SPATIAL DATA STRUCTURE INDEXING FOR
VIDEO DATABASES

by
Enhai Xie
B.Sc. (Analytical Chemistry), Hebei University, P. R. China, 1982

M.Sc. (Physical Chemistry), Hebei University, P. R. China, 1990
M.Sc. (Physics), University of Oldenburg, Germany, 1991

A Thesis Submitted in Partial Fulfilment of
The requirements for the Degree of

Master of Computer Science

in the Graduate Academic Unit of Computer Science

Supervisor: Bradford G. Nickerson, Ph. D., Faculty of Computer Science
Examining Board: Bernd J. Kurz, Ph. D., Faculty of Computer Science, Chair
Alejandro Lopez-Ortiz, Ph. D., Faculty of Computer Science

David J. Coleman, Ph. D., Faculty of Engineering

This thesis is accepted

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

December, 1999
© Enhai Xie, 2000

ABSTRACT

This thesis explores the application of k-d range search data structures to digital
video data. Content-based queries based on colour histogram indexing and colour space
indexing for MPEG-2 video I-frames are defined and implemented. Experimentation
using 100 MPEG-2 video clips comprising 5706 I-frames was carried out.

Two spatial data structures (a 4-d tree and a colour space tree) can satisfy queries
such as “find MPEG-2 video I-frames with > t % pixels in colour range [R, R,;]” or
“find MPEG-2 video I-frames with >t % pixels in color range [R;, Ry], [G(, Gy, [B;,
Byl, simultaneously ”, respectively.

Prototype software was written in C++ on a UNIX system to test both histogram
and colour space range search. A 4-d tree confaining 5706 I-frames from 100 MPEG-2
video clips was built in 71seconds. Thé average histogram range search time was 37
seconds on a Sun Microsystems ULTRA 5 workstation. A colour space tree of 300 I-
frames required 5491 seconds to build, and 2 seconds to answer a colour space query on

a Sun Microsystems ENTERPRISE 250 workstation.

ii

ACKNOWLEDGMENTS

I wish to thank Dr. Bradford G. Nickerson, my supervisor, for his able
supervision and continual guidance throughout the problem formulation stage, the
conduct of the research and preparation of this thesis. Through weekly discussions, his
valuable advice and insightful thoughts have greatly contributed in the overall shaping of
this research work. I also wish to express my profound gratitude to the Natural Sciences
and Engineering Research Council of Canada and the Faculty of Computer Science,
University of New Brunswick for funding my research work.

Many thanks are due to Dr. Bernd J. Kurz, Dr. Alejandro Lopez-Ortiz, and
Dr. David J. Coleman for their valuable comments and suggestions that improved the
overall presentation of the work.

Thanks are also extended to Kirby Ward and Sean Seeley in the Faculty of
Computer Science for the continued technical advice and support to complete the

experimental portion of this research.

Lastly, I thank my wife Ying Gao and children, for their support, encouragement,

and drive, which contributed immensely to the production of this thesis.

iti

TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGMENTS i1
TABLE OF CONTENTS iv
LISTOF TABLES e vi
LISTOFFIGURES e e vii
Chapter 1 INTRODUCTION ittt |
1.1 Background and Motivation ittt 2
1.2 Literature ReVIEWo 3
1.2.1 Content-independent indexingcooviiinininenan.. .. 4

1.2.2 Content-based indexing 00t irinnann.. 4

1.3 Thesis ObJECtiVES\ttt e e e e e e e 5
1.4 Thesis OVEIVIEWottt it e e e e e e e e 6
Chapter2 CONTENT-BASED VIDEOQO INDEXINGccoouuu. ... 8
ZAIMPEG-2Video ...t e 8
211 Bithof MPEG-2Video i, 8
2.1.2VideoFundamentals 10

2.1.3 Bit Rate Reduction Principles 11

2 1A Frame TyPes ..ot 15

2.2 Colour Histogram Indexing i, 18
221 Colour Fundamentalsttt 18
222ColourModels 19

223 Colour Histogram0 i, 22

224 Range Search 26
22401K-DTree ... 26

2242 Typesof Range Queriescoivuuunn... 29

2.2.5Data SIUCtUrest 30

2251 Node Structurecovu it e 30

2252 Constructionofad-dTree 32

2.2.5.3 Hash Table Structure for Accumulating Search Results 36

23 Colour Space Indexing i 39
231 RangeSearch 40
2.3.2Data Structurest 41

232 0 AVL TICE . oo 41

2322Node Structures ...t e 41

2.3.2.3 Construction of Tree Data Structures 43
2324RangeSearch 46

iv

Chapter3 EXPERIMENTALRESULTSccouuu.... 48

3l Sample Data 48
3.2 Pre-PrOCESSIME . ..ttt i ettt e e e 50
3.2.1 I-frame Extraction and RGB Format Generation 50
3.2.2 Histogram Computationuiiiininininannnnn... 52
3.3 Indexing Constructing ittt 55
3.3.1 Colour HiStogramc..uiiin e e 55
332C0lour Space 60
34RangeSearch Results 62
Chapter 4 CONCLUSIONSANDFUTUREWORK 69
4.1 SUMIMNATY . oottt et e ettt et et e e e e e 69
42 Future WoorK . .o e 71
REFERENCES i 72
Appendix A : 30 MPEG-2 Video Clip Text Deseriptive Files 75

LIST OF TABLES

Table 2.1 MPEG-2 compression capabilities 9
Table 3.1 MPEG-2 video clipsamplesc.c.oviiiiineninnnn.n, 49
Table 3.2 (part 1 of 2) Single colour range searchresults 64
Table 3.2 (part 2 of 2) Single colour range searchresults 65

vi

Figure 2.1 (a) A typical MPEG-2 encoder
Figure 2.1 (b) A typical MPEG-2 decoder

Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13

Figure 2.14

Figure 2.15
Figure 2.16
Figure 2.17
Figure 2.18
Figure 2.19

Figure 2.20

LIST OF FIGURES

A typical group of pictures indisplayorder
A typical group of pictures incodingorder
The RGBcolourmodel it
Sample MPEG-2 I-frame i i
Normalized histogram of a sample MPEG-2 I-frame

overtherangeofredvalues i i
Normalized histogram of a sample MPEG-2 I-frame

overtherangeofgreenvalues o inauann
Normalized histogram of a sample MPEG-2 I-frame

over the range of blue values

Ad-dtreedatastructure i e

2-d range search algorithm fora2-dtree........... Lt
Example range queries on MPEG-2 video I-frame histograms

Node structure forad-dtree i,
The part of pre-order traversal of
a complete binary tree of 256 nodes i Ll

The algorithm used for 4-d tree node comparison to

.................................

determine branching direction
K-d Insert algorithm for colour histogramdata
Insertion of a character string key into a hash table with m buckets
Hash function used for producing the hash value
The histogram range search algorithm
A data structure with a 4-d tree node and hash table structure

for collecting histogram range search results

.....................

Sample colour space range queries

vil

Figure 2.21
Figure 2.22
Figure 2.23
Figure 2.24

Figure 2.25

Figure 2.26
Figure 2.27
Figure 3.1

Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12

Figure 3.13

Node structures for the colour spacetree 42
The algorithm to generate the dummy I-frame pixel values 43
The algorithm for colour space treeinsertion 44
The algorithm used for 3-d tree node comparison

to determine branching direction 45
Top part of a colour space tree resulting

from the dummy I-frameinsertion............... 45
A colour space tree and the accumulatorarray 47
An example of a colour space range searchresult 47
Part of the algorithm for generating I-frame Truevision TGA

files from MPEG-2 encoded videoclips 51
An example of part of a colour histogram file

formatted from left to right as intensity, R-fraction,

G-fractionand B-fraction 52
The storage formatofaTGAfile 53
The algorithm for extracting information froma TGAfile 54
An example of part of the insert_wfl74.dat histogram file 56
Part of the “filename.dat”file 57
Experimental test architecture for colour histogram index testing 58
Directory structure of file system for constructing a4-dtree 59
The experimental test set-up for colour space tree testing 61
An example result of the colour histogram index testing 63
An example result of the colour space treetesting 66
An example I-frame whose pixel% is greater than

50% inthe givencolourrangecoiivinennnnvnnnennnn 67
A presentation of thecolourrange, 68

viil

Chapter 1 INTRODUCTION

Rapid advances in electronic imaging, digital video capture and storage, and the
wide availability of digital data via the Internet have contributed to a large amount of
digital imagery and video being available online. Video has become an important element
of multimedia computing and communication environments, with applications as varied
as broadcasting, education, publishing, and military intelligence.

Digital video indexing techniques are becoming increasingly important with the
advent of broadband networks (e.g. those that use a high-speed Asynchronous Transfer
Mode (ATM) protocol) and video compression standards (Moving Picture Experts
Group) [Furh95, Grin98, Hask97]. MPEG-2 is currently being deployed in digital video
service roll-outs worldwide and is the .compression standard used in the majority of
digital broadcast satellite systems. The ATM Forum adopted specifications for
transporting MPEG-2 compressed digital video over ATM networks. Potential
application areas include image and video databases, digital TV and World Wide Web
searching of video.

Tools for storing and indexing such types of data in a video database are starting
to become available {Adal96, Adje97, Zhan95a). The application of k-d range search
data structures to non-traditional spatial data is explored here. For example, point-based
spatial indexing methods for video data is investigated. Fundamental research
investigating the types of keys necessary and useful for searching in video databases 1s

required.

The primary aim of this thesis is to study methods of indexing video databases so
as to store and search video data accurately and efficiently. Experimentation has been
done with 100 MPEG-2 video clips containing 5706 I-frames (see chapter 2 for a further

definition of I-frames).

1.1 Background and Motivation

Video indexing is the process of identifying the range of video frames in which a
certain pattern {an object, target, face, or signature) appears. Due to the multitude of
parameters involved { each video sequence typically has associated text and/or speech
associated with it) and the amount of data that must be processed, video indexing is an
extremely computationally intensive operation and is therefore rarely available to the end
user. The lack of standard techniques for video indexing further complicates the problem
[Mitk 98].

Traditional database systems index their data by key attributes which are usually
numeric or fixed-length text data. Keywords are by far the predominant method used to
index video data [Adje97]. Adali et al [Adal96], for example, developed indexing
structures based on keywords and a query-processing algorithm for querying the video
data. Two examples they give are “Find all video frames in which John Wayne appears”
and “Find all video frames in which Dean Martin appears and Fred Astaire is dancing
with Ginger Rogers”.

To accelerate searching of specific data items, most database systems use a tree

indexing mechanism. Classical indexing trees such as k-d trees and quad trees [Same90a,

Same90b] are formed by recursively partitioning the feature space with partitions that are
perpendicular to the co-ordinate axes. In this thesis, we will investigate whether or not
these point-based spatial indexing methods are useful for indexing digital video data.

As more and more video data are acquired, managing them in a video or
multimedia database becomes an important issue to be resolved. One objective of
researchers in this area has been the development of techniques that provide the ability to
store and retrieve images or videos based on their contents. One way to make video
content more accessible is to store it in a database. An indexing scheme is useful when it
is associated with the coding scheme used for storing the images or videos in the
database.

Generally speaking, an index consists of a collection of entries, one for each data
item, containing the key for that item, and a reference pointer which allows fast access to
that item. To build a content-based index, we must begin by identifying the elemental
index units for video content. In the case of text, these units are words and phrases, the
entities we find in the index of any book. For content-based indexing of video, the search
keys we consider are the histogram values and pixel values of frames within a video

stream.

1.2 Literature Review

There are several notable papers on the field of video indexing. Existing work on
video indexing can be grouped into two main categories; content-based indexing and

content-independent indexing.

1.2.1 Content-independent indexing

Most previous research in video indexing has been based on indexing text
[Davi93, Rowe94]. Text indexes tend to be structured as trees. Thus, what the keys are
and what the users search for become the important issues. Smoliar et al [Soml94] give a
tree structure of topical categories for a documentary video about engineering at the
National University of Singapore. The tree structure represents relations of specialization
and generalization among these categories. Zhang et al [Zhan95a] developed a text index
scheme for a video news database based on a tree of topical categories, where news items
are assigned to leaves of the tree. Each node of the tree then corresponds to a collection
of news items that have some amount of topical information in cammon. Adali et al
[Adal96] describe how video data can be organized and structured so as to facilitate
efficient querying. They develop a formal model for video data and show how the

segment tree structure provides an elegant way of storing such data.

1.2.2 Content-based indexing

Content-based indexing creates indexes to facilitate fast content-based retrieval of
video objects in large databases. Intensive research has focused on this field in recent
years, with the goal of indexing the video data using certain features derived directly
from the data. With video data, the video sequence is first separated into its constituent
scenes, then representative abstractions (usually key frames) are selected to represent
each scene. Further indexing on the video is based on the key frame [Adje97]. Smoliar et

al [Somi94) developed a prototype system with fast image-indexing abilities. This system

automatically computes numerical index keys based on colour distribution, prominent
colour region segmentation, and colour histogram (as a texture model) for each image.
Zhang et al [Zhan95b] describe techniques for use in the pixel domain for dealing with
the representation of video clips, as well as content-based retrieval techniques using key
frames and temporal properties of video clips. They present techniques for video parsing
in the pixel domain followed by key frame extraction. The representation of video clips is
based on several types of features, including colour histogram and moment features,
texture features, shape features, and edge features. Flickner et al {Flic95] describe the
QBIC system, which performs content-based retrieval based on colour, shape, texture,
and sketches in large image and video databases. Ardizzone et al [Ardi96a, Ardi96b] also
dealt with content-based video indexing based on motion, color, and texture and other
global features. Pentlant et al [Pent94] described a photo-book system, which is a set of

interactive tools for browsing and searching images for faces, shape, and texture.

1.3 Thesis Objectives

The main objective of this thesis is to determine what the appropriate keys for
indexing video data are, and to explore the use of appropriate k-d spatial data structures
to index and allow for quick searching of video data. An index of object keys is used in a
database system to speed up searches for specific objects or objects falling within a
specified key range. Video typically has text descriptions and/or other types of
information associated with it such as the title, abstract, subject, geographic location,

release or creation date of video, name of organization that produced the video, duration

of the video, video director, actors, actresses, Golden Globe and Academy Award
nominations and wins. It should be possible to index the text descriptions of the video
concurrently with other numerical keys (e.g. date, duration, or geographical location).
The specific objectives are stated as follows:
» investigate the k-d tree data structure to store and index MPEG-2 video data.
* determine which keys are appropriate to use for indexing MPEG-2 video data.
» experimentally investigate content-based indexing using colour histogram
based querying such as “find MPEG-2 video I-frames with >t % pixels in
color range [R;, Ry]™.
* experimentally investigate content-based indexing using color space based
querying such as “find MPEG-2 video I-frames with >t % pixels in color

range {R;, R,], [G, Gyl, [B., By], simultaneously .

1.4 Thesis Overview

The thesis is organized as follows:

Chapter 2 introduces a content-based video indexing method for MPEG-2 video
data. It gives an introduction on MPEG-2 video compression standard. Colour histogram
indexing and colour space indexing methods for that kind of data as well as their range
queries are also presented.

Chapter 3 analyses and illustrates the experimental results. The methods of
sampling and pre-processing data are developed and illustrated in detail. Index

construction, data structure implementations and range search results are also discussed

in this chapter.

Chapter 4 summarizes the conclusions of the thesis and future work. _

L
by
g
£

Chapter 2 CONTENT-BASED VIDEO INDEXING

2.1 MPEG-2 Video

The Moving Picture Experts Group’s MPEG-2 video standards are the most
recently adopted and internationally accepted compression standards for digital video.
They provide low-to-medium bit rate, high-quality video and include standards for
compressing, multiplexing, and reconstructing video streams. MPEG-2 is currently used
in digital video service roll-outs worldwide and is the compression standard used in the

majority of digital broadcast satellite systems.

2.1.1 Birth of MPEG-2 Video

MPEG (Moving Picture Experts Group) was started in 1988 as a working group
within ISO/IEC (the International Organization for Standardization and the International
Electro-Technical Commission) with the aim of defining standards for digital
compression of audio-visual signals. MPEG's first project, MPEG-1, was published in
1993 as ISO/IEC 11172 [ISO93]. It is a three-part standard defining audio and video
compression coding methods and a multiplexing system for interleaving audio and video
data so that they can be played back together. MPEG-1 principally supports video coding
up to about 1.5 Mbit/s giving quality similar to VHS (Video Home System). It is used in
the CD-I (Compact Disk-Interactive) and Video-CD systems for storing video and audio

on CD-ROMs.

During 1990, MPEG recognised the need for a second, related standard for coding

video for broadcast formats at higher data rates. The MPEG-2 standard [ISO94] is

capable of coding standard-definition television at bit rates from about 3-15 Mbit/s and

high-definition television at 15-30 Mbit/s. MPEG-2 is an extension of the MPEG-1

digital video compression standard. MPEG-2 is directed at broadcast formats at higher

data rates; it provides extra algorithmic “tools” for efficiently coding interlaced video,

supports a wide range of bit rates and provides for multichannel surround sound coding.

MPEG-2 decoders will also decode MPEG-1 bit streams. Table 2.1 summarizes MPEG-2

compression capabilities for different types of audio and video data.

Table 2.1 MPEG-2 compression capabilities [from Hask97].

Video Resolution Uncompressed
{(pels x lines x frames/s} Bit rate (RGB)

Compressed
Bit rate

Film (USA and Japan) (480 x 480 x 24Hz) 133 Mbits/s

NTSC video (480 x 480 x 29.97Hz) 168 Mbits/s
PAL video (576 x 576 x 25Hz) 199 Mbits/s
HDTYV video (1920 x 1082 x 30Hz) 1493 Mbits/s
HDTYV video (1028 x 720 x 60Hz) 1327 Mbits/s

ISDN videophone (CIF) (325 x 288 x 29.97Hz) 73 Mbits/s
PSTN videophone (QCIF) (176 x 144 x 29.97Hz) 18 Mbits/s
Two-channel stereo audio 1.4 Mbits/s
Five-channel stereo audio 3.5 Mbits/s

3 to 6 Mbits/s

4 to 8 Mbits/s

4 to 9 Mbits/s

18 to 30 Mbits/s
18 to 30 Mbits/s
64 to 1920 kbits/s
10 to 30 kbits/s
128 to 384 kbits/s
384 to 968 kbits/s

As stated by Gringeri et al [Grin98], the underlying philosophy of MPEG-2 video
compression is lossy coding followed by the assumption of lossless transmission. That is,
the algorithms used for reconstruction of MPEG-2-based moving images at the decoder

assume lossless and constant delay transmission over the network models.

2.1.2 Videe Fundamentals

Imaging can be of various types, such as normal photography, X-rays, electronic
documents, electronic still pictures, motion pictures, and TV. Video can be thought of as
comprised of a sequence of still pictures of a scene taken at various subsequent intervals
in time. Each still picture represents the distribution of light energy and wavelengths over

a finite size area and is expected to be seen by a human viewer.

Television services in North America currently broadcast NTSC (National
Television Standards Committee) video at a frame rate of 30 Hz, in accordance with
electrical power here. Each frame consists of two interlaced fields, giving a field rate of
60 Hz. The first field of each frame contains only the odd numbered lines of the frame
(numbering the top frame line as line 1). The second field contains only the even
numbered lines of the frame and is sampled in the video camera 16.67 ms after the first
field. It is important to note that one interlaced frame contains two fields. PAL (Phase
Alternate Line} television transmission is similarly interlaced but with a frame rate of just

under 25 Hz.

10

In video systems other than television, non-interlaced video is commonplace (for
example, most computers output non-interlaced video). In non-interlaced video, all the
lines of a frame are shown from top to bottom in one field. Non-interlaced video is also
termed “progressively scanned” or “sequentially scanned™ video.

If interlaced TV displays are used with computers, the result is interline flicker,
line crawling, and other problems. To avoid these problems, computer displays use
non-interlaced (also called progressive or sequential) displays with refresh rates of

higher than 60 frames per seconds (fps), typically 70 to 75 fps.

2.1.3 Bit Rate Reduction Principles

In a lossless environment, a bit rate reduction system operates by removing
redundant information from the signal at the encoder prior to transmission and
re-inserting it at the decoder. An encoder and decoder pair are referred to as a “codec”.

In video signals, two distinct kinds of redundancy can be identified. The first is
spatial and temporal redundancy. Pixel values are not independent, but are correlated
with their neighbours both within the same frame and across frames. So, to some extent,
the value of a pixel is predictable given the values of neighbouring pixels. The second is
psycho-visual redundancy. The human eye has a limited response to fine spatial detail,
and is less sensitive to detail near object edges, around scene-changes, and in bright areas
{among others). Consequently, controlled impairments introduced into the decoded

picture by the bit rate reduction process should not be visible to a human observer.

11

Two key techniques employed in an MPEG codec are Discrete Cosine Transform
(DCT) coding and motion-compensated interframe prediction. Using the DCT, spatial
redundancy within a frame can be used. Temporal redundancy can be used due to the fact
that successive frames are often almost identical. The difference between two successive

frames is coded using motion-compensated interframe prediction.

Codec structure

Figure 2.1 shows the basic architecture of a typical MPEG-2 encoder and
decoder. In an MPEG-2 system, the DCT and motion-compensated interframe prediction
are combined. The encoder subtracts the motion-compensated prediction from the source
picture to form a “prediction error” picture. The prediction error is transformed with the
DCT, the coefficients are quantized and these quantized values are coded using a
Variable Length-Coder (VLC) to form a bit-stream for transmission. In the decoder, the
quantized DCT coefficients are reconstructed and inverse transformed to produce the
prediction error. This is added to the motion-compensated prediction generated from
previously decoded pictures to produce the decoded output. The exact detail of this
process are not germane to our research; Haskell et al [Hask97] contains more detail for

interested readers.

12

Video —>{ - DCT > Q VLC | Bits
in ZAY | out

IQ

IDCT

[> +
MCP ke— |
(a)

Bits —>{ VLD 1Q —| IDCT] + Vi:‘leo
1 ou
in

MCP

(DDCT = (inverse) discrete cosine transform VLC = variable length-coder

(DQ = (inverse) quantization

MCP = motion-compensated prediction

VLD = vaniable length-decoder

Figure 2.1 (a) A typical MPEG-2 encoder. (b) A typical MPEG-2 decoder

(adapted from Haskell et al [Hask97]).

13

Intra-frame DCT coding

A two-dimensional Discrete Cosine Transform (DCT) is performed on small
blocks (8 pixels by 8 lines) of each component of the picture to produce blocks of DCT
coefficients. The magnitude of each DCT coefficient indicates the contribution of a
particular combination of horizontal and vertical spatial frequencies to the original
picture block. The coefficient corresponding to zero horizontal and vertical frequency is
called the DC coefficient.

The DCT does not directly reduce the number of bits required to represent the
block. The reduction in the number of bits follows from the observation that, for typical
blocks from natural images, the distribution of coefficients is non-uniform. The transform
tends to concentrate the energy into the low-frequency coefficients and many of the other
coefficients are near-zero. The bit ratel reduction is achieved by not transmitting the
near-zero coefficients and by quantizing and coding the remaining coefficients. The
non-uniform coefficient distribution is a result of the spatial redundancy present in the
original image block.

The serialisation and coding of the quantized DCT coefficients exploits the likely
clustering of energy into the low-frequency coefficients and the frequent occurrence of
zero-value coefficients. The block is scanned in a diagonal zigzag pattern starting at the
DC coefficient to produce a list of quantized coefficient values, ordered according to the

scan pattern,

14

2.1.4 Frame Types

Three “frame types” are defined in MPEG -2. The frame type defines which
prediction mode is used to code each block. Each video sequence is divided into one or
more groups of pictures, and each group of pictures is composed of one or more pictures
of three different types, I-, P-, and B-. Figure 2.2 illustrates the types of frames occurring

in an MPEG-2 encoding of a time sequence of 13 video frames.

|< Group of pictures :>|

Figure 2.2 A typical group of pictures in display order [from Mitc97].

15

* “Intra” frames (I-frames) are coded without reference to other frames. Moderate
compression is achieved by reducing spatial redundancy, but not temporal redundancy.
They are used periodically to provide access points in the bit stream where decoding can
begin.

I-frames must appear regularly in the stream, since they are needed to decode
subsequent inter-coded frames such as P-frame and B-frames. The decoding process
cannot begin until an [-frame is received. An I-frame is usually inserted into a stream
approximately every half second [Grin98].

* “Predictive” frames (P-frames) can use the previous I- or P-picture for motion
compensation and may be used as a reference for further prediction. Each block in a
P-frame can either be predicted or intra-coded. By reducing spatial and temporal
redundancy, P-frames offer increased compression compared to I-frames.

* “Bidirectionally-predictive” frames (B-frames) can use the previous and next [- or
P-frames for motion-compensation, and offer the highest degree of compression. Each
block in a B-frame can be forward, backward or bidirectionally predicted or intra-coded.
To enable backward prediction from a future frame, the coder reorders the pictures from
natural “display” order to “bit stream” order so that the B-frame is transmitted after the
previous and next pictures it references. This introduces a reordering delay dependent on
the number of consecutive B-frames.

The different picture types typically occur in a repeating sequence, termed a
“Group of Pictures” or GOP. Since MPEG sometimes uses information from future

pictures in the sequence, the coding order, the order in which compressed pictures are

16

found in the bit-stream, is not the same as the display order, the order in which pictures
are presented to a viewer. The coding order is the order in which the pictures are received
by the decoder. The group of pictures illustrated in Figure 2.2 in display order is shown

in coding order in Figure 2.3.

Time

|<L Group of pictures ﬁ

Figure 2.3 A typical group of pictures in coding order [from Mitc97].

17

2.2 Colour Histogram Indexing

So far, indexing images by global colour distribution has been achieved by using
colour histograms. This technique provides a good approach for retrieving images that

have similar overall colour content.

2.2.1 Colour Fundamentals

One of the initial studies of colour was done by Sir Isaac Newton in the
eighteenth century. From his research, Newton concluded that seven colours were needed
to represent all the combinations of visual colours. It was Thomas Young, James Forbes,
and James Clerk Maxwell in the nineteenth century who showed that only three primary
colour are needed in different combinations to represent the visible spectrum of light
[Weeks96].

Basically, the colours that human beings perceive in an object are determined by
the nature of the light reflected from the object. For example, green objects reflect light
with wavelengths primarily in the 500 to 570 nm (10”° m) range, while absorbing most of
the energy at other wavelengths.

Chromatic light spans the electromagnetic energy spectrum from approximately
400 to 700 nm. Three basic quantities are used to describe the quality of a chromatic light
source: radiance, luminance, and brightness. Radiance is the total amount of energy that
flows from the light source. Luminance gives a measure of the amount of energy an
observer perceives from a light source. Brightness embodies the achromatic notion of

intensity.

18

Owing to the structure of the human eye, all colours are seen as variable
combinations of the three so-called primary colours red (R), green (G), and blue (B). For
the purpose of standardization, the CIE (Commission International de I’Eclairage)
designated in 1931 the following specific wavelength values to the three primary colours:
blue = 435.8 nm, green = 546.1 nm, and red = 700 nm [Gon92].

The characteristics generally used to distinguish one colour from another are
brightness, hue, and saturation. As already indicated, brightness embodies the chromatic
notion of intensity. Hue is an attribute associated with the dominant wavelength in a
mixture of light waves. Thus hue represents the dominant colour as perceived by an
observer. Saturation refers to relative purity or the amount of white light mixed with a
hue. Hue and saturation taken together are called chromaticity, and therefore, a colour

can be characterized by its brightness and chromaticity.

2.2.2 Colour Models

Colour is probably one of the most intuitive characteristics that people use to
recognise an image. Since the perception of colour is influenced by many different
factors (e.g. surrounding colours, overall lighting conditions, or a user’s point of view), it
becomes an arduous task to determine these factors automatically.

The purpose of a colour model is to facilitate the specification of colour in some
standard. In essence, a colour model is a specification of a 3-D coordinate system and a
subspace within that system where each colour is represented by a single point.

Most colour models in use today are oriented either toward hardware (such as for

19

colour monitors and printers) or toward applications where colour manipulation is a goal
(such as in the creation of colour graphics for animation). The hardware-oriented models
most commonly used in practice are the RGB (red, green, blue) model for colour
monitors and a broad class of colour video cameras; the CMY (cyan, magenta, yellow)
model for colour printers; and the YIQ model, which is the standard for colour TV
broadcasts. In the third model the Y corresponds to luminance, and I and Q are two
chromatic components called inphase, and quadrature, respectively. Among the models
frequently used for colour image manipulation are the HSI (hue, saturation, intensity)

model and the HSV (hue, saturation, value) model.

The RGB colour model

The simplest of the colour models is the RGB colour model. This mode! uses the
three NTSC primary colours to describe a colour within a colour cube. Each colour
component represents an orthogonal axis in a three-dimensional Euclidean space as
shown in Figure 2.4. On computers it is common to describe colour by three components;
normally red, green, and blue. These are related to the excitation of red, green, and blue
phosphors on a computer monitor.

The RGB colour model treats a colour image as a set of three grayscale images,
each of which represents one of the red, green, and blue components of a colour image.
Characterization by colour can be performed by using the red, green, and blue

components (RGB), as each colour pixel is a combination of the three components.

20

Cyan (6,1,1) Thite
Coloar cube
B4
Blve | ¢0,0,1) tagenta [(1,0,1)
6
Green Yellow
{0,1,0)
Black Red -1
(0,0,0) (1,0,0)

Figure 2.4 The RGB colour model.

(1,1,1)

(1,1,00

Typically, 256 gray levels are used to represent a grayscale image to meet the

computer storage requirement of one byte per pixel of storage. RGB colour images need

one byte per pixel for each of the colour planes, or three times the storage of a grayscale

image of the same spatial dimensions. Each pixel in a colour image requires 3 bytes or 24

bits to represent all of the possible colours. Colour images of this type are now standard

21

and are often referred to as 24-bit or true-colour images.

The YIQ colour model

The YIQ model is used in commercial colour television broadcasting. Basically,
YIQ is a recording of RGB for transmission efficiency and for downward compatibility
with black-and white television. The recorded signal is transmitted using the NTSC
system{Prit77]. The YIQ model uses a 3-D Cartesian coordinate system, with the visible
subset being a convex polyhedron that maps into the RGB cube.

The RGB-to-YIQ mapping 1s defined as follows [Gon92]:

Y| {0299 0587 0114 | R
I |=[0596 -0275 -0321||G (2.1)
Q| (0212 —-0523 0311 |58

2.2.3 Colour Histogram

A semantic representation for colour is the use of a colour histogram that captures
the colour composition of images. Using the RGB colour space, the histogram comprises
a set of “bins” each representing a colour that is obtained by a range of red, blue, and
green values. The number of pixels of an image falling into each of these bins can be

obtained by counting the pixels with the corresponding colour.

22

The popularity of colour histograms stems from several factors, including
(a) Colour histograms are computationally simple to evaluate,
(b) Small changes in camera viewpoint tend not to effect colour histograms, and

(c) Different objects often have distinctive colour histograms.

We chose to use the RGB model for colour in this thesis due to the ready

availability of data in this format. The data structures and algorithms developed here can

also be applied directly to other colour models.

The normalized histogram of an N x M image is defined as the fraction of pixels

within the image at a given intensity; 1.e.

h,:”—M;v- for 0<i<G_ (2.2)

where h; = the fraction of pixels in the image with intensity i, n, is the number of pixels
at 1, NM is the total number of pixels within the image and G_,, is the maximum intensity
value of the image. For an image which has 256 intensity values, G_,, = 255. An
important property of a normalized histogram is that the sum of each histogram value

over the range of intensity present within an image equals one; 1.e.

Yh =1 (2.3)

23

Figure 2.5 shows a sample MPEG-2 I-frame, and Figures 2.6, 2.7, and 2.8 show
the corresponding normalized histograms of this sample I-frame over the range of red,

green, and blue values, respectively.

Figure 2.5 Sample MPEG-2 I-frame.

0.014

0.012

o
o
-—h

ixels (red)

0.008

; .04 ;
0006 £5 I i
. TR T
s PR A b T RS W

0.004 - — S
» f P : SN,
A ' A

i?g

Fraction of p

0.002

(s el A Eag P RRE T R B S H R p s st a s s S i e s g
0O 20 40 60 80 100 120 140 160 180 200 220 240
Intensity

Figure 2.6 Normalized histogram of a sample MPEG-2 I-frame over the range of red
values.

24

0.014
=0.012
%]

£
Lo 0.01

= {
% 0.008 b
& T
50.006

2
+ 0.004
&

oy A
= 0.002 i

O St T G e (il AR
0 20 40 60 80 100 120 140 160 180 200 220 240
Intensity

Figure 2.7 Normalized histogram of a sample MPEG-2 I-frame over the range of green
values.

o
—rh

o
o
o

o
Q
o

o
(o)
K

Fraction of pixels (blue)

H
H
H
¥

...:\‘ L ,,»"M /\%\

TN
\MAVA"W\MMWW/\/M
sy L b

o
Q
o

o Aw\&,\ .

0 R 4 i i i i i L A e T
0 20 40 60 80 100 120 140 160 180 200 220 240
Intensity

Figure 2.8 Normalized histogram of a sample MPEG-2 I-frame over the range of blue
values.

25

2.2.4 Range Search

We consider a MPEG-2 [-frame as three different images, one for each of the
colour components. That is, we separate the three colour components and treat them
individually. We then build histograms for each of them. The histograms are used as the
keys to index digital video data stored in a k-d tree spatial data structure which can

casily handle range queries.

2.2.4.1 K-D Tree

In the term k-d tree, k denotes the dimensionality of the space being represented.
In principle, it is a binary search tree with the distinction that, at each depth, a different
attribute {or key) value is tested when determining the direction to branch. In two
dimenstons (i.¢., a 2-d tree), we compére x coordinate values at the root and at even
depths (assuming that the root is at depth 0) and y coordinate values at odd depths.

A k-d tree can be built by recursively subdividing the space in one dimension at
each level in the tree. For example, a 3-d tree in three dimensions can be created by
alternatively using the x-coordinate , y-coordinate and z-coordinate as discriminators at
different depths of the trees. Figure 2.9 shows a 3-d tree data structure containing nine
3-d points.

First, point (32, 45, 4) is inserted into the 3-d tree as the root node. When the
second point (29, 25, 3) is inserted into the 3-d tree, its x-coordinate value 29 1s
compared with the x-coordinate value 32 of the root node at the depth 0. Since 29 is less

than 32, the point (29, 25, 3} is inserted into the 3-d tree as the left child of the root node.

26

Similarly, point (51, 47, 1) is the right child of the root.

Discriminator % ,2) Depth

0 (x-axis)

1 (y-axis)

0 (x-axis)

Figure 2.9 A 3-d tree data structure.

At depth 1, assuming that the points are inserted in the order (22, 4, 2),
(22, 55, 2), (50, 40 ,2), and (39, 50, 4), the y-coordinate values of the points are tested at
depth 1 to determine the direction to branch. For example, point (22, 4, 2) has
x-coordinate value 22, which is less than 32 (the root node x value), so we branch left.
Again, 4 is less than 25, the y value for the left child of the root, so we branch left again,

and insert point (22, 4, 2 } as the left child of point (29, 25, 3).

27

At depth 2, assuming that the points are inserted in the order (24, 20, 5), and

(60, 46, 1), the z-coordinate values of the points are tested at depth 2 to determine the

direction to branch. For example, point (24, 20, 5) has x-coordinate value 24, which is

less than 32 (the root node x value), so we branch left. Again, 20 is less than 25, the y

value for the left child of the root, so we branch left again. The z-coordinate 5 is more

than 2, the z value of the left child of the node containing point (29, 25, 3), so we branch

right and insert point (24, 20, 5) as the right child of the node containing point (22, 4, 2).

A range query with respect to a k-d tree rooted at T, for example, to a 2-d tree

defines a circle of radius R centred at location (X = A, Y = B), and expects to find all

points 1n the 2-d tree that lie within the circle. Range search for all keys within + R of X

= A, Y =B in the 2-d tree rooted at T is performed as shown in the Figure 2.10.

KdSearch

{

(A, B, R, T}

if T !'=s NULL

{

P = NEW KdTreeNode({A-R, B-R);

if {(KdCompare (P, T) == Left)
KdSearch(a, B, R, T.Left};

ToRight = (;

ToLeft = 0;

if (T.X 2A-R && T.Y > B-R)
ToRight = 1;
if (T.X sA+R && T.Y < B+R)
ToLeft = 1;
if (ToRight && TolLeft)
Report the point is in range;
X = A+R;
.Y = B+R;
f (KdCompare (P, T} == Right)
KdSearch{A, B, R, T.Right});

P
P
i

Figure 2.10 2-d range search algorithm for a 2-d tree.

28

The performance of the k-d tree is as follows: the preprocessing requires

O(NlogN) time, the storage is O(kN), and the time required for a range search is

O(kN"") with a complete binary k-d tree of N points [Samet 1990a].

2.2.4.2 Types of Histogram Range Queries

When designing indexing schemes to store MPEG-2 video data, we need to take

into account the kinds of queries that will be asked of such a system. We built a

histogram index based on the type of user query. Some examples of range queries to be

used are illustrated in Figure 2.11.

=1 S\ U B W =

10.
11.
12.
13.
14.

15.

. Find MPEG-2 video I-frames with > t % pixels in colour range [R; R,].

. Find MPEG-2 video I-frames with > t % pixels in colour range {G, G,].

. Find MPEG-2 video I-frames with > t % pixels in colour range {B; By].

. Find MPEG-2 video I-frames with <t % pixels in colour range [R; Ry].

. Find MPEG-2 video I-frames with < t % pixels in colour range [G; Gy].

. Find MPEG-2 video I-frames with <t % pixels in colour range [B; By].

. Find MPEG-2 video I-frames with between t, % pixels and t, % pixels in colour

range [R; Ry L.

. Find MPEG-2 video I-frames with between t, % pixels and t, % pixels in colour

range [G, Gy].

. Find MPEG-2 video I-frames with between t, % pixels and t, % pixels in colour

range [B, By].

Find MPEG-2 video I-frames with R-intensity whose fraction > t % of the total.
Find MPEG-2 video I-frames with G-intensity whose fraction > t % of the total.
Find MPEG-2 video I-frames with B-intensity whose fraction >t % of the total.
Similarly for fraction <t % of the total.

Find MPEG-2 video I-frames with R-intensity whose fraction between t, %

and t, % of the total.

Similarly for Green (G} and Blue (B) colours.

Figure 2.11 Example range queries on MPEG-2 video I-frame histograms.

29

Examples of where these queries might be useful are to detect “blue screen”
frames (e.g. 95% of pixels are in range [B, = 220, B, = 255]), or to detect I-frames with

images primarily of sky or water, or to detect a green colour for grass.

2.2.5 Data Structures
To satisty the queries listed above, we used a combination of k-d tree and hash

table data structures. The details about these data structures are discussed in the

following sections.

2.2.5.1 Node Structure

After sampling and pre-processing the MPEG-2 video clip I-frame data (which
constructs R, G, and B histograms by three attributes red, green, and blue (see chapter 3
for details}), a 4-d tree node is defined for indexing video data as shown in Figure 2.12.
Each node contains four keys and is conveniently processed as a point in a four-
dimensional key-space. The dimensions of the key-space or search are those of value of

given intensity i which is from 0 to 255, red colour histogram (fraction of total pixels

h?) at intensity i, green colour histogram value h¢ at intensity i, and blue colour
1 gra 1

histogram value h; for each of the MPEG-2 video clip I-frames. From equation (2.2),

all h; values are between 0.0 and 1.0. Each node also contains two non-key attributes
corresponding to the MPEG-2 video clip name and its [-frame name. The names show the

actual locations of the MPEG-2 video clip and I-frame in the file system. Right and Left

30

in each node are pointers to the node’s children.

/ Intensity i \

Red - fraction h
Green - fraction h?’

Blue - fraction h?
Discriminator

Clip name

I-frame name
Left | Right

struct KdTreeNode
{
int i; // The value of intensity (0 to 255)

// The data in the node; (r, g, b fraction)
double R-frac, G-frac, B-frac;

DType Disc; // Discriminatior
String clip; // The video clip name
String I-frame; // The I-frame name
KdTreeNode* Left; // Left child
KdTreeNode* Right; // Right child

Figure 2.12 Node structure for a 4-d tree.

31

2.2.5.2 Construction of a 4-d Tree

To get a balanced 4-d tree(which means that left and right subtrees of every node
in this tree have the same height), the tree was balanced on intensity. That means the tree
was constructed by inserting intensities in the following order: 127, 63, 31, 15,7, 3, 1, 0,
2,5,4,6,11,9,8,10,13, 12, 14, ..., 247, 243, 241, 240, 242, 245, 244, 246, 251, 249,
248, 250, 253, 252, 254, 255. This order corresponds to an pre-order traversal of a

complete binary tree of 256 nodes. Figure 2.13 illustrates part of the corresponding tree.

127
6. 19
g _(/ i \\\ - \\\\\ -
31/\ \223/
T S, 7 . \}/_ -,
IS4 239
PN P,
— g h // -
7 ~ o \242
e \-.\ /11 '_____\\..’ - RN
ORI -%i%. i
R A SN 13 e e T
onE Y e
/6“//*\/_ \/_ﬂ“ e _"\ "_“ ’:") o "_" ST, /‘;“\ 2_;6 *\ /'_\ 5;4
02,4 (6810 (12 14 240, g 42244 246, 248 250 252 25 "
:\25 5/

Figure 2.13 Part of a complete binary tree of 256 nodes.

32

The other keys were inserted in the order which they were computed. Thus,

starting at the root level 0, the successive discriminators are 0, 1, 2, 3,... corresponding to

intensity i, red colour histogram h}, green colour histogram h¢ , and blue colour
histogram h?, respectively. These correspond to tree depths (0, 1, 2, 3),

(4’ Sa 6) 7), (8, 9, 10, 11), etc.

The 4-d data points, each of them with corresponding attributes (i, h* , h® , h®),

are inserted into 4-d tree in a manner analogous to a binary search tree. In essence, we

search for the desired point based on the values of i, hY, h¢, and h®, comparing i
values at (0, 4, 8 ...) depths of the tree, h' valuesat (1, 5, 9...) depths, h{ values at (2,

6, 10...) depths, and h? values at (3, 7, 11...) depths. The Insert algorithm is shown in

Figure 2.15. It makes use of the KdCompare algorithm (Figure 2.14) to determine which
direction to branch. When we reach the bottom of the tree (i.e., when a NULL pointer is

encountered), we find the location where the point is to be inserted.

33

// Return the child type of the 4-d tree rooted
// at node Q in which node P belongs.
KdCompare (KdTreeNode P, XdTreeNode Q)

{

if (Q.Discriminator == i)

{
if (P.1 < Q.i) return Left;
else return Right;

}

else if {(Q.Discriminator == red)

{
if (P.hf< Q.h*) return Left;
else return Right;

} .

else if (Q.Discriminator == green)

{
if (P.h{< Q.h{) return Left;
else return Right;

}

else

{
if (P. h¥< Q. h¥) return Left;
else return Right;

}

}

Figure 2.14 The algorithm used for 4-d tree node comparison to determine branching
direction.

34

// BAdd P into subtree rooted at T
KdInsert (KdTreeNode P, KdTreeNode T)

{

if

{

}

(T == NULL)

T = P;
T.Discriminator = i;
return;

KdTreeNode F,
SaveRoot = T;

while {T != NULL &&

}

if (T == NULL) // P is not already in tree.

{

}
T

(P.Coordinates (i, h}, h%, h?)1=

T.Coordinates (i, h¥, h¥, hP}))

F = T; // Remember parent of T
Directicon = KdCompare{P, T);
if (Direction == Left}

T = T.Left;
else

T = T.Right;

if (Direction == Left)
F.Left = P;

else
F.Right = P;

if (F.Discriminator == i)
P.Discriminator = red;

else if (F.Discriminator == red)
P.Discriminator = green;

else if (F.Discriminator == green)
P.Discriminator = blue;

else
P.Discriminator = i;

SaveRootk;

Figure 2.15 K-d Insert algorithm for colour histogram data.

35

2.2.5.3 Hash Table Structure for Accumulating Search Results

A range search with respect to a 4-d tree will follow the algorithm given in Figure
2.10. To query the histogram of a specific MPEG-2 video I-frame in a given intensity
range, such as [R; Ry], and to accumulate the search results, a hash table data structure
1s employed. When the range search method finds a 4-d tree node is in range, this node is

inserted into the hash table. This will apply to all nodes that are in range.

Collection Bucket
0
1 Joe
S 3 Val
Hash /
Function -
Tim
m-1

Figure 2.16 Insertion of a character string key into a hash table with m buckets.

36

In the hash strategy, data elements are kept in an array-based data structure, called
the hash table. The hash function converts the key into an integer suitable to index an
array where the key is stored. A data element may be simple or complex, but must be
identified by a single key, which is used for searching. Hashing is a technique used to
perform insertions, removes, and finds in constant average time. Figure 2.16 illustrates
the insert operation for a character string key into a hash table of size m.

We use the MPEG-2 video clip name and I-frame name concatenated together as
the key to produce the bucket through the hash function. The hash function used is shown

in Figure 2.17.

unsigned int Hash (Key, TableSize)
{
Hashvalue = 0;
for {i = 0; 1 < Key.Length(); i++)
{
HashValue = (HashValue << 5) ~ Key{i] ~ HashValue;
// << Left Shift operator, ~ XOR operator
}
return HashValue % TableSize; // % the mod operator

Figure 2.17 Hash function used for producing the hash value.

For example, with MPEG-2 video clip name = ~/mpeg/wfl74.mpg,

I-frame name = ~/I_frames/wfl74/rec174.tga, giving a key of “~/mpeg/wfl74.mpg

~/1_frames/wfl74/rec174.tga”, and TableSize = 211, the hash function returns bucket 22.

37

When searching, the updated total fraction for red, green, and blue is calculated

and stored in the same bucket for hits on the same MPEG-2 video clip name and I-frame

name. Figure 2.18 shows the histogram range search algorithm for range queries on

MPEG-2 video. The algorithm can satisfy the range queries given in Figure 2.11. The

colour range [i_low, i_high] can be [R;, R,], [G,, G,;], or [B, B], respectively. Figure

2.19 illustrates the range search process.

// range search methed for the 4-d tree
// T points to the 4-d tree root

KdSearch (i_low,

{
if (T
{

P
if

i_high, XdTreeNode T)

= NULL)

new KdTreeNode (i low):
(KdCompare(P, T) == Left)

KdSearch (i_low, 1i_high, T.Left);

ToRight = 0; ToLeft = 0;

if

if

if

{

}

P.1i
if

(T.1i >= 1_low)

ToRight = 1;

{T.1 <= i_high)

TeoLeft = 1;

{ToRight && TolLeft)

InsertHash (clip_name, I_frame_name,h?, h?, h?):
j = Hash {clip_name + I_frame_rname):
Hash_Array[j].R_fract += h?;

Hash_Array([3j].G_fract += h?;
Hash_Array[j].B_fract += h?;

i_high;

{(KdCompare(P, T } == Right)

KdSearch{i_low, i_high, T.Right};

Figure 2.18 The histogram range search algorithm.

38

Clip+ R,G,B
4-d tree node structure Bucket I-frame fraction

name inrange

Intensity 1] 0

Red - fraction h} |
Green - fraction h;’
Blue - fraction h;’

' Hash |2

Clip name /_7 Function
I-frame name iy
Left Right
m-1

Figure 2.19 A data structure with a 4-d tree node and hash table structure for collecting

histogram range search results.

2.3 Colour Space Indexing

In this method, we count the number of pixels in one I-frame having a colour (i.e.
red, green, and blue) value within a specified colour space (e.g. R, G, B) range. The R,G,
B values are used as the keys to index digital video data stored in a k-d tree spatial data
structure.

39

If we consider the mathematical space of colours {as described in the RGB
model), we can model it as a cube, in which each of the axes corresponds to one of the
primary colours R, G and B. Each of these components can take 256 different values (for
an image in 24 bit colour), meaning that there are 2% (16,777,216) possible points in the
colour space. This method has the advantage of allowing complete colour space searches
compared to the histogram method, as it considers all three colour components together,

simultaneously.
2.3.1 Range Search

Example queries to be used for colour space searching are shown in Figure 2.20.
Using colour space indexing, the range queries follow the k-d tree range search
algorithm. The number of pixels in a given MPEG-2 I-frame which fall in the given
range search window are counted and stored in an associated array. The total number of
pixels for the I-frame is also stored in that array, allowing the percentage of pixels for the
I-frame to be calculated and used as the search criteria.

1. Find MPEG-2 video I-frames with > t % pixels in color range [R;, Ry],
[GLs Gul, [BL, Byl, simultaneously.

2. Find MPEG-2 video I-frames with < t % pixels in color range {R;, R;;],
{G,, Gy, By, Byl, simultaneously.

3. Find MPEG-2 video I-frames with between t, % and t, % pixels in color range
[Ris Ryls {Gy, Gyl, [By, Byl, simultaneously.

Figure 2.20 Sample colour space range queries.

These queries could be used, for example, to detect “mainly black™ or “mainly

white” frames.

40

2.3.2 Data Structures

To satisfy queries listed in Figure 2.20, we use a combination of k-d tree and

AVL tree data structures. Each k-d tree node is associated with an AVL tree.

2.3.2.1 AVL Tree

The AVL tree is a binary search tree with the additional balance property that,

for any node in the tree, the height of the left and right sub-trees can differ by at most 1.

This balance condition ensures that the depth of the tree is O(log N).

2.3.2.2 Node Structures

There are two kinds of nodes in this data structure as shown in Figure 2.21.
The first node type is a 3-d tree node. After sampling and pre-processing the MPEG-2
video clip I-frames data (see chapter 3 for details), a 3-d tree node is used for indexing
the video data. Each node contains a 3-tuple key treated as a point in three dimensions.
The (R, G, B} 3-tuple contains the red, green, and blue values of a single pixel. Each 3-d
tree node also contains R and L pointers that point to two children as well as an M
pointer that points to an AVL tree.

The second node type is as AVL tree node. This node has two fields. One
expresses the MPEG-2 video I-frame name which is represented by an integer. The other
is a counter of pixels having this colour in this I-frame. It also contains R and L pointers

to the node’s two children.

41

Red
Green

Blue

3-d tree node

R

struct KdColourTreeNode

{

// The data in the node
char Red, QGreen, Blue;
DType Disc;
KdColourTreeNode* L;
KdColourTreeNode* R;
AVLTreeNode* M;

struct AVLTreseNode

{

int I-frame, count;
AVLTreeNcde* L;
AVLTreeNode* R;

AVL tree node

(r.g.b value)

/7
/7
/7
e

/7
1/

Discriminator

Left child

Right child
points to AVL tree

The data in the node
Left child
Right child

Figure 2.21 Node structures for the colour space tree.

42

2.3.2.3 Construction of Tree Data Structures

To get a balanced 3-d tree, a dummy I-frame is introduced. The dummy I-frame is
constructed and inserted into the 3-d tree in such a way that the 3-d tree is complete (i.e.
perfectly balanced). That means the tree was constructed by inserting the 3-d nodes in the
following order (red, green, blue): (127,127,127), (63,127,127), (191,127,127),
(63,63,127), (63,191,127), (191, 63, 127), (191,191,127)... (255, 255, 255). The
algorithm shown in Figure 2.22 was used to generate the pixel values in this order. The
height of the 3-d tree generated by inserting the dummy I-frame was 21. This height is

controlled by the variable “limit” in the following algorithm.

main (void)
{ Rmin = Cmin = Bmin = 0;
Rmax = Gmax = Bmax = 255; limit = 3;
GenR {Rmin, Rmax, Gmin, Gmax, Bmin, Bmax, limit);
}
GenR {Rmin, Rmax, Gmin, Gmax, Bmin, Bmax, limit)}
{ if (Rmax - Rmin < limit) return;
Rmid =(Rmax + Rmin}/2; Gmid =(Cmax + Gmin)/2: Bmid ={Bmax + Bmin)/2;
cout << Rmid << " " << Gmid << " " << Bmid << endl;
GenG (Rmin, Rmid, Gmin, Gmax, Bmin, Bmax, limit):
GenG (Rmid, Rmax, Gmin, Gmax, Bmin, Bmax, limit);
}
GenG {Rmin, Rmax, Gmin, Gmax, Bmin, Bmax, limit)
{ if (Gmax - Gmin < limit) return;
Fmid ={(Rmax + Rmin)/2; Gmid =(Cmax + Gmin)/2; Bmid =(Bmax + Bmin)/2;
cout << Rmid << " " << Gmid << " " << Bmid << endl;
GenB (Rmin, Rmax, Gmin, Gmid, Bmin, Bmax, limit};
GenB (Rmin, Rmax, Gmid, Gmax, Bmin, Bmax, limit);
}
GenB {(Rmin, Rmax, Gmin, Gmax, Bmin, Bmax, limit)
{ 1if (Bmax - Bmin < limit)} return:;
Fmid ={(Rmax + Rmin}/2; Gmid =(Gmax + Gmin)/2; Bmid =(Bmax + Bmin)/2;
cout << Rmid << " " << Gmid << " " << Bmid << endl;
GenR (Rmin, Rmax, Gmin, Gmax, Bmin, Bmid, limit);
GenR (REmin, Rmax, Gmin, Gmax, Bmid, Bmax, limit);

Figure 2.22 The algorithm to generate the dummy I-frame pixel values.

43

The algorithm for insertion into the colour space tree is given in Figure 2.23. It

makes use of the KdColourCompare algorithm (Figure 2.24) to determine which

direction to branch. Figure 2.25 illustrates the colour space tree data structure.

// Add P into colour space subtree rooted at T

Insert (KdColcourTreeNode P, KdColourTreeNode T,

{

if (T == NULL)

{ T = P;
T.Discriminator = red:
T.M.Insert_AVL {(I-frameName}:

return;
}
KdTreeNode F, SaveRoct = T;
while (T != NULL && {(P.coordinates(Red, Green,
'= T.coordinates (Red, Green,
{ F = T; // Remember parent of T
Direction = KdColourCompare(P, T);
if (Direction == L) T = T.L;

else T = T.R;
}

if (T == NULL) // P is not already in tree.
{
if (Direction == L)
{ F.L = P;
F.L.M.Insert_AVL(I-frameName);
}
else
{ F.R = P;
F.R.M.Insert_AVL (I-frameName);
}
if (F.Discriminator == red)
P.Discriminator = green;
elgse if (F.Discriminator == green)
P.Discriminator = blue;
else
P.Discriminator = red;
1
else

T.M,Insert_AVL (I-frameName);
T = SaveRoot;

Figure 2.23 The algorithm for colour space tree insertion.

44

I-frameName)

Blue)
Blue}})

// Return the child type of the 3-d tree root at node
// Q in which node P belongs.
KdColourCeompare (KdColourTreeNode P, KdColocurTreeNcde Q)

{ if {Q->Discriminator == r)

{ if (P.Red <« Q.Red) return L;
else return R;

}

else if (Q.Discriminator == g)

{ if {(P.Green < Q.Green) return L;
else return R;

}

else

{ if (P.Blue < ¢.Blue) return L;
else return R;

}

Figure 2.24 The algorithm used for 3-d tree node comparison to determine branching
direction.

127
127
127

AT

63 191
127 127
127 127
63 63 191 191
63 191 63 191
127 127 127 127
63 63 63 63 191 191 131 191
63 63 191 191 63 63 191 191
63 191 191 63 191 191

V'Aq »A;‘ V‘Aq r;‘»q y;‘ »A;‘ 'A*

Figure 2.25 Top part of a colour space tree resulting from the dummy I-frame insertion.

45

2.3.2.4 Range Search

We define a parallel array to accumulate the counts of pixels of [-frames which
are in range. Each element of the array contains the I-frame name, count of pixels in
range, and total pixels for this I-frame. The array index represents the name of the I-
frame. A range search with respect to a colour space tree will follow the algorithm shown
in Figure 2.10. When range searching, and a 3-d tree node is in range, the associated
AVL tree nodes are examined to sum up the counts for each I-frame in the parallel array.
After range searching, the histogram for each I-frame can be calculated. Figure 2.26
shows this structure.

For example, to compute pixel counts of I-frames shown in Figure 2.26, for a
range search having R <63, R, 2191, G, <127, G, >127, B, <127, B;; > 127, we first
reach the 3-d tree node (127,127, 12?).. Following the middle link, we get the count for
name “1” be 2 and name “0" be 3. Secondly, we reach the node (63,127,127) and sum up
the counts for name “1”, i.e., 2 + 4 = 6 and name “0”, 1.e. 3 + 8 = 11. Finally we reach the
node (191,127,127), where the same process is carried out. Now the count for name “0”
is equal tol5, i.e, 3+8+4 = 15 and for name “1” is 12, 1.e, 2+4+6=12. So the relative pixel

15 12
and
84480 76800

“1”

counts for name “0” and name are calculated as , respectively.

To satisfy the queries as shown in Figure 2.20, the final step is to search the array
and report the result. For example, after building the colour space tree with 17 I-frames,
the range query “Find MPEG-2 video I-frames with > 50% pixels in colour range

[0, 132], [0, 213], [150, 255], simultaneously™ is employed. After the range search 1s

46

completed,
we go through the array and calculate the histogram for each I-frame to see if
there is any histogram value is greater than 50%. If so, the I-frame name, count, total

pixels, and histogram are printed out. Figure 2.27 shows an example of a range search

result.
*'I-frame Total
¥ name Count pixels
S -
i ' H | ! !
0 | wil73aga | 15 | 84480 | o
1 wil7dega | 12 | 76000 127
2 |
n-1 |)

Figure 2.26 A colour space tree and the accumulator array.

After range search

Find the I-frame whose pixel% > 50%.
/drives/somato/grads/g0lhy/I_frames/wflSl/recl04.tga 83085 84480
The pixel% = 98.3487%
/drives/somato/grads/g0lhy/I_frames/wfl51l/recll9.tga 82654 84480
The pixel% = 97.8385%

Figure 2.27 An example of a colour space range search result.

47

Chapter 3 EXPERIMENTAL RESULTS

3.1 Sample Data

As the Internet and Word Wide Web explode into common usage, the MPEG-2
video clips were obtained by using World Wide Web browsers (such as Netscape
Navigator) and search engines (such as Alta Vista and Excite) to search through the
Internet. 100 MPEG-2 video clips which include 5706 I-frames were used in this
experiment. These video clips come in a variety of types, including news, cartoons,
advertisements, scenes, and sports videos. Data describing 30 of these video clips is listed
in Table 3.1. The table also shows the size in bytes and the durat‘ion in “mm ss” format
which is standard for minutes and seconds for each video clip.

With the new technologies, PC- or workstation-based vision systems can provide
a user with a tremendous amount of flexibility in what the user can do with the stored
video clip display capability. For example, with the Microsoft Windows Media Player,
the user can play MPEG-2 video clips forward or backward, and resize it. The duration of
playback also can be counted using the software. MPEG-2 requires higher data rates but
delivers higher image resolution, and picture quality. MPEG-2 also requires dedicated

hardware for playback but looks better than a television screen [Vau96].

48

Table3.1 MPEG-2 video clip samples (30 out of 102).

No. Name Size (bytes) Duration (mm ss)
1 512av.mpg 1254432 00 11
2 akl.mpg 1043990 00 05
3 b2future.mpg 5060531 0017
4 bird.mpg 950312 0013
5 c-saw.mpg 769345 00 05
6 camera.mpg 678832 00 07
7 creature.mpg 6684910 00 32
8 crissy.mpg 846924 00 04
9 crissy2.mpg 826844 00 04

10 destruct.mpg 1112642 00 06

11 drilll.mpg 701970 00 04

12 drill2.mpg 683439 00 04

13 fantasia.mpg 5234174 0104

14 gump.mpg 5018811 00 19

15 hammer.mpg 714289 0005

16 hell.mpg 1334446 00 09

17 hookip.mpg 1611440 00 07

I8 hookip2.mpg 612386 00 03

19 hur.mpg 1064494 00 05

20 isdndual.mpeg 510308 00 09

21 jel_fish.mpg 1900617 00 14

22 jet.mpg 827839 00 36

23 mvedsmpl.mpg 1049008 00 05

24 napier.mpg 1048086 00 05

25 port.mpg 1046038 00 03

26 producer.mpg 1494812 00 08

27 ski.mpg 1041930 00 05

28 skybird.mpg 514584 00 09

29 wil70.mpg 1380356 00 06

30 wrench.mpg 716467 00 05

49

3.2 Pre-processing

In this research, we used programs adapted from software by the MPEG Software
Simulation Group[MSSG99] to process the data which can be used for the tree
constructions described in Chapter 2. The MPEG Software Simulation Group is currently
developing MPEG software with the purpose of providing aid in understanding the
various algorithms which comprise an encoder and decoder, and giving a sample
implementation based on advanced encoding models. The implementation of the codec
converts uncompressed video frames into MPEG-1 and MPEG-2 video coded bit-stream

sequences, and vice versa.

3.2.1 I-frame Extraction and RGB Format Generation

The implementation of the decbder from The MPEG Software Simulation Group
[MSSG99] is made of 16 C source code files comprising a total of 8540 lines of source
code. Each file has several functions. There are a total of 227 functions. There is a very
complicated relationship among the files and functions. After using cross-referencing
analysis (using “GNU cxref” which is a C program cross-referencing and documentation
tool for UNIX [Demon99]), we found a file store.c that contains picture output routines.
One of the functions of this file is to generate Truevision TGA (“Targa”) files that
contain 24-bit R, G, B values in uncompressed format for all I-, B-, and P-frames of
input MPEG-2 video clips. Since we deal exclusively with I-frames, one condition
statement was added to the store.c file (see line 10 in Figure 3.1) in such a way that only

the I-frames are produced when MPEG-2 video clips are decoded. Figure 3.1 shows the

50

algorithm used to write I-frames in TGA format. The I-frame’s TGA files are used for

either histogram calculation or as the input of colour space tree insertion.

/* store.c, picture output routines*/

01 static void store_ppm tga{char *outname, unsigned char *srcl],
02 int offset, int incr, int height, int tgaflag);

03 static wvoid putbytef{int c¢};

04 static wvoid putword{int w};

/* store as PPM or uncompressed Truevision TGA ('Targa') file */
05 static void store_ppm_tga{ocutname, src,offset, incr, height, tgaflag)
06 { int i, 3, v, u, v, . g, b, crv, cbu, cgu, cgv;

07 unsigned char *py, *p Dv;
08 static unsigned char tga24[l4] = {0,0,2,0,0,0,0,
08 0,0,0,0,0,24,32});

10 if(picture_coding_type == I_TYPE) /* April 21 1999 added
to test I-frame*/

{ e
11 if {tgaflag) /* TGA header */
12 { for {(i=0; 1i<12; i++)
13 putbyvte (tga2d[i]);
14 putword (horizontal_size); putwordt{height);
15 putbyte (tga24[12]); putbytel(tga24([13]};
}
16 else /* PPM header */
/* matrix coefficients */
17 crv = Inverse_ Table 6_9[matrix coefficients] [0];
18 for (i=0; i<height; i++)
19 { py = src(0] + offset + incr*i;
20 pu = udd4d + offset + incr*i;
21 pv = vd44 + offset + incr*i;
22 for {3i=0; j<hecrizontal_size; j++)
23 u = *pu++ - 128; v = *pv++ - 128;
24 v = 76308 * {*py++ - 186);
25 r = Clip{{y + crv*v + 32768)>>16];
26 g = Clip({y - cgu*u - cgv*v + 32768)>>16];
27 b = Clip{(y + cbu*u + 32786)>>16];
1
28 if (tgaflag)
29 putbyte(b); putbyte(g); putbytel(r);
30 else
31 putbyte{r); putbyte{g); putbyte{b);

}

}
32 static veid putbyte(c)
33 { *optr++ = ¢
34 if (optr == obfr + OBFRSIZE}
35 write{outfile, obfr,CBFRSIZE}; optr = obfr:

36 static wvoid putwordiw)
37 putbyte{w); putbyte(w>>8);

Figure 3.1 Part of the algorithm for generating I-frame Truevision TGA files from
MPEG-2 encoded video clips.

51

3.2.2 Histogram Computation

After obtaining each I-frame’s TGA file, the next step is to extract the important
information such as horizontal size and height as well as the number of pixels in given R,
G, and B values from the TGA file in order to calculate the total pixels and the R, G, and

B histograms as defined in equation (2.1). In this way, a colour histogram file for each I-

frame can be created. The file format is illustrated in Figure 3.2.

127 4.616477e-03 5.078125e-03 2.746212e-03
063 4,912405e-03 8.984375e-03 4.971591e-03
031 2.864583e-03 5.089962e-03 1.105587e-02
015 2.769886e-03 5.19645%6e-03 1.057055e-02
007 2,10700Be~03 4.580966e-03 8.510890e-03
003 1.657197e-03 3.444602e-03 7.125947e-03
001 1.420455e-03 2.367424e~03 6.841856e-03
000 7.895360e-03 1.133996e-02 §.79876%e-02
002 1.361268e-03 3.065814e-03 7.232481e-03
005 1,941288e-03 3.681345e-03 7.788826e-03
004 1.609848e-03 3.302557e-03 8.30965%e-03
006 2.710701e-03 4.474432e-03 8.510890e-03
011 2.391098e-03 4.853220e-03 8.652936e-03
009 2.225379e-03 5.078125e-03 8.747633e-03
008 2.237216e-03 4.9005682-03 8.9251839e-03
010 2.059659e-03 5.480587e-03 9.647254e-03
013 2,710701e-03 5.587121e-03 9.457860e-03
012 2,095170e-03 5.338542e-03 9.280303e-03
014 2.651515e-03 5.504261e-03 9.943182e-03
023 2.840909e-03 5.007102e-03 1.195549e-02
019 2.521307e-03 5.421402e-03 1.150568e-02
017 2.272727e~-03 5.18465%e-03 1.117424e-02
016 2.758049%9e-03 5.007102e-03 1.08428Ce-02
018 2.781723e-03 5.243845e-03 1.038116e-02
021 2.402936e-03 5.125473e-03 1.206203e-02
020 2.746212e-03 4.876894e-03 1.081913e-02
022 2.758049e-03 5.149148e-03 1.278409e-02
027 2.723561e-03 5.397727e-03 1.083097e-02
025 2.698864e-03 4.711174e-03 1.228693e-02
024 2.805398e-03 5.362216e-03 1.181345e-02
026 2,781723e-03 5.43323%e-03 1.202652e-02

2.604167e-03 4.900568e-03 1.151752e-02

029

Figure 3.2 An example of part of a colour histogram file formatted from left to right as
intensity, R-fraction, G-fraction and B-fraction (the complete file has 256 lines).

52

To get the information for calculating the colour histogram, an analysis is made

based on the algorithm listed in Figure 3.1 to determine which byte position is used to

store horizontal size, height and R, G, B values. After the “for” loop at line 14, the file

pointer position is in byte 12, The horizontal size is written to the file as a word, i.e., 2

bytes, meaning that it occupies bytes 12 and 13. Then, the height is written to the file as

bytes 14 and 15. Bytes 16 and 17 are occupied by the last two elements of character array

tga[24]. Starting with byte 18, the R, G, B values are written to the file in B, G, R order.

Figure 3.3 illustrates this format. H_S, represents the least significant 8 bits of the

horizontal size, and H_S, represents the most significant 8 bits. Similarly, H, and H,

represent the image height.

byte 0 | byte 1 byte2 | byte3 o bytel2 | bytel3 | byteld | bytels
0 0 2 0 H_S, H_S, H, H,
byte 16 | byte 17 | byte 18 | byte 19 | byte 20 | byte 21 | byte 22 | byte 23 | ...
24 32 B G R B G R | ...

Figure 3.3 The storage format of a TGA file.

Based on the analysis above, when a TGA file is opened, we can set the file

pointer to byte position 12. Starting from that position, the horizontal size, height, and R,

G, B data can be extracted and used to compute the colour histogram. Figure 3.4 shows

this process.

53

Compute_Histogram ()
{ // open the I_frame input file, e.g."recll9.tga"
if ((in = fopen (INFNAME, "rt")) == NULL)
{
fprintf(stderr, "Cannct open I_frame input file.\n");
return 1;
}
/*seek the position 12 for Horizontal size(H_S,)*/
fseek({in , 12L, SEEK_SET):
ch = fgetc(in); /*get the char*/
X = (int) ch; /*convert into int*/
/* seek the position 13 for Horizontal size(H_S,)*/
fseek(in , 13L, SEEX_SET)};
ch = fgetc(in); Y = {int) ch << §;
Horizontal_size = X + Y;

/* seek the position 14 for Height (H,)*/
fseek(in , 14L, SEEK_SET);

ch = fgetci{in}; X = (int) ch;

/* seek the position 15 for for Height (H,)*/
fseek{in , 15L, SEEK_SET);

ch = fgetc{in); ¥ = (int) ch << 8;

Height = X + ¥;

/* computing the total number of pixels*/
Total_pixel = Horizontal_size * Height;

/* read the R G B data from position byte 19*/
fseek{in , 19L, SEEK_SET);
for {j = 0; j < Height: j++)

{
for (k = 0; k < Horizontal_size; k++)
{
ch = fgetc(in}); X = {int) ch; /* B */
chl = fgetc{in); Y = {int) chl; /* G */
ch2 = fgetc(in); Z = {int) ch2; /* R */
*{R[j] + k) = Z; /*stroe R G B to arrays*/
*(G[J] + k) = ¥;
*(B{j] + k) = X;
}
}

/* compute the histograms */
for (i = 0; i < HIGH; i++)
{

R_frac(i] = {double) R _pixel_count(i]}/Total_pixel;
G_fracl[i] = {double) G _pixel_cocunt[i]/Total_pixel;
B_frac([i] = {double} B_pixel_count[i]/Total_pixel;

Figure 3.4 The algorithm for extracting information from a TGA file.

54

For example, an MPEG-2 video clip named “W{174.mpg” was decoded by the
decoder, and an I-frame TGA file called “rec119.tga” was generated with horizontal size
and height being 352 and 240, respectively. The size of “rec119.tga” is 253458 bytes.
We applied the algorithm listed in Figure 3.4 and got that byfe 12 is “96” and byte 13 is
“17. After shifting “1” in byte 13 to the left by 8 bits, we get byte 13 as 256, The

horizontal size is equal to 96 + 256 = 352. Similarly, the value of height = 240.

3.3 Constructing the Index

After pre-processing the MPEG-2 video clip data, the experimental test set-ups

are built to construct the index for both histogram and colour space cases.

3.3.1 Colour Histogram

One hundred MPEG-2 video clips containing 5706 I-frames are used in this part.
A histogram file formatted as shown in Figure 3.2 is generated for each I-frame. For
every video clip, we created a file called “insert_clipname.dat”. This file contains the
clip location, each I-frame location in the file system and the 256 histogram values of
each [-frame. It is used as the input file when a 4-d tree is constructed. Figure 3.5

illustrates an example of this kind of file. The file is named “insert_wfl174.dat™.

35

~/mpeg/wil74 .mpg

~/I_frames/wfl74/recl04.tga

127 4.616477e-03 5.078125e-03
063 4.912405e-03 8.,984375e-03
031 2.864583e-03 5.089962e-03
015 2.769886e-03 5.196496e-03
007 2.107008e-03 4.580966e-03
252 9.469697e-04 6.155303e-04
254 6.036932e-04 5.208333e-04
255 1.369555e-02 6.6642%9e-03
~/I_frames/wfl74/recl3d. tga
127 5.859375e-03 4.616477e-03
063 4.924242e-03 9.446023e-03
031 2.852746e-03 6.463068e-03
015 2.616004e-03 4.924242e-03
007 2.035985e-03 4.166667e-03
253 1.231061e-03 4.498106e-04
252 1.017992e-03 6.865530e-04
254 1.006155e-03 4.853220e-04
255 1.419271e-02 7.232481e-03
~/I_frames/wfl74/rec29.tga
127 4.427083e-03 5.018939e-03
063 5.018939%9e-03 9.114583e-03
031 2.781723e~-03 6.072443e-03
015 3.030303e-03 5.516098e-03
007 1.811080e-03 3.989110e-03
003 1.053504e-03 2.201705e-03
001 1.017992e-03 1.669034e-03
252 9.232955e-04 3.196023e-04
254 5.800189e-04 2.012311e-04
255 1.33641le-02 4.415246e-03
~/I_frames/wfl74/rech9.tga
127 4.559754e-03 4.462595e-03
063 5.243845e-03 9.079072e-03
031 2.769886e-03 5.977746e-03
015 2.521307e-03 6.238163e-03
007 1.929451e-03 3.562973e-03
003 1.148201e-03 2.426610e-03
001 1.124527e-03 2.166193e-03
000 9.339489e-03 1.332860e-02
002 1.160038e-03 2.130682e-03
005 1.455966e-03 3.089489%9e-03
004 1.52698%9e-03 2.805398e-03
751894e-03 3.349905e-03

006 1.

Figure 3.5 An example of part of the insert_wf174.dat histogram file.

QN O = B

o |l SO ol e I 8

U ~J oo m

-0 RRPWUNND

.746212e-03
.971591e-03
.105587e-02
.057055e-02
.51C0890e-03

.012311e-04
.302083e-04
.285985e-05

.462121e-03
.042614e-03
.091383e-02
.130445e-02
.771307e-03

.012311e-04
.722538e-04
.84090%e-04
.396780e-03

.338068e-03
.326705e-03
.029830e-02
.128078e-02

.451705e-03
.048242e-03
.664299%e-03
.102273e-05
.551136e-05
.918561e-05

.955280e-03
.468750e-03
.072443e-02
.193182e-02
.534564e-03
.634943e-03
.865530e-03
.102583e-01
.634843e~03
.333333e-03
.836174e-03
.996212e-03

56

We also stored all file names of this type of file into another file named
filename.dat. Figure 3.6 shows this file format. When the 4-d tree is build, the
“filename.dat” file is opened first to get different input file names. Once each input file is
opened, the data in the file can be inserted into a 4-d tree to build the colour histogram
indexing. The 4-d data structure has been discussed in Chapter 2. The experimental test
architecture is illustrated in Figure 3.7. Member functions KdInsert and KdSearch are

part of the Kdtree object stored in file Kdtree_ RGB.cc.

insert_akl.dat
insert_andrew.dat
insert_atom.dat
insert_b2future.dat
insert_badday.dat
insert_berr.dat
insert_bird.dat
insert_c-saw.dat
insert_camera.dat
insert_ creature.dat
ingert_crissy.dat
ingert_destruct.dat
ingert_dmskib,dat
insert_drilll.dat
insert_drillz.dat
insert_dtskib.dat
ingert_emily.dat
insert_explodel.dat
insert_fantasia.dat
insert_fractall.dat
insert_fractal2.dat

insert_ftlskibl.dat
insert_Ftlskib3.dat
insert_gump.dat
insert_hammer.dat
insert _hardenbe.dat
ingsert_heihachi.dat
insert_wfi72.dat
insert _wfl73.dat
insert_wfl74.dat
insert_wrench.dat
insert_zih.dat

Figure 3.6 Part of the “filename.dat” file (the complete file has 100 lines, one per
MPEG-2 video clip).

57

; ~Extract . _ I-frame 1
MPEG-21ile = pfame T (1)

| I-frame 2
o (tga)
 I-frame 3

___,__...------—‘ _—-——-.____H_._‘_‘ ____#___________.--——”""_"—___ .t 2
- Histogram ‘ (.tga)

._computation | e
I-framen
l - (g

Histogram1

Insert I-frame
histograms

into 4-d tree
KdInsert)

Histogram 2
|

‘Histogram n

Search 4-d tree
& build hash table)<
(KdSearch)

Content-based
query

Report I-frames
in range

Figure 3.7 Experimental test architecture for colour histogram index testing.

58

In this experiment, there are one hundred MPEG-2 video clip files, 5706 I-frame
TGA files, 5706 histogram files (all histograms for one video clip are contained in one
.dat input file), and a filename.dat file involved in the computation. A total number of
5907 files overal] are used for the test data. Figure 3.8 illustrates the file system that

involves the 4-d tree construction.

/ / (Root Directory)
! ,
—akl.mpg ——main
—drill.mpg Gk dhl - zih —-- filename.dat
—wfl73.mpg ./ —insert_wf173.dat

—wf174.mpg —recl09.tga —rec149.tga %ﬁrec49.tga .--—insert_wfl74.dat

f i i
——zih.mpg —recl19.tga —recl69.tga —rec69.tga ___insert_zih.dat

Figure 3.8 Directory structure of file system for constructing a 4-d tree.

59

3.3.2 Colour Space

Three hundred I-frames from 100 video clips were used to do the experiment on
colour space tree construction. Each I-frame’s TGA file can be inserted into the colour
space tree directly. The construction of the colour space tree starts with the dummy I-
frame insertion as we discussed in Chapter 2. The details of colour space tree data
structure are also shown in Chapter 2. Figure 3.9 illustrates the experimental test set-up
for the colour space tree indexing. Member functions KdInsert and KdSearch are part of

the Kdtree object stored in file Kdtree Cspace.cc.

60

MPEG-2 file —>

Generate
dummy
I-frame

- Dummy
- I-frame

" Extract
_ I-frame

e L (tga)

Insert I-frames
into colour

space tree
(KdInsert)

Content-based

query

I-frame 1
~ o (tga)
- I-frame 2

I-frame 3
 (tea)

I-framen
(.tga)

Search colour
space tree

Report [-frames
in range

Figure 3.9 The experimental test set-up for colour space tree testing.

6]

3.4 Range Search Results

The colour histogram index testing was performed on somato, a Sun
Microsystems ULTRA 5 workstation, using the Solaris 2.6 operating system. Somato
has 128 MB of RAM and up to 768 MB virtual memory to be used. It is located in the
Artificial Intelligence Laboratory of the Faculty of Computer Science, University of New
Brunswick and its central processing unit/processor (UltraSPARC-IIi) runs at 270 MHZ.
The C++ language was used for the implementation of prototype software on the UNIX
system. There are 3137 lines of C++ code including 214 lines of comments involved the
implementation.

The colour space tree testing was performed on jupiter, a-Sun Microsystems
ENTERPRISE 250 workstation, using the Solaris 7 operating system. Jupiter has 1024
MB of RAM and up to 4 GB virtual mémory to be used. It is located in the Computing
Services Department of the University of New Brunswick and is a two-processor
{UltraSPARC-II) multi-user system which runs at 400 MHZ. The implementation of
prototype software on the UNIX system was written in the C++ language. There are 1893
lines of C++ code including 153 lines of comments.

It took 71 seconds to generate the 4-d tree on somato for all 5706 I-frames. Figure
3.10 shows an example of colour histogram index testing results based on the range query
“Find MPEG-2 video [-frames with > 10% pixels in colour range [R; =40, R, = 50] .
After range searching, 416 I-frames are found in the range. The result also shows the
location of each MPEG-2 video clip and the [-frame that is in range. 1t took 8 seconds to

perform this range search on somato. Table 3.2 shows other single colour histogram

62

range search results. The times are CPU times for one run of the range search program.

This video clip's I-frame matches the range search.
~/mpeg/lily.mpg ~/I_frames/lily/rec37.tga

This video clip's I-frame matches the range search,.
~/mpeqg/270898seg7 .mpg ~/I_frames/270898seg7/rech969.tga
This video ¢lip's I-frame matches the range search.
~/mpeg/270898seg7.mpg ~/I_frames/270898seg7/rec3539.tga
This video ¢lip's I-frame matches the range search.
~/mpeg/heihachi .mpg ~/I_frames/heihachi/recll97.tga
This video clip's I-frame matches the range search.
~/mpeg/heihachi .mpg ~/1_frames/heihachi/rech7.tga
This video clip's I-frame matches the range search.
~/mpeg/introsgl.mpg ~/I_frames/introsgl/recl7.tga
This videc clip's I-frame matches the range search.
~/mpeg/spacewal .mpg ~/I_frames/spacewal /rec207.tga
This video c¢lip's I-frame matches the range search.
~/mpeg/score.mpg ~/I_frames/score/rec2lb7.tga

This video c¢lip's I-frame matches the range search.
~/mpeg/3107%8seg3.mpg ~/I_frames/310798seg3/rec29.tga
This video clip's I-frame matches the range search,
~/mpeg/fractall .mpg ~/~/I_frames/fractall/rec93.tga
This video clip's I-frame matches the range search.
~/mpeg/gump . mpg ~/I_frames/gump/rec269.tga

This video clip's I-frame matches the range search.
~/mpeg/270898seg7 .mpg ~/I_frames/270898seg7/recb249.tga
This videc clip's I-frame matches the range search.
~/mpeg/wfl2l.mpg ~/1_frames/wfl2l/rec209.tga

This videc clip's I-frame matches the range search.
~/mpeg/270898seg7 . mpg ~/I_frames/270898seg7/rec2834.tga
This videc clip's I-frame matches the range search.
~/mpeg/270898seg8.mpg ~/I_frames/270898seg8/recd379.tga
This videc clip's I-frame matches the range search.
~/mpeg/3107%8=seg3 .mpg ~/I_frames/310798seg3/rech%.tga
This videc clip's I-frame matches the range search.

~/mpeg/2708%98seg7 .mpg ~/I_frames/270898seg7/rec3224.tga
This video clip's I-frame matches the range search.
~/mpeg/pvr . mpg ~/I_frames/pvr/rec53Z.tga

This videc clip's I-frame matches the range search.
~/mpeg/270898seqg7 .mpg ~/1_frames/270898seg7/rect779.tga
This videc clip's I-frame matches the range search.
~/mpeg/hardenbe .mpg ~/I_frames/hardenbe/rec3l2.tga

Figure 3.10 An example result of the colour histogram index testing.

63

Table 3.2 (part 1 of 2) Single histogram range search results.

Query No. of I-frames found Time required(s)

1. Find MPEG-2 video I-frames with > 80 % 2863 74.64
pixels in histogram range [R; = 0 Ry = 155].

2. Find MPEG-2 video I-frames with > 80 % 3202 74.85
pixels in histogram range {G, = 0 G, = 155].

3. Find MPEG-2 video I-frames with >80 % 3071 75.11
pixels in histogram range [B; =0 B, = 155].

4. Find MPEG-2 video I-frames with <80 % 2574 74.69
pixels in histogram range [R; = 0 Ry, = 155].

5. Find MPEG-2 video I-frames with < 80 % 2242 74.38
pixels in histogram range [G, =0 G, = 155]. :

6. Find MPEG-2 video I-frames with < 80 % 2366 75.09
pixels in histogram range [B, =0 B, = 155].

7. Find MPEG-2 video I-frames with between 1737 73.80
70% pixels and 90% pixels in histogram range
[R; =0 Ry = 155].

8. Find MPEG-2 video I-frames with between 1490 73.16
70% pixels and 80% pixels in histogram range
[G,=0G,=155].

9. Find MPEG-2 video I-frames with between 1683 73.75
70% pixels and 80% pixels in histogram range
[B, =0 By = 155].

10. Find MPEG-2 video I-frames with 2422 0.35
R-intensity = 127 whose fraction
> 0.34 % of the total.

11. Find MPEG-2 video I-frames with 2418 0.35
G-intensity = 127 whose fraction
> 0.34 % of the total.

Table 3.2 (part 2 of 2) Single histogram range search results.

Query No. of I-frames found Time required(s)

12. Find MPEG-2 video I-frames with 1634 0.24
B-intensity = 127 whose fraction
> 0.34 % of the total.

13. Find MPEG-2 video I-frames with 2962 0.43
R-intensity = 127 whose fraction
< 0.34 % of the total.

14. Find MPEG-2 video I-frames with 2969 0.43
G-intensity = 127 whose fraction
< (.34 % of the total.

15. Find MPEG-2 video I-frames with 3749 0.54
B-intensity = 127 whose fraction
< (.34 % of the total.

16. Find MPEG-2 video I-frames with 3675 0.53
R-intensity = 127 whose fraction
between 0% and 0.48 % of the total.

17. Find MPEG-2 video {-frames with 3731 0.54
G-intensity = 127 whose fraction
between 0 % and 0.48 % of the total.

18. Find MPEG-2 video I-frames with 4393 0.64
B-intensity = 127 whose fraction
between 0% and 0.48 % of the total.

The colour space tree took 5491 CPU seconds (approximately 140 hours by the
clock on the wall) to construct for 300 I-frames on jupiter. We made a decision to limit
the colour space tree to this number due to the time required. Figure 3.11 shows an

example of colour space tree testing results based on range query “Find MPEG-2 video I-

65

frames with > 50% pixels in colour range [R;=0, Ry = 132], [G, =0, Gy =213],[B,_=
150, By = 255], simultaneously ”. It took 2 seconds to perform this range search on

jupiter. The time is the CPU time for one run of the range search program.

202 /homes/g/g0lhy/somato/I_frames/wfl51/recl04.tga 65983 84480
The pixel% = 78.1049%

203 /homes/g/g0lhy/somato/I_frames/wfl51l/reclli9.tga 61967 84480
The pixel% = 73.3511%

204 /homes/g/gl0lhy/somato/I_frames/wflS51l/recl34.tga 61982 84480
The pixel% = 73.3688%

205 /homes/g/g0lhy/somato/I_frames/wflSl/recld.tga 70315 84480
The pixel% = 83.2327%

206 /homes/g/g0lhy/somato/I_frames/wflSl/recld9.tga 67568 84480
The pixel% = 79.9811%

207 /homes/g/g0lhy/somate/I_frames/wflSl/recléd.tga 76048 84480
The pixel% = 90.0189%

208 /homes/g/g0lhy/somato/I_frames/wflSl/recl79.tga 77556 84480
The pixel% = 91.804% _

209 /homes/g/g0lhy/somato/I_frames/wfl5l/recl94.tga 69535 84480
The pixel% = 82.3094%

210 /homes/g/gClhy/somato/I_frames/wfl5l/rec209.tga 64414 84480
The pixel% = 76.2476%

211 /homes/g/g0lhy/somato/I_frames/wfl5l/rec224.tga 60264 84480
The pixel% = 71.3352%

212 /homes/g/g0lhy/somato/I_frames/wfl5l/rec239.tga 66161 84480
The pixel% = 78.3156%

213 /homes/g/g0lhy/somato/I_frames/wfl51l/rec254.tga 65135 84480
The pixel% = 77.1011%

214 /homes/g/g0lhy/somato/I_frames/wfl5]l/rec269.tga 65069 84480
The pixel% = 77.023%

215 /homes/g/g0lhy/somatoe/I_frames/wflSl/rec284.tga 69814 84480
The pixel% = 82.6397%

216 /homes/g/g0lhy/scmato/l_frames/wfl5l/rec29.tga 71487 8448¢C
The pixel% = 84,62%

217 /homes/g/g0lhy/somato/I_frames/wfl51/rec289.tga 67787 84480
The pixel$% = 80.2403%

218 /homes/g/g0lhy/scmato/I_frames/wflSl/rec3ld.tga 74705 84480
The pixel% = 88.4292%

219 /homes/g/gQlhy/scmato/I_frames/wfl51l/rec329.tga 58379 84480
The pixel% = 69.1039%

220 /homes/g/g0lhy/scmato/I_frames/wfl51l/rec344.tga 68262 84480
The pixel% = 80.8026%

221 /homes/g/g0lhy/scomato/I_frames/wflS51/rec359.tga 66866 84480
The pixel% = 79.1501%

222 /homes/g/g0lhy/somato/I_frames/wfl51l/rec374.tga 67617 84480
The pixel% = 80.0391%

Figure 3.11 An example result of the colour space tree testing.

66

Figure 3.12 shows an example of one I-frame that 15 reported in range as listed in
Figure 3.10. It 15 located in /homes/g/g0 1 hy/somato/]_frames/wil 51/ and named
“recl04.1ga”. There are 63983 pixels out of wotal 84480 in the given range based on range
query "Find MPEG-2 video [-frames with > 50% pixels in colour range [R, =0, R, =
132], [Gy = 0, Gy, = 213], [B, = 150, B, = 255], simultancously . Figure 3.13 shows a

representation of this colour range. The pixel%s is calculated as 78.1049%,

Figure 3.12 An example I-frame whose pixel%s is greater than 50% in the given colour

range (B,= 0, By, = 132, G, =0, G, = 213, B_ = 150, B, = 255).

b7

——r—
- ot [240
e
T e T

Hed [0
Green [0
Blue [150

Hug [134
ptr | Sl E:’:‘D_
ol L, Fﬁ?

Add to Custom Calees

Fed 132
ﬁmm{ﬁ
Blue [255

Figure 3.13 A presentation of the colour range (R,=0, R, = 132, G, =0,

Gy =213, B, = 150, B, = 255).

Chapter 4 CONCLUSIONS AND FUTURE WORK

4.1 Summary

In this thesis, the application of k-d range search data structures to video data has
been explored. Point-based spatial indexing methods for digital video data have been
investigated. Fundamental research investigating the types of keys necessary and useful
for searching in video databases has been done experimentally with many short
sequences of compressed digital video in MPEG-2 format.

For content-based video indexing, we experimented with a colour histogram
indexing data structure with 5706 I-frames of MPEG-2 video clibs and a colour space
tree indexing data structure with 300 I-frames.

We have shown the process to extract I-frames from MPEG-2 video clips, how to
use a 4-d tree data structure to store and index the colour histograms of these I-frames,
and allow for quick content-based searching of video data. We have presented a
combination of k-d tree and hash table data structures to satisfy 18 possible queries such
as “find MPEG-2 video I-frames with > t % pixels in colour range [R;, R;]”. We tested
prototype C++ software on UNIX. It took 71 seconds to build the 4-d tree and an average
of 37 seconds to perform a histogram range search on a Sun Microsystems ULTRA 5
workstation.

We also have shown another method of content-based video indexing and
searching. In that method, the R,G, B values of MPEG-2 I-frames have been used as the

keys to index digital video data stored in a combined k-d tree and AVL tree spatial data

69

structure (that we called the colour space tree) to satisfy the queries for colour space
searching. A example query in this method is “Find MPEG-2 video I-frames with >t %
pixels in colour range [R;, Ry, [G,, Gy, [By, By], simultaneously”. We tested prototype
C++ source code on UNIX. It required 5491 seconds to build a colour space tree of 300
I-frames and took 2 seconds to perform one range search on a Sun Microsystems
ENTERPRISE 250 workstation.

The core of our solutions is their use of a low-level visual feature (colour) as a
representation of content-based indexing for MPEG-2 video data. The experimental
results have shown that such solutions are effective and feasible,

The contributions of the author are as follows:

(a) modified the software wrote by the MPEG Software Simulation [MSSG99] to
extract only I-frames as Truevision TGA format from MPEG-2 video clips. This required
one additional if statement in file store.c.

(b) developed a combination of k-d tree and hash table data structures to satisfy
the colour histogram range queries.

(c) developed a combination of k-d tree and AV data structures to satisfy the
colour space range queries.

(d) wrote a program (Kdtree_RGB.cc, 3137 lines of C++ code including 214 lines
of comments) to implement a 4-d tree spatial data structure to store, index, and perform
range searches on the colour histograms of MPEG-2 video I-frames.

(e) wrote a program {Kdtree_Cspace.ce, 1893 lines of C++ code including 153

lines of comments) to implement a 3-d tree spatial data structure to store, index, and

70

perform range searches on the R,G, B intensity values of MPEG-2 video I-frames.
(f) tested all implementations in the UNIX (Sun Solaris) environment using the

GNU g++ complier.

4.2 Future Work

For content-independent video indexing, we created 30 descriptive files which
used text descriptions to describe 30 MPEG-2 video clips (see Appendix A). Further
work remains to define an adequate data structure for fast searching of heterogeneous
content-independent video keys.

The time required to search the 4-d tree using a histogram-based query is
somewhat slow. Why is this? Can the search time be reduced? What are the bottlenecks?
Similar future work remains for the coiour space tree.

This research has given rise to the following open questions:

» What other types of content-based queries are appropriate for searching large

scale video archives?

» What keys are important to be used for non-content based searching of video

databases?

+ What kind of adequate data structure can be used for fast searching of

heterogeneous content-independent video keys?

+ How can we combine content and non-content based range search for quick

searching of video databases?

71

REFERENCES

[Adal96] Adali, S., Candan, K. S., Chen, S., Erol, K. and Subrahmanian, V. S. “ The
Advanced Video Information System: Data Structures and Query Processing”,
Multimedia Systems, Vol. 4, No.4, 1996, pp. 172-186.

[Adje97] Adjeroh, D. A. and Nwosu, K. C. “Multimedia Database Management Systems
- Requirements and Issues”, IEEE MultiMedia, Vol. 4, No. 3, July - September 1997, pp
24-33.

[Ardi96a] Ardizzone, E., Casia, M. La, Gest, V. Di and Valenti, C. “Content-Based
Indexing of Image and Video Databases by Global and Shape Features”, Proc. of 13"
International Conference on Pattern Recognition, Vienna, Austria, 1996, pp. 140-144,

[Ardi96b] Ardizzone, E., Casia, M. La, and Molinelli, D. “Motion and Colour-Based
Video Indexing and Retrieval”, Proc. of 13" International Conference on Pattern
Recognition, Vienna, Austria, 1996, pp. 135-139.

[CCIR86] “Encoding Parameters of Digital Television for Studios™, CCIR
Recommendation 601-1 XVIth Plenary Assembly Dubrovnik , Vol. XI, Part 1, 1986, pp.
319-328.

[Davi93] Davis, M. “Media Stream: An Iconic Visual Language for Video Annotation”,
Telektronikk, Vol. 89, No. 4, 1993, pp. 59-71.

[Demon99] http://www.gedanken.demon.co.uk or ftp.demon.co.uk:/pub/unix/tools/.

[Dim95] Dimitrova, N. and Golshani, F. “Motion Recovery for Video Content
Classtfication”, ACM Transactions on Information Systems, Vol. 13, No. 4, October
1995, pp. 408-439.

{F11¢95] Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B.,
Gorkani, M., Hafner,], Lee, D., Petkovic, D., Steele, D. and Yanker, P. “Query by
Image and Video Content: the QBIC System”, IEEE Computer, 28(9):23-32, September
1995.

[Fole95] Foley, J. D., Van Dam, A., Feiner, S. K. and Hughes, J. F., Computer Graphics
Principles and Practice, Addison-Wesley Publishing Company, Inc. 1995,

{Furh95] Furht, B., Smoliar, S. W., and Zhang, H. Video and image processing in
multimedia systems, Hingham, MA, Kluwer Academic Publishers, 1995.

72

[Gon92] Gonzalez, R. C. and Woods, R. E. Digital Image Processing, Addison-Wesley
Publishing Company, New York, 1999,

[Grin%8] Gringeri, S., Khasnabish, B., Lewis, A., Shuaib,K., Egorov, R., and Basch, B.
“Transmission of MPEG-2 Video Streams over ATM”, IEEE MultiMedia, Vol. 5, No. 1,
January/March 1998, pp. 58-71.

[Hask97] Haskell, B. G., Puri, A., and Netravili, A. N. Digital Video: An Intruduction to
MPEG-2, Chapman & Hall, New York, 1997.

[ISO93] “Coding of Moving Pictures and Associated Audio for Digital Storage Media at
Up To About 1.5 Mbit/s”, Intemnational Standard ISO/IEC 11172, International
Organization for Standardization, Geneva, Switzerland, 1993.

[ISO%4] “Generic Coding of Moving Pictures and Associated Audio (MPEG-2)”,
International Standard ISO/IEC 13818, International Organization for Standardization,
Geneva, Switzerland, 1994.

[Mitc97] Mitchell, Joan L., Pennebaker, William B., Fogg, CharE., and LeGall, Didier
J. MPEG-2 Video Compression Standard, Chapman & Hall, New York, 1997.

[Mitk98] Mitkas, P. A., Betzos, G. A., and Irakliotis, L. J. * Optical Processing
Paradigms for Electronic Computers”, JEEE Computer, Feb. 1998, pp. 45-51.

[MSSG99] MPEG Software Simulation group (MSSG)
home page http://www.mpeg.org/MSSG/.

[Pent94] Pentland, A., Picard, R. W., and Sclaroff, S. “Photobook: Tools for Content-
Based Manipulation of Image databases”, Proc. IS and T/SPIE Conf. on Storage and
Retrieval of Image and Video Databases 11, San Jose, California, 1994, pp. 34-47.

[Prit77] Pritchard, D, H, “U. S. Colour Television Fundamental-A Review”, I[EEE
Transactions on Consumer Electronic, CE-23(4), November 1977, pp. 467- 478.

[Rao90] Rao, K. R. and Yip, P. Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, New York, 1990.

[Rowe94] Rowe, L. A., Boreczky, J. S. and Eads, C. A. “Indexes for User Access to
Large Video Databases”, Proc. IS and T/SPIE Conf. on Storage and Retrieval for Image
and Video Databases II, San Jose, California, 1994, pp. 150-161.

[Same90a] Samet, H. The Design and Analysis of Spatial Data Structures, Addison-
Wesley, Reading, MA, 1990.

73

[Same90b] Samet, H. Applications of Spatial Data Structures, Addison-Wesley,
Reading, MA, 1990,

[Soml94] Smoliar, S. W. and Zhang, H. “Content-Based Video Indexing and Retrieval”,
IEEE Multimedia, Vol. 1, No 2, 1994, pp. 62-72.

[Vau96] Vaughan, T. Multimedia: Making It Work, Osborme McGreew-Hill, 1996.

[Weeks96] Weeks, Jr., Arthur R. Fundamentals of Electronic Image Processing, SPIE-
The International Society for Optical Engineering, Bellingham, Washington USA, 1996.

[Zhan95a] Zhang, H., Tan, S. Y., Smoliar, S. W. and Yihong, G. “Automatic Parsing and
Indexing of News Video”, Multimedia Systems, Vol. 2, No. 5, 1995. pp. 256-266.

[Zhan95b] Zhang, H. I., Low, C.Y., Smoliar, S.W. and Wu, J. H. “Video parsing,

Retrieval and Browsing: An Integrated and Content-Based Solution”, In Proc. of the
ACM Multimedia Conference, San Francisco, California, 1995, pp. 15-24.

74

Appendix A

30 MPEG-2 Video Clip Text Descriptive Files

75

File Name: 512av.txt

source http://www.bernclare.com/sample.htmfsamplelist
date 1998 08 31

duration 00 11

keywords movie

path /home/grads/g0lhy/mpeg/512av.mpg

File Name: akl.txt

source http://www.deepsouth.co.nz/~eggplant /MPEG. htm
date 1998 09 02

duration 00 05

keywords scene

path /home/grads/g0lhy/mpeg/akl.mpg

File Name: b2future.txt

source http://www.bernclare.com/sample. htm#fun
date 1898 08 27

duration 00 17

keywords movie

path /home/grads/g0lhy/mpeg/b2future.mpg

File Name: bird.txt _

source http://www. imagemind.com/library_download.htm#mpeg
date 1938 09 01

duration 00 13

keywords movie .

path /home/grads/g0lhy/mpeg/bird.mpg

File Name: c-saw.txt

source http://www.imagemind.com/library_download.htm#mpeg
date 1998 07 01

duration 00 05

keywords movie

path /home/grads/g0lhy/mpeg/c-saw.mpg

File Name: camera.txt

source http://www.imagemind.com/library_download.htm#mpeg
date 1998 09 01

duration 00 07

keywords movie

path /home/grads/g0lhy/mpeg/camera.mpg

File Name: creature.txt

source http://www.imagemind.com/library_download.htmi#mpeg
date 1998 09 04

duratien 00 32

keywords movie

path /home/grads/g0lhy/mpeg/creature.mpg

76

File Nama: crigsy.txt

source http://www,.netkitchen.com/windsurf/crissy.htm
date 1989 08 09

duration 00 04

kevwords sailing

path /home/grads/g0lhy/mpeg/crissy.mpg

File Name: c¢rissy2.txt

source http://www.netkitchen.com/windsurf/crissy.htm
date 1989 08 09

duration 00 04

keywords sailing

path /home/grads/g0lhy/mpeg/crissy2.mpg

File Name: destruct.txt

source http://www.imagemind.com/library_ download. htm#mpeg
date 1998 D9 10

duration 00 06

keywords movie

path /home /grads/g0lhy/mpeg/destruct . mpyg

File Name: drilll.txt _

source http://www.occuphealth. fi/eng/dept/u/spteam/tools/
date 1998 09 02

duration 00 04

keywords advertisement .

path /home /grads/g0lhy/mpeg/drilll . .mpyg

File Name: drill2.txt

source http: //www.occuphealth, fi/eng/dept/u/spteam/tools/
date 1998 09 02

duration 00 04

keywords advertisement

path /home/grads/g0ihy/mpeg/drill2.mpg

File Name: fantasia.txt

source http://www.bernclare.com/sample.htm#fun
date 1998 08 31

duration 01 04

keywords film

path /home/grads/g0lhy/mpeg/fantasia.mpg

File Name: gump.txt

source http://www.bernclare.com/sample. htm#samplelist
date 1998 09 01

duration 00 19

keywords movie

path /home/grads/g0lhy/mpeg/gump . mpg

77

File Name: hammer.txt

source http: //www.occuphealth.fi/eng/dept/u/spteam/tools/
date 1998 09 02

duration 00 05

keywords advertisement

path /home/grads/g0lhy/mpeg/hammer . mpg

File Name: hell.txt

gsource http://www.imagemind.com/library_download.htm#mpeg
date 19%8 09 01

duration 00 09

keywords movie

path /home/grads/g0lhy/mpeg/hell . mpg

File Name: hookip.tixt

source http: //www.netkitchen.com/windsurf/hokipa.htm
date 1985 08 09

duration 00 07

keywords sailing

path /home/grads/g0lhy/mpeg/hookip.mpg

File Name: hookip2.txt

source http://www.netkitchen. com/w1ndsurf/hoklpa htm
date 1995 08 09

duration 00 03

keywords sailing

path /home/grads/gOlhy/mpeg/hooklp2 mpg

File Name: hur.txt

source http://www.deepsouth.co.nz/~eggplant/MPEG.htm
date 1998 09 02

duration 00 05

keywords scene

path /home /grads/g0lhy/mpeg/hur . mpg

File Name: igdndual.txt

source http://www.bernclare.com/sample.htm#samplelist
date 19298 08 31

duration 00 09

keywords movie

path /home/grads/g0lhy/mpeg/isdndual .mpeg

File Name: jel_fish.txt

source http://www.imagemind. com/library_ download. htm#mpeg
date 1998 09 01

duration 00 14

keywords movie

path /home/grads/g0lhy/mpeg/jel_fish.mpg

78

File Name: jet.txt

source http://www.imagemind.com/library_download.htm#mpeg
date 1998 09 04

duration 00 36

keywords movie

path /home/grads/g0lhy/mpeg/jet .mpg

File Name: mvcdsmpl.txt

source http://www.bernclare.com/sample.htm#fun
date 1998 08 01

duration 00 05

keywords movie

path /home /grads/g0lhy/mpeg/mvcdsmpl . mpg

File Name: napier.txt

source http://www.deepsouth.co.nz/~eggplant /MPEG. htm
date 1988 09 02

duration 00 05

keywords scene

path /home/grads/g0lhy/mpeg/napier.mpg

File Name: port.txt .

source http://www.deepsouth.co.nz/~eggplant /MPEG. htm
date 1598 09 02

duration 00 05

keywords scene :

path /home/grads/g0lhy/mpeg/port . mpg

File Name: producer.txt

source http://www.bernclare.com/sample.htmi#showsite
date 1998 08 01

duration 00 08

keywords movie

path /home/grads/gllhy/mpeg/producer .mpg

File Name: ski.txt

source http://www.deepsouth.co.nz/~eggplant /MPEG. htm
date 1998 09 06

duration 00 05

keywords scene

path /home/grads/g0lhy/mpeg/ski.mpg

File Name: skybird.txt

source http://www.imagemind.com/library_downlocad.htm#mpeg
date 1998 10 01

duration 00 09

keywords movie

path /home/grads/g0lhy/mpeg/skybird.mpg

79

File Name: wfl74.txt

source http://www.mpegcam.net /MPEG/ThatGuy.html
date 1998 08 31

duration 00 06

keywords scene

path /home/grads/g0lhy/mpeg/wfl74 . .mpg

File Name: wrench.txt

source http://www.occuphealth. fi/eng/dept/u/spteam/tools/
date 1998 09 02

duration 00 05

keywords advertisement

path /home/grads/g0lhy/mpeg/wrench.mpg

80

VITA
Candidate’s full name: Enhai Xie

Universities Attended : Hebei University, P. R, China, (1978-1982)
B.Sc. (Analytical Chemistry)

Hebei University, P. R. China, (1987-1990)
M.Sc. (Physical Chemistry)

University of Oldenburg, Germany, (1990-1991)
M.Sc. (Physics)

University of New Brunswick, Canada, (1998-2000)
Master of Computer Science
Candidate

Publications:
Conference Presentations:

Enhai Xie and B.G. Nickerson (Supervisor), “Spatial data Structure Indexing for
Multimedia Databases”, Proceeding of the 8™ Atlantic Institute Student Research Annual
Conference, 20th-21st February, 1998, University of New Brunswick, Fredericton, New
Brunswick, Canada, p.12.

Enhai Xie and B.G. Nickerson (Supervisor), “Content-based Searching of MPEG-2
video”, Proceeding of the 9™ Atlantic Institute Student Research Annual Conference, 8th-
9th June, 1999, Université Laval, Québec city,Québec, p.21.

