
A Dynamic Data Structure for Efficient Bounded Line
Range Search

by

Thuy T. T. Le and Bradford G. Nickerson

TR10 - 200, May 19, 2010

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

A Dynamic Data Structure for Efficient
Bounded Line Range Search

Thuy Thi Thu Le and Bradford G. Nickerson

{m6839,bgn}@unb.ca
Faculty of Computer Science, University of New Brunswick

P.O. Box 4400, Fredericton, N.B. Canada E3B 5A3.

Abstract. A dynamic data structure for efficient axis-aligned orthogo-
nal range search on a set of n lines in a bounded plane is presented. The
algorithm requires O(logn + k) time in the worst case to find all lines
intersecting an axis aligned query rectangle R, for k the number of lines
in range. O(n + λ) space is required for the data structure used by the
algorithm, where λ is the number of intersection points among the lines.
Insertion of a new rightmost line ` or deletion of a leftmost line ` requires
O(n) time in the worst case. For a sparse arrangement of lines (i.e., for
λ = O(n)), insertion of a rightmost line ` or deletion of a leftmost line `
requires O(

√
n) expected time.

1 Introduction

Lines in a bounded plane can represent a large variety of natural phenomenon,
including trajectories of moving objects, boundaries within the plane or linear
constraints for optimization problems.

Range search among a set of geometric objects has been studied extensively
for the last two decades (see e.g. [2], [9]). Data structures for searching an ar-
rangement of n lines in the plane are presented in e.g. [5] and [6]. An arrangement
stores the relationships among vertices, edges and convex regions arising from
the O(n2) intersections of the lines. Arrangements arise naturally in point search
as points in primal space become lines in dual space. Arrangements of lines are
used to support a variety of geometric search problems, such as halfspace range
search of points [1].

Line segment search is another important class of geometric search problem.
Reporting the λ intersections among a set of n line segments was solved in
optimal time O(n log n+λ) using O(n+λ) space in [4]. The space was improved
to optimal O(n) in [3]. Reporting horizontal line segments intersecting a vertical
query line segment was solved in O(log n+ k) time and O(n logn

log logn) space [10].
A well known data structure, the persistent search tree [11], can report k line
segments crossing a vertical segment in O(log n+ k) time using O(n+ λ) space
to store n line segments. However, this data structure does not support insertion
and deletion. We build a dynamic data structure to answer queries in O(log n+k)
time using O(n+ λ) space.

2

We explore the problem of the 2-d axis aligned orthogonal range search of
lines in a bounded plane using the pointer machine model. In a 2-d space with
axes x and y, we are given a set of n lines in a plane whose bounds are [0, xmax]
and [0, ymax], respectively. We propose a new algorithm using a data structure
called the ordered polyline tree to efficiently index a set of n bounded lines.
Given an axis aligned query rectangle R, our algorithm can report all lines
intersecting R in O(log n + k) time in the worst case using O(n + λ) space,
where λ is the number of intersections among the lines. To our knowledge, this
is the first dynamic data structure to match the persistent range search tree in
space and range search time complexity. The algorithm we present is practical to
implement. This paper improves on a previous result [7] requiring O((log n)2 +
β) time in the worst case, for β the number of segments (resulting from the
arrangement of lines) intersecting R.

2 Our Approach

Given a set of lines having slopes m ∈ (0,∞]. Searching for lines intersecting a
query rectangle R with four vertices A, B, C, and D (in a clockwise direction,
see Fig. 1) is to find lines intersecting the left vertical line segment AD and the
bottom horizontal line segment DC. We divide a set L of lines on the plane into

A B

CD

Fig. 1: Query rectangle R with four vertices A, B, C, and D. Lines with slopes
∈ (0,∞] intersect the rectangle R if and only if they intersect line segments AD
or DC of the rectangle.

two subsets L1 and L2. L1 contains lines oriented with slope m ∈ (0,∞] and L2

has lines with slope m ∈ (−∞, 0]. In the following discussion of the paper, we
focus only on L1, the subset of lines with slope m ∈ (0,∞]. A similar algorithm
and analysis applies to L2. Ordered polyline trees for both L1 and L2 provide
the basis for the complete search algorithm.

We use the notion x-level(i) to refer to the set of lines intersecting the line x =
i ordered top-to-bottom. Similarly, y-level(i) refers to a set of lines intersecting
the line y = i ordered left-to-right. Fig. 2 shows an example of two x-levels: x-
level(15.0) and x-level(19.2), and two y-levels: y-level(3.6) and y-level(6.3). The
order of lines changes where lines intersect. For the set of eight lines and query

3

o1

e2

o2o3 o4

v1

o6 o7 o8

0 10 15 20 x

y
ymax

5

o5

A B

CD

x-level(15.0) x-level(19.2)

y-level(6.3)

y-level(3.6)

xmax

e1 e5 e4 e6 e7 e8 e3

b1b2b3 b4 b6b5 b7 b8

v2
v3

v4

v5

v6

v7

Fig. 2: Eight bounded lines having slopes m ∈ (0,−∞]. Query rectangle ABCD
has points A=(17, 7.7) and C=(20,6). Dashed lines show x-levels and y-levels
near AD and DC. Bounded line oi has two endpoints bi and ei. v1, .., v7 are
vertices at intersections. Lines o3 and o8 are in range.

rectangle ABCD in Fig. 2, we only need to search for lines intersecting AD on
x-level(15) and DC on y-level(3.6). We build a data structure for efficient search
based on this idea. An ordered polyline pi is created by connecting line segments
at intersections (with each other and with the x = 0, x = xmax, y = 0, and
y = ymax boundaries). For example, the first three ordered polylines in Fig. 2
are p1 = {b1, v3, e2}, p2 = {b2, v3, e1}, and p3 = {b3, v1, v6, e5}, ordered from
left to right. Ordered polylines intersect each other only at intersection vertices.
Points in an ordered polyline are monotonically increasing in both x and y. We
connect points in an ordered polyline together into a list of entries, and arrange
ordered polylines in a balanced search tree.

Each ordered polyline pi divides the bounded plane into two disjoint parts.
Points to the left of pi are guaranteed to be in the left subtree of the node
containing pi. Similarly, points to the right of pi are in the right subtree of the
node containing pi.

In the worst case, every line intersects all other lines (see Fig. 3). For n

0

ymax

y

xxmaxo1 o2 o3 o4 o5 o6 o7 o8

Fig. 3: Example of 8 lines o1, ..., o8 in the worst case, when each line intersects
7 others.

4

lines, this worst case results in at most n(n−1)
2 , or O(n2) intersections, with each

ordered polyline requiring at most 2(n − 1) line segments, or each node of the
tree storing at most 2(n − 1) entries. The number of nodes of the tree and the
number of ordered polylines is still precisely n.

3 Ordered Polyline Tree

Ordered polylines are arranged as a balanced binary search tree, called an ordered
polyline tree, based on each pi dividing space (x×y) into two parts. Each ordered
polyline contains a list of entries. Each entry contains a point (x, y), a line ID,
three (left, right, next) pointers on x, and one next pointer on y. We use the
term x-entry (y-entry) to refer to the x value (y-value) at an entry. Fig. 4 shows
the ordered polyline tree (for one entry on each node in x-entries) based on the
ordered polyline tree in Fig. 2. A full ordered polyline tree has pointers on both

e1

o1o2

v3b2

e2

o2o1

v3b1

p5

p2

p7

p6

p8

p3p1

p4

e3

o3o8

v7b8

e5

o5

v6

o4o3

v1b3 e6

o6

v4

o3o5

v2b5

e4

o4

v6

o5

v2

o3o4

v1b4

e7

o7

v5

o3o6

v4b6

e8

o8

v7

o3o7

v5b7

Fig. 4: Ordered polyline tree indexing the 8 lines from Fig. 2. A two-row rectangle
represents an ordered polyline, where each column represents an entry containing
a point and a line id oi. A dashed line represents the next pointer of an entry to
its adjacent entry on x-level.

x-entries and y-entries. For simplicity, Fig. 4 only shows pointers to the next
x-entry.

For a polyline pi with x-entry xj , the (left, right, next) pointers point to the
largest x-entry ≤ xj in pi’s (left, right, next) nodes, respectively. If no x-entries in
pi’s (left, right, next) nodes are ≤ xj , the (left, right, next) pointers point to the
smallest x-entry > xj . In this way, we record all line segments in the arrangement
of bounded lines such that a traversal of the tree from root to leaf serves to find
the polyline immediately to the left of a query point A. Following next pointers
of x-entries finds segments of ordered polylines in downward order for a vertical
query segment AD. Following next pointers of y-entries finds segments of ordered
polylines in left-to-right order for a horizontal query segment DC.

5

3.1 Space Complexity

Theorem 1 The ordered polyline tree use O(n + λ) space to index a set of n
lines with λ intersections among the lines.

Proof. Without loss of generality, we assume that all n lines are oriented with
slope m ∈ (0,∞]. Assume each value stored in an entry of a node has size 1
(e.g., 1 for a coordinate x or y, a line ID, or a pointer). An entry of the ordered
polyline tree is of size 7. There are 2n + 2λ entries among n nodes of the tree.
The size of the tree is 7(2n+ 2λ)=14(n+ λ) = O(n+ λ).�

Theorem 2 For a set L of n lines in a bounded plane, the required space to
index them using ordered polyline trees is O(n+ λ), where λ is the total number
of intersection points among the lines.

Proof. Since an ordered polyline tree is used to index lines having the same
slope domain (i.e., slope m ∈ (0,∞], or m ∈ (−∞, 0]), we need two ordered
polyline trees to index all n lines of any slope. Assume that the set L of n lines
in the bounded plane is divided into two subsets L1 and L2. L1 contains n1 lines
oriented with slope m ∈ (0,∞] and L2 has n2 lines with slope m ∈ (−∞, 0].
Let λ1 and λ2 be the number of intersection points among lines in L1 and L2,
respectively. We need two ordered polyline trees, one for indexing L1 and the
other for indexing L2. From Theorem 1, the required space for L1 is O(n1 +λ1),
and the required space for L2 is O(n2 + λ2). The overall space of the both trees
is O(n1 + n2 + λ1 + λ2) = O(n+ λ), since λ ≥ λ1+λ2. �

4 Search Complexity

Given a query rectangle R with four vertices A, B, C, and D = (t, r) in a
clockwise direction. The search proceeds by finding the nearest polyline to the
upper left ofA, following x-entries to find lines intersectingAD (with x = t), then
following y-entries to find lines intersecting DC (with y = r). The improvement
is that (x, y)-entries point to the next adjacent segment in the next adjacent
polyline. This reduces search time at each node from O(log2w) to O(1), where
w is the number of entries stored in a node. The following shows the main steps
of the search algorithm:

(1) Searching starts from the root node, choosing the largest entry ei = (xi, yi, idi)
whose xi ≤ t. If t < smallest xi, choose the smallest entry.

(2) Follow the entry’s left or right pointer to the next entry by comparing line
idi to point A. If A is left of the line, follow the left pointer; otherwise follow
the right pointer.

(3) We arrive at entry ei = (xi, yi, idi) for node pi. Choose the largest entry
ej = (xj , yj , idj) following ei whose xj ≤ t. If t < smallest xj , choose the
smallest entry.

(4) Repeat (2) and (3) until reaching a leaf node.

6

(5) At node entry ej = (xj , yj , idj), if A is left of line idj , check to see if line idj
intersects AD; if so, report line idj .

(6) Use the next pointer at this x-entry to find the next adjacent polyline entry
xi. If xi > t, xi ← xi−1. If xi ≤ t, xi ← xi+1.

(7) If line idi intersects AD, report line idi, and repeat step (6).
(8) We arrive at an entry ei = (xi, yi, idi) in polyline pi with a line idi below D.

Find the entry ei in pi with the largest y-entry value ≤ r. Report idi if it
intersects DC.

(9) Use the next pointer at this y-entry to find the next adjacent polyline entry
yi. If yi > r, yi ← yi−1. If yi ≤ r, yi ← yi+1.

(10) If line idi intersects DC, report line idi, and repeat step (9).
(11) We arrive at an entry ei = (xi, yi, idi) with a line idi right of C, so no possible

lines remain that can intersect R.

Theorem 3 Using an ordered polyline tree indexing n bounded lines in the
plane, an algorithm exists to report the k lines intersecting an axis aligned query
rectangle R in worst case time O(log2(n) + k), where k is the number of lines in
range.

Proof. Without loss of generality, we assume that all n lines are oriented with
slope m ∈ (0,∞]. Assume w is the number of entries at the root node. Consid-
ering the 11 steps of the search algorithm above, we see that step (1) requires
O(log2 w) time. Steps (2), (3) and (4) take a combined O(log n) time to reach a
leaf node. At step (3), when finding the largest entry ej = (xj , yj , idj) following
ei whose xj ≤ t, we perform a binary search on the x-entries at node pi. The
worst case for step (3) arises when the root polyline pi separates 2 sets of n/2
lines. Assuming A is on the right side of pi, and that pi is composed of two
entries, this worst case requires up to O(log2 n) time to find ej . This can occur
only once on the path to a leaf when the arrangement of lines to the right of pi
induces O(n/2) segments in the right polyline of pi. The remaining steps to a
leaf require O(1) time. Steps (5) through (10) require O(1) time, and report the
k lines intersecting R. The total required time for searching is log2w + O(log2 n)
+ k= O(log2n+ k) since w ≤ n. �

5 Dynamic Update

We consider a limited form of dynamic updates. Line insertions are done on
the right hand side and line deletions on the left hand side of the plane. This
dynamic data structure would be useful, for example, when representing a set of
moving objects on a graph’s edge. For x representing time, and y representing
positions along an edge, the (time × position) space admits new moving objects
on the right (for the L1 subset). Similarly, we delete the oldest moving objects
from the left side of the (time × position) space.

7

5.1 Dynamic Data Structure

An ordered polyline tree with n nodes is a balanced binary tree where the depth
of all leaves differs by at most one, and the depth of the tree is log2 n. As insertion
of a new line happens at the rightmost node, the left child tree of an internal
node is always a complete tree.

When all leaves of the left subtree TL at the root node of an ordered polyline
tree T are one level shallower than all leaves of the right subtree TR of T (Figure
5a), the number of nodes of TR with its depth log2 n− 1 is (20 + ..+ 2log2 n−2),

log2n - 1log2n - 2

T
TL TR

(a)

log2n - 2

T
TL TR

(b)

Fig. 5: (a) Nodes distributed in an ordered polyline tree Ti. (a) All leaves of TL
are 1 level shallower than those of TR. (b) All leaves of TL are 1 level deeper
than those of TR (except the rightmost leaf).

and the number of nodes of TL with its depth log2 n− 2 is (20 + ..+ 2log2 n−3).
There are (20 + ..+ 2log2 n−2)− (20 + ..+ 2log2 n−3) = 2log2 n−1= n

4 more nodes
in TR than in TL. Therefore, the left tree TL contains b 3n8 c nodes, and the right
tree TR contains b 5n8 c. Similarly, when all leaves of TL is 1 level deeper than
those of TR (except the rightmost leaf) (Figure 5b), TL contains b 5n8 c nodes and
TR contains b 3n8 c. We obtain the following Lemma:

Lemma 1. For an ordered polyline T containing n nodes constructed using the
insertion at right-hand-side algorithm, the number of nodes in the left subtree TL
or the right subtree TR of T is between b 3n8 c and b 5n8 c, and |TL|+ |TR|+ 1 = n.
The height of T is blog2 nc.

Inserting a rightmost node to, or deleting a leftmost node from an ordered
polyline tree can make the tree unbalanced. The O(log2 n) nodes in the path
from the involved leaf to the tree root have their height information updated.
A rebalancing of the tree happens when the inserted rightmost node makes T
unbalanced (e.g., an internal node P belonging to the rightmost path from the
inserted rightmost node to the root of T has its right subtree’s levels two levels
deeper than its left subtree (see Figure 6)). We need a left rotation at P to
make the tree balanced. Similarly, deleting a leftmost node from T can make T
unbalanced (e.g., an internal node P belonging to the leftmost path from the

8

(a)

P

A

B

Q

C

(b)

Q

A B

P C

D

D

Left Rotation

Fig. 6: (a) An example of an unbalanced tree at node P . (b) After rebalancing,
P changes its right pointer, and Q changes its left pointer. Other nodes remain
the same.

deleted node to the root of T has its right subtree’s levels two levels deeper than
its left subtree). A left rotation at P makes tree T rebalanced (see Figure 6).

Lemma 2. Rebalancing an ordered polyline tree T after inserting a rightmost
node or deleting a leftmost node involves at most three nodes of the tree.

Proof. The tree is always unbalanced at a node P on the rightmost path or the
leftmost path of the tree. If the tree is unbalanced at node P , a left rotation at
P is applied to make the tree balanced (Figure 6). Let Q be the right child of
P . As the result of rebalancing, the two involved nodes are P and Q. P changes
its entries’ right pointers, and Q changes its entries’ left pointers. If P is not
a root node, let U be P ’s parent node. After rebalancing the tree, U changes
its entries’ right (left) pointers if P is the right (left) child of U . All pointers of
other nodes remain the same. �

Lemma 3. At most four nodes have their entries’ pointers changed as a result of
inserting a rightmost line to, or deleting a leftmost line from the ordered polyline
tree T .

Proof. Let nodeR and nodeL be the existing rightmost and leftmost ordered
polylines of T , respectively. Inserting a rightmost ordered polyline to T results
in all nodeR entries’ right pointers point to entries of the inserted node. Deleting
nodeL from T results in all entries of nodeL’s parent node changing their left
pointers to null or to the next ordered polyline adjacent to nodeL. Together with
Lemma 3, there are at most four nodes having their entries’s pointers changing
after an insertion or a deletion. �

5.2 Insertion

If a new line ` is inserted on the right-hand-side, and there are µ intersection
points between ` and ordered polylines pn−(µ−1), .., pn−1, pn (see Figure 7), the
required time to insert ` into the ordered polyline tree T is O(log n+µ). There is
one intersection between ` and each of the µ ordered polylines. Assume u1, .., uµ
is the top-down y-sorted list of µ intersection points of ` and lines `1, .., `µ among

9

o1

e2

o2o3 o4

v1

o6 o7 o8

0 x

y
ymax

o5

xmax

e1 e5 e4 e6 e7 e8 e3

b1b2b3 b4 b6b5 b7 b8

v2
v3

v4

v5

v6
v7

u3

u1

u2

a

l

l2

l3

l1

b

Fig. 7: Example of inserting the rightmost bounded line ` having endpoints a
and b into the ordered polyline tree containing a set of eight lines (Figure 2).
u1, u2, and u3 are three intersection points between ` and lines o6, o3, and o8,
respectively.

µ ordered polylines. In this case, `µ belongs to the rightmost ordered polyline
pn in T .

Finding µ intersections requires O(log n + µ) time by first finding the or-
dered polyline pn−(µ−1)intersecting `, then finding the intersecting line `1 and
computing the intersection point u1. We use the next pointer at the current
entry containing `1 to compute u2, where u2 is the intersection between ` and
`2. This process is repeated until we reach `µ on pn and obtain uµ.

Updating µ ordered polylines requires O(µ) time. An ordered polyline con-
taining points e1, ..., ew is separated into two parts at the intersection point ui of
` and `i (1 ≤ i ≤ µ). The first part contains entries e1, .., ei, ui, and the second
part is (ui, ei, .., ew). An updated ordered polyline is obtained by concatenat-
ing its first part to the y = ymax end point of ` or to the second part of the
previous ordered polyline. The first updated ordered polyline will concatenate
the y = ymax end point of `. A new ordered polyline node pn+1 is created by
concatenating the y = 0 end point of ` and the second part of pn. Inserting an
entry to each ordered polyline requires O(1) time to find ui and concatenation.
It takes O(1) time to travel from one inserted entry of an ordered polyline to the
next inserted entry of the next ordered polyline. Therefore, the required time
to insert µ entries to µ ordered polylines is O(µ). This leads to the following
lemma:

Lemma 4. The time to find the location of a new line `, and to insert µ inter-
sections from ` into each of µ existing ordered polylines is O(log n+ µ).

Figure 7 shows an example of inserting a rightmost line to eight existing
bounded lines stored in an ordered polyline tree shown in Figure 4. Line `
intersects three lines o6, o3, and o8 at u1, u2, and u3 respectively. Before be-
ing intersected by `, the three last ordered polylines are p6 = {b6, v4, v5, e7},

10

p7 = {b7, v5, v7, e8}, and p8 = {b8, v7, e3}. Let p1
i and p2

i be the first and second
parts of pi, respectively, after pi is divided by an intersection point u. We have

p1
6 = {b6, v4, v5, u1}, p2

6 = {u1, e7},
p1
7 = {b7, v5, u2}, p2

7 = {u2, v7, e8},
p1
8 = {b8, u3}, and p2

8 = {u3, v7, e3}.
Let p1

9 = {a} and p2
5 = {b}. We obtain the three updated rightmost ordered

polylines as follows:
p6 = p1

6 + p2
5={b6, v4, v5, u1, b},

p7 = p1
7 + p2

6={b7, v5, u2, u1, e7},
p8 = p1

8 + p2
7={b8, u3, u2, v7, e8}.

The added ordered polyline p9 = p1
9 + p2

8 = {a, u3, v7, e3}. There are µ = 3
ordered polylines with new entries to be inserted. When inserting node p9 to the
ordered polyline tree (Figure 4), we reorder p7 and p8 such that the right child of
p6 points to p8. As a result, p8’s left child is p7, and p8’s right child is p9 (Figure
8). Three nodes p7, p8, and p6 (the parent node of p7 before rebalancing) are
involved in the rebalancing.

Algorithm 1 shows the algorithm for inserting a rightmost line ` to the or-
dered polyline tree T . Function entryIndex(pi, `j) finds the index of the entry in
pi containing line `j . Function nextEntryIndex(ek.xnext, `j) locates the index
of the entry in pi+1 containing line `j using the next pointer on x-value of ek in
pi. Function setEntriesPointers(pn) sets pn’s next and right pointers to entries
in the inserted ordered polyline pn+1. Function setPointers(uj) sets the left,
right, and next pointers for entry containing uj . Statements 1.5, 1.6, 1.10, and
1.12 imply the left, right, next pointers are set appropriately.

p4

p2

p1 p3

p6

p5 p7

p8

p9

p4

p2

p1 p3

p6

p5 p8

p9p7

(a) (b)

p6

p4

p3 p5

p7

p8

(a) (b)

p6

p4

p5

p7

p8

Fig. 8: (a) Unbalanced ordered polyline tree after inserting node p9. (b) The tree
after re-balancing.

Constructing a balanced ordered polyline tree by insertion of rightmost lines
always results in a complete binary right sub-tree at any node of the tree. In-
serting node pn+1 to the ordered polyline tree can make the tree unbalanced.
The log2 n nodes in the path from the rightmost leaf to the tree root have their
height information updated, and at most 4 nodes are involved in tree re-balancing
(Lemma 3). Each node contains at most n entries which need to reassign their
left or right pointers. It requires O(n) time to change left and right pointers in
the nodes being re-balanced in this worst case. Assigning four pointers (i.e., left,

11

Algorithm 1: RightmostInsert(T, `, µ, (u1, u2, .., uµ), (`1, `2, .., `µ))

The algorithm for inserting a rightmost line ` to the ordered polyline tree T in-
dexing n lines.

input : Tree node T , rightmost line ` with two endpoints a and b on y = 0 and
y = ymax, respectively, µ intersections (u1, u2, .., uµ) between ` and
lines (`1, `2, .., `µ). In the algorithm, ordered polyline pi = {e1, .., e|pi|}.
Each entry ei contains a point (x, y), line id, three (left, right, next)
pointers on x, and one next pointer on y.

output: Ordered polyline tree T with ` inserted.

begin1.1

if µ > 0 then1.2

i← n− µ+ 1//index of ordered polylines1.3

j ← 1//index of intersected points or lines1.4

p1
n+1 ← {a}1.5

p2
i−1 ← {b}1.6

Use b to travel down T to pi1.7

k ← entryIndex(pi, `j)//the index of entry in pi containing line `j1.8

while i ≤ n do1.9

pi ← {e1, .., ek} ∪ uj ∪ p2
i−11.10

setPointers(uj)//set the left, right, and next pointers for entry uj1.11

p2
i ← uj ∪ {ek, .., e|pi|}1.12

j ← j + 11.13

i← i+ 11.14

//from ek find the index of the entry in pi+1 containing line `j1.15

k ← nextEntryIndex(ek.xnext, `j)1.16

pn+1 ← p1
n+1 ∪ p2

n1.17

else1.18

pn+1 ← {a, b}1.19

setEntriesPointers(pn)//set pn’s next and right pointers1.20

if unBalanced(T) then1.21

Rebalance(T)1.22

return T ;1.23

end1.24

12

right, and next x-pointer, and its next y-pointer) for each new inserted entry
takes O(1) time by using the pointers of the previous entry in the same ordered
polyline node. Therefore, the total required time is O(log n + µ + n), or O(n).
We have the following Theorem:

Theorem 4 The time to insert a new rightmost line ` into an ordered polyline
tree indexing n lines is O(n).

Definition 1. A sparse arrangement of n bounded lines in a plane has λ=O(n).

Theorem 5 The time to insert a rightmost line ` into the ordered polyline tree
of a sparse arrangement of n bounded lines in the plane is O(

√
n).

Proof. The number of entries of an ordered polyline tree is 2(n+ λ). From Def-
inition 1, the number of intersection points λ is O(n). The number of entries in
the tree is 2(n+O(n)), or O(n). The maximum number of lines intersecting each
other to form a sparse line arrangement is O(

√
n), which leads to O(n) inter-

sections among lines. With O(n) intersections among O(
√
n) lines, the number

of points in one ordered polyline is O(
√
n) (see [8]). When the ordered poly-

line tree with n nodes needs to be re-balanced, the height information of log n
nodes is updated, and at most four nodes are involved in re-balancing (Lemma
3). Pointers of all entries of the involved nodes need to be updated. Thus, the
required time is O(log n+

√
n) = O(

√
n). With Lemma 4, the required time to

insert µ intersection points to existing ordered polylines is O(log n + µ). The
total required time is thus O(log n+ µ+

√
n), or O(

√
n).

Corollary 1. The expected time to insert the rightmost line ` into the ordered
polyline tree of a sparse arrangement is O(log n+ µ).

Proof. With the sparse arrangement of n lines, the number of entries of the tree
is 2(n+O(n)), or O(n). The average number of points belonging to one ordered
polyline is O(n)/n, or O(1). When the ordered polyline tree with n nodes needs
to be re-balanced, the required time is O(1), due to the fact that each node has
at most O(1) entries, and at most four nodes are involved in the update (Lemma
3). With Lemma 4, the required time to insert µ intersection points to existing
ordered polylines is O(log n+ µ). We arrive at the proof.

5.3 Deletion

Deleting a leftmost line `, having µ intersections with µ existing lines, from the
ordered polyline tree requires O(log n+µ) time. We need to delete µ intersection
points from µ ordered polylines. Let u1, .., uµ be µ y-sorted intersection points
between ` and lines `2, .., `µ+1, where `2 is on the leftmost ordered polyline. Note
that if an ordered polyline pi contains `, there exists a line segment (uj , uj+1)
of ` belonging to pi. This line segment needs to be removed from pi. An or-
dered polyline pi containing points e1, .., ej−1, uj , uj+1, ej+2, .., ew is separated
into three parts. The first part e1, .., ej−1 is kept in pi. The middle part uj , uj+1

13

is removed from pi. The third part ej+2, .., ew is concatenated to the first part
of pi+1 to form the updated pi+1. The updated ordered polyline pi contains its
first part concatenated with the third part of pi−1. It takes O(1) time to update
an ordered polyline pi by deleting the middle part uj , uj+1 and concatenating
the first part of pi and the third part of pi+1.

Figure 9 shows an example of deleting the leftmost line ` = o3 from a set of
six lines. Before deleting `, the six ordered polylines are as follows:

v1

0 10 15 20 x

y
ymax

5

xmax

e5 e4 e6 e7 e8 e3

b3 b4 b6b5 b7 b8

v2

v4

v5

v6

v7

l

Fig. 9: Example of deleting the leftmost line ` from an ordered polyline tree for
6 lines from Fig. 2.

p3 = {b3, v1, v6, e5}, p4 = {b4, v1, v2, v6, e4},
p5 = {b5, v2, v4, e6}, p6 = {b6, v4, v5, e7},
p7 = {b7, v5, v7, e8}, and p8 = {b8, v7, e3}.
Let p1

i , p
2
i , and p3

i be the first, second, and third parts of pi, respectively.
Based on the deleted line ` containing points b3, v1, v2, v4, v5, v7, and e3, we have

p1
3 = {}, p2

3 = {b3, v1}, p3
3 = {v6, e5},

p1
4 = {b4}, p2

4 = {v1, v2}, p3
4 = {v6, e4},

p1
5 = {b5}, p2

5 = {v2, v4}, p3
5 = {e6},

p1
6 = {b6}, p2

6 = {v4, v5}, p3
6 = {e7},

p1
7 = {b7}, p2

7 = {v5, v7}, p3
7 = {e8},

p1
8 = {b8}, p2

8 = {v7, e3}, p3
8 = {}.

At each updated ordered polyline pi, we delete its second part p2
i , then con-

catenate its first part p1
i and the third part p3

i−1 of pi−1. The updated ordered
polylines are shown as follows:

p4 = p1
4 + p3

3 = {b4, v6, e5},
p5 = p1

5 + p3
4 = {b5, v6, e4},

p6 = p1
6 + p3

5 = {b6, e6},
p7 = p1

7 + p3
6 = {b7, e7},

p8 = p1
8 + p3

7 = {b8, e8}.
Ordered polyline p3 is removed resulting in p3’s parent having a right child

but no left child. No node is involved in rebalancing the ordered polyline tree in
this case (Figure 10).

14

p4

p2

p1 p3

p6

p5 p7

p8

p9

p4

p2

p1 p3

p6

p5 p8

p9p7

(a) (b)

p6

p4

p3 p5

p7

p8

(a) (b)

p6

p4

p5

p7

p8

Fig. 10: The ordered polyline tree (a) before and (b) after deleting node p3.

We then use the next pointer at the entry containing uj+1 of pi to locate
the entry on pi+1 containing uj+1. This step requires O(1) time. Now we have
a new pi with its middle part uj+1, uj2 , so we repeat the deletion and update
operations until all µ intersections are visited. Updating µ ordered polylines thus
requires O(µ) time.

Deleting node p1 from n existing nodes of the ordered polyline tree can
make the tree unbalanced. Similar to insertion, it requires O(n) time to reorder
all nodes of the tree in the worst case. Therefore, the total required time for
deleting leftmost line ` is O(µ+ n), or O(n). We have the following Theorem:

Theorem 6 The time to delete a leftmost line ` from an ordered polyline tree
indexing n lines is O(n).

Theorem 7 The time to delete a leftmost line ` from an ordered polyline tree
of a sparse arrangement of n bounded lines in the plane is O(

√
n).

Algorithm 2 shows the algorithm for deleting the leftmost line ` from the or-
dered polyline tree T . For the example of Figure 9, µ = 5, and intersections
(u1, u2, u3, u4, u5)=(v1, v2, v4, v5, v7). Functions index entryBefore(pi, uj) and
index entryAfter(pi, uj) find the index of the entry before and after uj in pi,
respectively. Function nextEntryIndex(uj+1.xnext) finds the index of the entry
in pi+1 containing point uj+1, using the next pointer on x-value at uj+1 in pi.
Statement 2.14 implies the left, right, next pointers of related entries are set
appropriately.

6 Conclusion

We present a new dynamic data structure for efficient axis aligned range search
of a set of n lines on a bounded plane. To the best of our knowledge, this is the
first dynamic data structure to solve this problem in O(log n + k) search time
in the worst case to find all lines intersecting an axis aligned query rectangle R,
for k the number of lines in range, and O(n+ λ) space.

Can the approach used here support general insertion or deletion of any
bounded line? An open problem is how to build an I/O-efficient data structure
to achieve logarithmic search time on a set of n bounded lines and linear storage
space. The unpredictable number of intersections among lines makes the optimal
branching factor hard to determine.

15

Algorithm 2: LeftmostDelete(T, `, µ, (u1, u2, .., uµ))

The algorithm for deleting the leftmost line ` from the ordered polyline tree T
indexing n lines.

input : Tree node T , leftmost line ` with two endpoints a and b on y = 0 and
y = ymax, respectively, µ intersections (u1, u2, .., uµ) between ` and
lines (`2, `3, .., `µ+1). In the algorithm, ordered polyline
pi = {e1, .., e|pi|}. Each entry ei contains a point (x, y), line id, three
(left, right, next) pointers on x, and one next pointer on y.

output: Ordered polyline tree T with the leftmost line ` deleted.

begin2.1

Travel down leftmost path of T to p12.2

if µ > 0 then2.3

k ← index entryAfter(p1, u1)//index of entry after u1 in p12.4

p3
1 ← {ek, .., e|p1|}2.5

i← 2//index of ordered polylines2.6

j ← 1//index of intersection points2.7

while j ≤ µ do2.8

k ← index entryBefore(pi, uj)//index of entry before uj in pi2.9

p1
i ← {e1, .., ek}2.10

k
′
← index entryAfter(pi, uj+1)//index of entry after uj+1 in pi2.11

p3
i ← {ek′ , .., e|pi|}2.12

Delete(pi, uj , uj+1)//delete two entries containing uj and uj+1 in pi2.13

pi ← p1
i ∪ p3

i−1//the updated pi2.14

i← i+ 12.15

j ← j + 12.16

//from uj+1 on pi find the index of the entry in pi+1 containing point uj+12.17

k ← nextEntryIndex(uj+1.xnext)2.18

Delete(p1)//remove p1 from T2.19

if unBalanced(T) then2.20

Rebalance(T)2.21

return T ;2.22

end2.23

16

7 Acknowledgements

This research is supported, in part, by the Natural Sciences and Engineering
Research Council (NSERC) of Canada, the UNB Faculty of Computer Science,
and the government of Vietnam.

References

1. P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S. Vitter. Effi-
cient searching with linear constraints. Journal of Computer and System Sciences,
61:194–216, 2000.

2. P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In
Advances in Discrete and Computational Geometry, pages 1–56. American Math-
ematical Society, 1999.

3. I. J. Balaban. An optimal algorithm for finding segments intersections. In SCG
’95: Proceedings of the eleventh annual symposium on Computational geometry,
pages 211–219, New York, NY, USA, 1995. ACM.

4. B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line seg-
ments in the plane. J. ACM, 39(1):1–54, 1992.

5. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry Algorithms and Applications. Springer-Verlag, 2000.

6. H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.

7. T. T. T. Le and B. G. Nickerson. Ordered polyline trees for efficient search of
objects moving on a graph. In ICCSA 2010: The 2010 International Conference
on Computational Science and Its Applications, pages 401–413, Fukuoka, Japan,
March 23-26 2010.

8. T. T. T. Le and B. G. Nickerson. A Dynamic Data Structure for Efficient Bounded
Line Range Search. Technical report, TR10-200, Faculty of Computer Science,
UNB, Fredericton, Canada, May, 2010, 12 pages.

9. J. Matoušek. Geometric range searching. ACM Comput. Surv., 26(4):422–461,
1994.

10. C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line seg-
ment intersection reporting in logarithmic time. In SODA ’03: Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 618–627,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

11. N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Commun. ACM, 29(7):669–679, 1986.

