.4 then sf(v)-minsf tends to be small. The practical effectiveness of alinear search for this
sep is evaluated with empirical datain Section 5.

4. Refinements. This section introduces four possible refinements to Algorithm LA together
with their impact on time complexity. The potential value of the refinementsis evaluated in Section
5 based on empiricd results. The refinementsinclude atie breaking strategy, two aternative methods
for selection of a starting node and a strategy where the node placed in position i isnot dwaysin F..

4.1. Tie breaking strategy: It ispossblein Step 6.2 of Algorithm LA for there to be severa
nodesin sflistfminsf]. Eachsflist ismaintained as aqueue whereinsertions are performed at the tail
and removals are from the head of the list. Thus when severa nodes have the same minimum value
for sf,(u) thetieis broken by selecting the node for which sf,(u) has been equa to minsf the longest.
Thisisthe tie breaking strategy used by Marro [15]. An dternative Strategy is suggested by Figure
6. Assumein Figure 6(a) that node 1 has been placed in position i-1 and either 2 or 3isto be selected
for podtion i. minsf = sf,(2) = fi(3) = 1. However, (tl,(2)/d'(2) = 1/3) < (tl,(3)/d'(3) = 2/5) < 0.5 and
thus in this sense node 3 is closer to achieving equd distribution than is node 2. One can argue that
node 3 should be selected first. Figure 6(b) depicts a smilar situation where node 4 is placed in
postion i-1 and minsf < 0. minsf = &f,(5) = sf,(6) = -1. In this case 0.5 < (tl,(6)/d'(6) = 3/5) <
(t1(5)/d'(5) = 2/3) and thusin thissense node 5 isfarther past achieving equa distribution thanisnode
6. One can argue that node 5 should be selected first. The following tie breaking strategy results:

If minsf > 0, then:
v Any nodein sflistfminsf] with the largest d'(v).
Else:
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v Any nodein sflistfminsf] with the smallest d'(v).

Modifying Step 6.2 in Algorithm LA to use this strategy necessitates examining the entire
sflist[minsf] for each selection. Marro showsthat time complexity isincreased by afactor of log,(n).

Fic. 6(b). Tie breaking when minsf < 0.

4.2 Selection of starting node: The results provided by profile reduction agorithms can vary
significantly depending on the choice of starting node [15]. It is reasonable to investigate whether a
smilar varianceis shown by Algorithm LA and, if so, to determine an effective method for selecting
a starting node. One of the most widely used methods was first introduced for the GPS agorithm
[20]. This method is used directly for other agorithms [9, 15] and is very smilar to the method used
by Snay [18]. The GPS algorithm finds a pseudodiameter of G, an end-node of whichisused asthe
start node. The algorithm for finding a pseudodiameter involves creating severa rooted level
structures. Let LS(v) denote alevel structure rooted at v. LS(v) can be generated as follows:

1 L, v
2. Fori>1, L isthe set of al nodes adjacent to any nodein L, not yet assigned to aleve.

The depth of alevel structure is the number of levels and the width is the number of nodes in
the largest level. The adgorithm for finding a pseudodiameter first generatesL.S(v) for v with minimal
d(v). Then LS(u) is generated for each node u in the deepest level of LS(V). If any LS(u) isfound
to be deeper than LS(v), u replacesv and the process begins again. If no LS(u) is found to be deeper
than LS(v), then u is selected as the node whose associated LS(u) has the smallest width. The
process terminates with u and v the endpoints of a pseudodiameter. The endpoint with the smallest
degree is the starting node.

The generation of alevel structureis equivalent to a breadth-first search of G and is achieved
in (m) time. It isdifficult to characterize the number of level structuresthat must be generated to find
a pseudodiameter. However, it can be shown that the number of level structures generated has an
upper bound of n asfollows. Assume LS(v) is generated. For LS(v) to be generated again, v must
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be in the deepest level of some LS(u) where LS(u) is deeper than LS(v) and u v. The minimum
distance between u and v must be greater than the depth of LS(v), which is impossible. Therefore
LS(v) is generated only once and the worst case time complexity for finding a pseudodiameter is
O(m).

Turner [20] suggests another method for selecting a starting node: generate f using an arbitrary
start node and then generate a second arrangement starting with the rightmost node in f. Probability
theory is used to show that this strategy has a high probability of producing an arrangement that is
closeto optimal when used with existing profile reduction algorithms. This strategy doubles execution
time.

4.3 Deferred placement. A potential weakness of Algorithm LA isthat f; is always selected
fromF.. In certain casesit is advantageousto select f, from (U-F). Thiscasearisesin"star" pattern
graphs, such as the example in Figure 7. This pattern is a'so sometimes referred to as a "claw".
Examination of the sample graphs described in Section 5 shows that similar patterns are quite
common in graphs derived from software models. Algorithm LA assigns node 4 in Figure 7 to f,
regardless of which other node is selected as the starting node since F, = {4} . However, as per the
discussion in Section 2, the equd digtribution objective is best achieved if node 4 is placed closer to
the middle of the arrangement. This situation is characterized by selection of anodev for placement
in pogtion i where the following three conditions are met:

(1) tl(v) islessthan half of d'(v), i.e. sf(v) > 0;
(2) vishighly connected, which can be interpreted as d(v) is higher than average; and
(3) At least two nodes adjacent to v remain unplaced.

If Condition (3) is not true, then placing v in a higher position means that v will be postioned to the
right of al nodesin ADJ(v). Taken together, these three conditions indicate that defer ring placement
of v islikdy better in terms of the equal distribution objective. In other words, if v is selected in Step
6.2 of Algorithm LA and v meets the three conditions above, then v is not assigned to f,. Instead,
remember v asadeferred node. Place subsequent nodes starting in positioni asif v had been placed.
This means that while a deferred node exists, the ith node selected must be placed in position i-1.
When sf(v) becomes zero or less, then v is placed. If a subsequent node u isidentified for deferra
before v is placed, then place immediately whichever of u or v hasthe smallest selection factor and
retain the other as a deferred node.

Fic. 7. A"star" pattern graph.
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The deferred placement strategy is realized by Algorithm DLA (short for "deferred linear
arrangement”). In the definition of this algorithm, w denotes a deferred node and dl(v) denotes
number of nodesin ADJ(v) that have so far been selected for placement, defined asdl(v) =|ADJ(v)
(V-U)|. Theexpressionceiling(2m/n) representsthe smallest integer not lessthan the average number

of edges per node, and approximates the average d(v).

ALGORITHM DLA
Input: A genera graph G.
Output: A linear arrangement f of G that approximates the minimum t(G, f ).

Method:
1.

Ok wN

Foreach v V:
1.1 Caculate d'(v) and ADJ(V).
1.2 tl(v) 0.dI(v) O.
F.UV w-1
Fori = Min_Possible sf Valueto Max_Possible sf Value: sflist[i] empty list.
minsf Max_Possible sf Value + 1.
Select astarting nodev U. f, v. U U-v.
Fori=2ton:
6.1 Update deferred node: If w ADJ(v):
6.1.1 tl(w) tl(w) + c(wv). sf(w) d'(w) - 2tl(w).
6.1.2 di(w) di(w) + 1.
6.2 Update: Foreach u (ADJ(v) U):
6.2.1 If ti(u) > O, then: sf(u) d'(u) - 2tl(u), Remove u from sflist[sf(u)].
Elss F F u.
6.2.2 tl(u) ti(u) + c(uv). sf(u) d'(u) - 2l(u).
6.2.3 di(u) di(u) + 1.
6.2.4 Insert u at tail of sflist[sf(u)].
6.2.5 If sf(u) < minsf, then: minsf sf(u).
6.3 Place deferred node: If w -1 and sf(w) O, then: f, w,w -1.
6.4 Select: v Firg nodein sflistfminsf]. Remove v from sflist{minsf].
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6.5 If sf(v) > 0and d(v) > caling(2m/n) and (d(v)-dI(v)) > 1, then:
6.5.1 Defer placement of v: If w=-1, then:
W V.
Else (there already is a deferred node):
If sf(v) < sf(w), then: f,, v.
Else: f, w,w v.
Else (placement of v is not deferred):
6.5.2 Place: If w=-1, then: f, v.
Else f, v.
66U U-v.F F-v.
6.7 If sflistiminsf] is empty, then:
6.7.1 If F =, then: minsf = Max_Possible_sf Value + 1.
Else: Search for the smallest minsf such that sflistfminsf] is non-empty.

Algorithm LA produces f = (1, 4, 3,5, 2, 6, 7) with t(G, f ) = 29 for the graph in Figure 7.
Algorithm DLA producesf =(1, 3,5, 4, 2, 6, 7) with t(G, f ) = 21, which is close to the optima result
(1,2,3,4,5,6, 7) with t(G, f ) = 20.

The asymptotic time complexity of Algorithm DLA isthe sameasthat of LA. Steps6.1 and 6.2
of DLA require a single examination of ADJ(V), as does Step 6.1 of LA. Step 6.7 of DLA isthe
same as step 6.4 of LA. All other subparts of Step 6 in DLA are (1).

5. Empirical results. This section illustrates the performance of the new heuristic agorithm on
a collection of empirical test cases. The basic Algorithm LA is compared with the refinements
described in Section 4 to determine the practical value of the refinements. Comparisons are made
with results obtained from the eigenvalue-based approach to linear arrangement as well as existing
bandwidth and profile reduction agorithms.

The motivation for thiswork isin arranging software model diagrams. To test applicability inthis
domain, the test cases include 20 graphs derived from sample diagrams. The types of diagrams
include entity-relationship diagrams, data flow diagrams and object models. The diagrams were
obtained from avariety of sourcesincluding textbook examples and documentation from commercial
software development projects. The examples range in size and complexity from asingle page with
12 graphica objectsto models made up of multiple diagrams and including over 100 distinct graphica
objects.

The graphs are derived from the software models as follows. Each distinct graphical object (e.g.
an "entity" or an"object class' icon) is represented as an arbitrarily numbered node. Each line (e.g.
an association or a data flow) drawn between two graphical icons corresponds to an edge. A case
where two objects are connected by two or more lines resultsin an edge with aweight equal to the
number of distinct connections. A ternary connection (involving three objects) is represented as a
separate edge between each pair of participating objects. This set of 20 graphs has been submitted
in matrix form to the Rutherford-Boeing sparse matrix collection [5] so the graphs can be made
freely available to other researchers. These 20 test cases are designated astype M in Tables 1 and
2.

Fourteen additional test cases are a so included from domains often used for evaluation of profile
reduction algorithms. Five cases are from the Cannes collection of finite e ement structures problems
in aircraft design and are designated as type C in Tables 1 and 2. Nine cases are from Everstine's
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collection of structura engineering problems, designated as type E in Tables 1 and 2. Inclusion of
these cases broadens the types of tests used and provides much larger examples than those derived
from software models. These fourteen test cases are available from the Rutherford-Boeing sparse
matrix collection [5], are used by Marro to compare the performance of several profile reduction
agorithms [15] and are referred to collectively as "structures problems” in the ensuing discussion.

Table 1 providesthe average edge length defined ast(G, f )/mresulting from several refinements
of Algorithm LA for each test case. Section 4 describes four refinements of LA: atie breaking
strategy, two aternative methods of starting node selection and Algorithm DLA. Table 1 indicates
that the latter three refinements provide improved arrangements while the tie breaking strategy
appears to be of limited value. DLA improves performance for the software models but not for the
structures problems. This is not asurprising result. DLA provides an advantage over LA only when
specific types of patterns are present in G, such as star patterns smilar to Figure 7. Smilar patterns
are present in many of the software models but tend not to be present in the structures problems.

Given that three of the refinements provide improved results, it is reasonable to investigate
whether combinations of refinements provide further gains. The rightmost two columnsin Table 1
show the results provided by the two combinations found to provide the best performance. Thefirst
combination involves Algorithm DLA executed twice and uses the rightmost node from the first
arrangement as the starting node for the second execution. The second combination extendsthe first
by using a pseudodiameter to select the starting node for the first execution. The results are
comparable in that the two combinations return arrangements with exactly the samet(G, f) in 26 of
34 cases and there is only one case (#33) with a marked difference in the result. The second
combination provides a 15 percent reduction in total average edge length compared with the basic
LA agorithm for the 34 test cases.

Table 2 compares five existing algorithms to a refined version of Algorithm LA, namely the
second combination of refinements described above. The FIM agorithm selected for comparison is
as smilar as possible to the refined version of Algorithm LA. The FIM agorithm is executed twice
and a pseudodiameter is used to select the starting node for the first execution. Deferred placement
does not apply since FIM does not attempt to achieve equal distribution. The FORTRAN code
provided by Lewis and Poole is used for the GPS and GK agorithms [13]. The MATLAB
environment from The Mathworks, Inc. is used as the implementation of the RCM agorithm [11].
The eigenvalue-based approach is also implemented using MATLAB, which uses a variant of the
Arnoldi method for finding elgenvalues and eigenvectors [19].

For the software models, the new algorithm provides the best arrangement for 17 of the 20 test
cases and provides an improvement of approximately 19 percent in overall average edge length over
the nearest competitor, the eigenvalue-based approach. The situation is not as simple for the
structures problems. The new agorithm provides superior performance compared with the four
bandwidth and profile reduction algorithmsin that a better arrangement isfound in 12 of the 14 cases
and the overdl average edge length is lower. In comparison with the eigenvalue-based approach,
however, the new algorithm isless consistent (e.g. case #27), resultsin ahigher overall average edge
length, but still returns a better solution in 5 of 14 cases.

Execution times are providedin Figure 8 for thetest casesinvolving n > 600. The trials depicted
in Figure 8 were executed on an IBM RS/6000 100 MHz model E20. To increase accuracy each
timinginvolvesten consecutive executions. Thetotal execution timeisdivided by tento givethetimes
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shown. The two bottommost data sets in Figure 8 compare the most basic versions of the LA and
FIM dgorithms, which involve single execution, a minimum degree starting node and no deferred
placement. Both algorithms select the node for placement i from F. These two agorithms are
implemented with the same C++ code, with the exception of the selection factor used for each

placement. The additional time required for FIM isdueto the updates required after each placement

of nodev. LA requires examination of each u ADJ(v) whereas FIM requiresin addition examination
of ADJ(u) for each such u.
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TABLE 1
Average edge length obtained with various refinements of Algorithm LA

PD+
# n m Type LA TieBrk PD 2 DLA DLA2 DLA2
1 12 10 M 35 35 35 35 30 30 29
2 16 19 M 40 4.0 40 36 30 30 30
3 17 20 M 24 23 24 21 24 21 21
4 19 31 M 6.2 4.3 6.2 6.0 6.0 59 59
5 19 3 M 31 31 31 31 32 32 32
6 20 27 M 33 33 33 33 34 34 34
7 21 33 M 108 108 108 82 7.7 7.7 7.7
8 23 35 M 53 49 53 4.7 52 4.7 4.7
9 29 53 M 6.7 6.5 6.7 58 6.7 58 5.8
10 30 51 M 5.0 50 4.2 4.3 49 4.3 42
1 32 43 M 44 43 44 44 43 41 41
12 33 57 M 44 44 4.2 44 44 44 4.2
13 47 111 M 104 10.7 104 104 104 94 94
14 55 80 M 6.1 6.0 6.1 53 6.0 54 54
15 56 74 M 6.4 6.5 54 54 57 51 51
16 66 83 M 49 49 53 49 4.6 46 4.6
17 72 146 M 84 84 84 84 79 79 79
18 74 145 M 103 10.3 7.3 7.3 9.7 71 71
19 93 151 M 145 134 108 119 126 117 10.7
20 119 241 M 80 78 80 80 80 80 80
21 634 3297 C 394 39.0 394 394 394 394 394
2 715 2975 C 270 268 265 247 26.3 247 26.2
23 758 2618 E 10.0 100 6.1 6.1 10.0 6.1 6.1
24 838 4586 C 39.1 39.2 373 339 39.1 339 339
25 869 3208 E 109 109 109 10.7 109 10.7 107
26 878 3285 E 142 142 142 142 142 142 142
27 918 3233 E 343 336 343 343 343 343 343
28 992 7876 E 22.7 22.7 22.7 2.7 27 27 22.7
29 1005 3808 E 279 282 279 279 279 279 279
30 1007 3784 E 16.3 163 16.3 141 16.3 141 141
31 1054 5571 C 46.8 46.7 46.6 36.2 46.8 36.1 36.1
32 1072 5686 C 489 489 358 36.6 489 36.5 334
33 1242 4592 E 40.6 428 26.8 351 40.6 351 26.8
4 2680 11173 E 35.7 37.6 24.6 24.6 35.7 24.6 24.0
Subtotals: M 1281 1244 1198 1150 1191 1108 1094
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CIE 4138 4169 3694 3605 4131 360.3 349.8

Totals: 5419 541.3 4802 4755 5322 4711 459.2
Type: M = Software Model, C = Cannes collection, E = Everstine's collection
LA: Basic Algorithm LA. TieBrk: LA withtiebreak strategy.
PD: LA with pseudodiameter usedto 2 LA executed twice.
select starting node. DLA: Algorithm DLA

DLA2: DLA executed twice. PD+DLA2: Pseudodiameter added to DLA2
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Existing algorithms compared with the new algorithm

TABLE 2

18

LA: PD+

n m Type RCM FIM GPS K Eigen DLAZ2

12 10 M 29 41 29 30 34 29
2 16 19 M 51 41 43 41 45 30
3 17 20 M 35 29 26 2.7 24 21
4 19 31 M 4.8 50 47 46 40 59
5 19 33 M 51 34 48 45 31 32
6 20 27 M 51 3.7 48 45 33 34
7 21 38 M 124 114 102 102 102 7.7
8 23 35 M 7.3 53 72 53 6.4 4.7
9 29 53 M 7.8 78 72 6.6 5.8 5.8
10 30 51 M 6.9 46 53 49 4.7 42
1 32 43 M 59 47 46 48 6.5 41
12 33 57 M 7.2 58 6.5 59 5.2 4.2
13 47 111 M 129 140 126 106 121 94
14 55 80 M 134 6.5 10.7 94 7.8 54
15 56 74 M 115 6.9 80 79 6.0 51
16 66 88 M 99 6.2 83 84 76 4.6
17 72 146 M 129 104 10.8 10.3 101 79
18 74 145 M 115 104 114 130 84 71
19 93 151 M 233 153 16.8 152 14.8 107
20 119 241 M 18.8 102 155 138 95 80
21 634 3297 C 437 532 399 39.7 330 394
2 715 2975 C 445 315 41.9 41.6 357 26.2
23 758 2618 E 78 70 73 7.3 6.0 6.1
24 838 4586 C 499 399 46.0 419 319 339
25 869 3208 E 16.8 122 137 134 119 10.7
26 878 328 E 18.8 17.0 162 16.1 150 14.2
27 918 3233 E 184 50.4 16.3 16.0 128 A3
28 992 7876 E 258 24.7 230 230 233 27
29 1005 3808 E 321 471 311 295 27 279
30 1007 3784 E 17.9 161 16.2 16.0 143 141
31 1054 5571 C 37.2 438 336 351 271 36.1
32 1072 5686 C 52.6 399 453 46.0 29.7 334
33 1242 4592 E 321 305 b1 324 24 26.8
4 2680 11173 E 28.7 39.0 26.7 26.4 23.0 24.0

Subtotals: M 188.2 142.7 159.2 149.7 1358 1094
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C/E 426.3 452.3 392.3 384.4 308.8 349.8

Totals: 6145 595.0 5515 534.1 444.6 459.2
Algorithms:
RCM: Reverse Cuthill-McKee. FIM:  Frontal increase minimization.
GPS Gibbs-Poole-Stockmeyer. GK: Gibbs-King.
Eigen: Eigenvalue-based linear arrangement.

LA: DLA executed twice, pseudodiameter used for the first starting node.
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Fic. 8. Execution times: FIM versusthree variations of the new algorithm.

Both the LA and FIM implementations exhibit growth in execution time suggestive of time
complexity that in practical terms approximates (m). Marro [15] provides an anaysisthat showsFIM
to be (m), however this analysis does not mention any step equivalent to Step 6.4.1 in Algorithm LA.
Thisisthat only step not shown to be (m) in Section 3. For the 34 test cases, a search is necessary
in this step during 57 percent of the placements. On average the number of iterations per search is
1.56. This average seems small enough to justify the use of alinear search in Step 6.4.1, at least for
this set of test data. The worst case time complexity of this step is O(d'max(G) n). However the
average number of iterations required for the test graphsis 0.88n. Thusit is not surprising that mis
areasonable predictor of execution time for the basic LA and FIM algorithms in Figure 8.

Times for Algorithm DLA executed twice are shown as a third data set in Figure 8. Not
surprisingly, the times are approximately twice those for LA. Deferred placement seemsto have no
effect on asymptotic time complexity, as predicted in Section 4.3.

The final (topmost) data set in Figure 8 shows the effect on execution time of generating a
pseudodiameter for selection of astarting node. The differencesin execution times between the third
(DLA?2) and the topmost data sets are due entirely to starting node selection. The time required for
generation of the pseudodiameter varies between 18 and 85 percent of total execution time for the
14 casesin Figure 8.

Direct comparison of our implementation of Algorithm LA with the RCM, GPS and GK
implementations in terms of execution time is not possible since different hardware and software
environments are involved. However, Marro shows that execution times for these three algorithms
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tend to be comparable with FIM [15]. In addition, Table 3 lists the execution times for the two
dgorithms implemented using MATLAB. These trials were executed on an 85 MHz Sun
Microsystem SPARC 1000. Even dlowing for the difference in execution speed of the two machines
involved, thetimes for the RCM agorithm are comparable with the times depicted in Figure 8 for the
FIM, LA and DLA agorithmsin the sensethat al times are lessthan one-half second. Thetotal time
required for the 14 cases with the eigenval ue-based approach, however, is more than 500 times that
required with RCM.
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TABLE 3
MATLAB execution times in seconds

# n m RCM Eigen
21 634 3297 0.06 21.36
2 715 2975 0.07 22.68
23 758 2618 0.04 20.63
24 838 4586 012 29.42
25 869 3208 0.07 26.01
26 878 3285 0.05 29.60
27 918 3233 0.05 33.08
28 992 7876 0.16 46.71
29 1005 3808 0.08 47.05
30 1007 3784 0.10 38.10
3 1054 5571 0.10 47.76
R 1072 5686 0.15 48.19
33 1242 4592 0.08 57.24
A 2680 11173 0.23 236.83
Totals: 1.36 704.66

6. Conclusions. Theresultsin Section 5 provide strong evidence that the heuristic described in
this paper is an improvement over existing profile and bandwidth reduction agorithms for the linear
arrangement problem, especially when Algorithm LA is refined as per Section 4. The new heuristic
is shown to be dightly more efficient in terms of execution time than the FIM approach. The results
also show that the most effective linear arrangement algorithm depends on the type of application.
Algorithm DLA refined with two executions per graph and the use of a pseudodiameter for starting
node selection provides the best overall results for the software model test cases. If execution speed
is not a concern for a given structura engineering application, then the eigenvalue-based approach
provides somewhat better overall results. For time-critica applications, however, the new agorithm
offers competitive performancein reducing total weighted edge length plus a considerable advantage
over the eigenvalue-based approach in terms of execution speed.
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