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1 Introduction

This report communicates the technologies, methodologies and considerations necessary to un-

derstand when working on embedded system’s, specifically within the biomedical engineering field.

Biomedical engineering is a multi-disciplinary field which requires an understanding of mechanical

engineering, electrical engineering, biology, math, system design and many others. Within this

field there are numerous opportunities for computer scientists to apply their skillset. One such

area is in the analysis, design and implementation of an embedded system and its features. This

report presents an overview of embedded system projects in extreme situations such as the fields

of biomedical engineering and space exploration. Then a synopsis of the tools and methods used

to design and analyze an embedded system is produced. Finally a summary of the various com-

ponents that make up an embedded system including hardware and communication technologies

is outlined.

This report was written to provide a single document which encapsulates the components and

thought processes required to design within the domain of embedded systems, with a biomedical

engineering slant. The overview of the various fields presents an unbiased look at technologies

allowing individuals new to embedded system projects to learn about concerns and issues they will

have to deal with. This document provides enough information not only to help readers make an

informed choice of technologies, but also practical information on what is available in an embedded

system design suite and how it can be used effectively. Additionally examples of embedded system

projects are highlighted, giving readers practical insight and exposure to real-world projects.

The first section of the report outlines the field of biomedical engineering, presenting an

overview of ongoing and completed embedded system projects emphasizing the University of

New Brunswick’s advanced prosthetic hand project. The next section discusses methodologies

and techniques that allow for adequate analysis, design and testing of an embedded system. This

includes an overview of Altera’s software and design suite, Quartus II. The rest of the report is

focused on properties and components of embedded systems. This includes first an overview of

the main hardware components used in embedded systems, programmable logic devices, appli-

cation specific integrated circuits and microprocessors. The second technology overview sections

focuses on communication. This includes communication techniques, a high-level presentation

of properties that make up communication protocols and an overview of three communication

protocols.
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2 Embedded Systems Projects

Embedded systems have many possible applications, they are used in numerous industries and

allow for solutions to practical problems. Within this section we will look at traditional embedded

system and biomedical engineering projects. Highlighting approaches, techniques and projects

which apply the use of embedded technologies. The traditional areas of embedded systems focus

naturally on automotive and robotic systems, the biomedical projects are often centered around

advanced prosthetics. Through an overview of projects within both sections the hope is a pattern

of useful information on embedded systems will emerge.

2.1 Traditional Projects

With embedded systems being prevalent in a number of areas, the idea of a traditional embedded

system is hard to define. In this section, the focus is on areas which have adopted embedded system

technologies relatively early in their life cycle. The robotics field is an obvious early adopter with

a natural mapping of robotic subsystems to embedded systems, communication protocols would

then be used to allow a system wide sharing of information. Another fields which relies heavily

on embedded systems is the automotive industry. The automotive industry has increased its use

of embedded systems to control vehicle systems. The average vehicle in 2007 had 80 embedded

systems[21], a strong indicator of the maturity of embedded systems in this field.

2.1.1 Robotics

Robotics has come a long way, technological improvements in numerous aspects of computing

has allowed for smaller, more reliable and more useful robots. Initially robots were controlled

by large and expensive computers, requiring a physical connection to link the control unit to the

robot. Today the shrinking size and cost of embedded systems and the advances in communica-

tion, specifically wireless methods has allowed smaller, cheaper mobile robots. Robots operate

and interact with the physical world requiring solutions to hard, real-time problems, requiring

a solution that is robust and takes into account the imperfections it will encounter. The usual

method in which robots are designed is the use of more powerful microprocessors to analyze the

results communicated to it by numerous embedded system devices. The embedded devices repre-

sent subsystems used to handle one aspect of the overall design. The embedded devices usually

consists of sensors and actuators, the sensors represent information coming into the system and

the actuators are the outputs and can be used to interact with the outside environment. The

embedded devices would analyze the signals and pass along important information to the process-

ing units, the processing units then can act on the information, communicating commands to the
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devices. The devices would then process the command and attempt to carry out the commands

through specific actuator actions. Robotic systems require real-time processing, concurrent and

reliable communication and agile solutions. Additional requirements stem from the environment

and conditions that surround the system.

One environment that contains an interesting set of problems is space. The use of ”space arms”

developed by Canada and other countries have a number of additional concerns. Some of the

concerns include:

• Redundancy - Repairing aspects of the devices is extremely expensive or impossible once

deployed. The system must be designed with communication and component redundancies.

This enhances the reliability of the system and allows for multiple component failure.

• Reliability - Internal communication must be reliable and fast, subpar speed or reliability

could irreparably damage the device. Situations that could potentially damage the device

must be handled quickly regardless of other situations occurring.

• Flexibility - The system must be flexible in its execution of objectives and in its ability to

determine the potential for errors. The system must be designed to understand what it can

do, what will be harmful and how it should recover from bad situations.

• Reporting - A strategy for collecting necessary information must be decided upon. Pro-

cedures for use of the information, the amount of information required to collect and the

method for sending information is important. Distances between the command center and

the system are vast, if an error occurs that harms the system, the information required to

troubleshoot the issue is necessary.

• Testing - Space is a low gravity environment with huge fluctuation in temperature and ran-

dom electromagnetic and physical interference. Testing to handle these properties requires

innovative thinking.

While other constraints exist, this list gives a good point in how design decisions should help to

minimize constraint issues.

In the paper “Redundant Design of A CAN BUS Testing and Communication System for Space

Robot Arm” by Yhang et al[28] the researchers started with a typical robotic arm setup which

included a number of controllers and command systems communicating through a communica-

tion bus to one another. The researchers, who consider the communication system the most

important aspect of space arm design set out to improve it. Their system utilized the Controller

Area Network (CAN) communication bus and enhanced reliability through the implementation

of a redundant strategy. The researchers cited features of the CAN-bus which were desirable
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including, error detection mechanisms, error handling by priority, adaptability and a high cost-

performance ratio. In order to further reliability they implemented a “Hot Double Redundancy”

technology. This technology was implemented as the communication system which consisted of

an ARM microprocessor, the CAN-bus controller circuit, data storage, system memory and a

complex programmable logic device (CPLD) used to implement the redundant strategy. The

CPLD interfaced with two redundant CAN controller circuits each connected to its own set of

system devices, while taking commands from the main microprocessor. The logic to handle the

“Hot” aspect of the technology, the ability to switch from one system to the other without any

down time, was implemented in the hardware definition language VHDL and put onto the CPLD.

This increases the redundancy, but also significantly improves the reliability by handling major

system faults without down time and increases the flexibility of the design by having hardware

components which can be updated and changed without physical contact. The process was tested

through the Quartus II software tool, which simulated normal and extreme activity for a period

of sixteen to thirty-two hours all the while alternating between the two redundant systems. The

researchers reported the tests to be successful, with a 100% transmission rate and no error frames

or losses due to the redundancy switch time.

The Canadian space agency has other projects which attempt to improve several of the concerns.

The Canadarm2, the robotic arm attached to the international space station uses an embedded

intel386 device to run seven-joint servo mechanisms on the arm, sending the commands to the

motor-control embedded processors of each. The designers made the choice to use the Ada lan-

guage as “Ada inherently encourages developers to spend more time notating their code in writing,

communicating information to future readers of that code”[10]. Ada coupled with the 386 pro-

cessor allowed for better tool support, providing flexibility and an improved reporting format.

The reporting format benefitted from Ada’s ability to communicate bugs and other faults local

to certain areas of the system. Additional bonuses of Ada in this project include portability, code

size, reusability and verifiability[10].

2.2 Biomedical Projects

Biomedical engineering is an industry which requires a multi-disciplinary skillset in which engi-

neering principles are applied to medicine and the life sciences. Major breakthroughs in biomedical

engineering have advanced quality of life for most societies. Technological advances in the biomed-

ical engineering industry include: x-ray technology, electro-cardio graph machines, artery graphs,

pacemakers and various imaging technologies. In recent years interest from the american military

has promoted the advancement of artificial limb technology. In 2005 Defense Advanced Research

Projects Agency (DARPA) launched a prosthetic revolution program. The goal to deliver a fully
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functional upper extremity to an amputee, replacing much of the three-hundred year old tech-

nology that still exists. The arm is to have the same capacity as a native arm, including fully

dexterous fingers, wrist, elbow and shoulder with the ability to lift weight, reach above one’s

head and around one’s back. Furthermore, the technology must include sensors for feedback, a

practical power source, a natural look and a weight equal to that of the average arm. Another,

more difficult goal includes control of the prosthesis through use of the patient’s central nervous

system.

2.2.1 Advanced Prosthetics

The University of New Brunswick’s (UNB) hand project [27] seeks to extend the crude, one degree

of freedom, one grip type old hand prosthetics, into a three axis, six basic grip anthropomorphic

hand, with control of the hand using subconscious grasping to determine movement. The use

of the subconscious grasping element requires embedded microprocessors, the use of which puts

strain on existing power technology, increases overall expenses and reduces component interop-

erability. With this in mind the UNB hand project outlines the use of a number of technologies

designed to reduce power usage, lower production costs and increased flexibility minimizing the

impact of the new technologies. The hand projects method to power reduction uses a multiple

technique approach, the creators used smart design principles and innovative use of technology

to reduce overall consumption in numerous areas. The UNB hand team built intelligent Elec-

tromyography (EMG) sensors that could amplify and process signal information, passing only

required information to the main microprocessor. This allowed the different sensors to process

and reduce excess noise, removing the need for a single high-speed processor to handle all pro-

cessing, significantly reducing overall power consumption. Another technique used in the hand

project was connecting the sensors to the central processor through a serial bus. This allows

for a reduction in wiring, reducing overall weight and simplifying component architecture. The

serial bus they had chosen, a modified Controller Area Network bus, also allowed for a reduction

in power consumption, mainly through the transceiver only requiring power when transmitting.

The CAN bus is also noted as having a good compromise between speed and data protection, a

necessity for prosthetics[3]. An additional method in which the UNB hand team used to reduce

energy consumption was in the form of an aggressive power saving technique. This technique

consists of the main processor putting specific sensors into a sleep state when activity is below a

pre-defined threshold and awakens them when that threshold is exceeded. This method allows for

considerable energy savings. An additional concern of lowering production costs was approached

through the parallel design and the use of the serial bus. The parallel design makes it possible to

use a less powerful and therefore less expensive central processor, the serial bus reduces wiring,
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these methods reduce overall costs. The hand project creators have begun creating a communica-

tion standard [24] to improve interchangeability and interconnection between limb components.

If adopted major increases in flexibility would be gained, which would be beneficial to all people

involved in the prosthesis industry.

The paper “A CAN-based distributed Control System for Upper Limb Myoelectric Prosthesis”

by Banzi and Mainardi [3] extends the idea of a distributed control system and Controller Area

Network serial bus to an entire arm prosthesis. In this project, along with the parallel distribution

cited in the UNB hand project, the device had the additional task of handling external communi-

cation through either a Bluetooth or RS232 serial connection. The paper also cites similar reasons

in using the CAN bus to the UNB hand project, adding evidence of successful device integration

in the CAN buses traditional area, automotives and how this could parallel the prosthetic indus-

try. The paper also outlines reasons behind not choosing other communication protocols such

as technologies which seemed to be good choices: I2C and Serial Peripheral Interface (SPI), per-

sonal computing standards such as: Firewire, USB, ethernet and industrial control systems such

as: Profibus, FIP, P-NET, etc. The two initial choices, I2C and SPI, were rejected because they

failed to have adequate data control and data protection systems and were unable to handle faults

acceptably. The SPI system required additional hardware overhead which would allow for device

addressing. The personal computing standards and industry standards were unable to adapt to

the space and weight constraints required by the profile of the prosthesis. The CAN bus offered

everything the researchers required, a good quantity of sensors, flexibility in expansion and inter-

facing, microcontrollers with integrated bus controllers and efficient, robust, deterministic data

transmission with a reduction of cables required and near optimal voltage levels.
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3 Design and Analysis

The area of analysis and design in embedded system projects requires special consideration

beyond normal software design strategies. Embedded systems are generally more intricate as they

often have both a hardware design and a software design component. These two components add

an additional complexity overhead as the relationship between the two is often highly coupled.

Physical constraints and conflicting design criteria require early design considerations, these con-

siderations will shape the design space affecting the overall direction of a project. A change or

missed design requirement could invalidate an entire project.

3.1 Analysis and Design

Designing an embedded system requires a thorough analysis of the objectives and constraints.

Often the constraints and objectives conflict with one another, causing the necessity of a trade-off

between competing requirements. One of the major design challenges is balancing the require-

ments to optimize the system to best fit the overall design goals. The optimization problem is

incredibly complex, with a huge number of design possibilities and many design goals. The paper

“Conflicting Criteria in Embedded System Design” by Eisenring, Thiele and Zitzler [12] has out-

lined a methodology for such a design. The authors suggest the following components can help

manage both the optimization criteria and increased complexity:

• Model design - Modelling system design with tools that provide flexibility and modularity,

allowing the solution to be broken into sub-problems.

• Use of optimization algorithms - Computer aided tools can use optimization algorithms

to solve combinatorially hard multi-objective optimizations and explore possible design av-

enues.

• Object-based representation - Object representation of hardware components allows fast

design exploration and design simplification through abstraction.

Model design is helpful in capturing and managing complexity. Numerous models of computation

exist, these models can be used to define a number of attributes and properties such as: com-

ponents, procedures, processes, functions and states. Additional models can be used to define

interaction, communication protocols and component domain or knowledge. The use of models

allows for specification completeness, verification of design and can promote a straight forward

strategy to quickly form an implementation. Computer aided tools exist which help the process,

specification tools take user-defined models and constraints and formulate a refined specification,
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this is then used by architecture, communication and hardware synthesis tools. The synthesis

tools contain detailed information on their specific areas such as available computing resources,

timing issues, implementation costs, circuitry required. From this the tools then synthesize a de-

tailed model, each model is then fed into the next synthesis tool. The architecture synthesis tool

compiles all the information required on the targeted architecture to allow the communication

tool to start building communication components and software drivers. These components are

then passed into the hardware synthesis tool which determines how to physically represent each

gate and circuit the communication synthesis tool requires. At each level, the tool can use opti-

mization algorithms or manual inputs in an attempt to optimize overall design. Due to the large

and complex search space, evolutionary algorithms are often used to find near-optimal solutions.

The algorithms operates under a time constraint as the solutions are intractable [12], the goal

of the algorithm is to find the best fit, or most optimal solution in a given time frame. After

a number of synthesis runs, the embedded system designer should have a better understanding

of the costs vs. benefits of the proposed system, specifications and hardware components. This

understanding would then allow the designer to revise the overall design, change assumptions and

run more simulations or choose a possible design and begin working on realizing the synthesized

components.

3.2 Intellectual Property Cores

Intellectual property (IP) cores are a fundamental block in hardware design, they are analogous

to libraries in computer software. IP cores are designed to be reusable blocks of logic which

have defined interfaces consisting of inputs and outputs. IP cores can be black boxes, much

like functions of a software library where the internals workings may not be known to the user

providing the designer with a way to encapsulate their logic.

IP cores can be distributed as “soft” cores or “hard” cores. Soft cores are distributed in a

hardware description language providing the user with the most flexibility, allowing the user to

modify the core with ease by editing the high level design and then resynthesizing. Hard cores

are defined with a low level physical description. This will limit the flexibility of the design, but

provides the user with more concrete timing and performance information, forgoing the need to

synthesize the design and thus any timing disparities as a result.

3.3 Tool Suite

Keeping with the idea of using tools that break the solution into subproblems, allow for opti-

mization algorithms and produce object-based representations of the architecture. For the devel-

opment and design with Altera products a number of different tools are provided. These tools
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and mechanisms will be looked at in this section.

3.3.1 Quartus II - Environment

For implementation and design on Altera FPGA technology, Altera provides the development

environment Quartus II (Figure 1). The software supports all Altera products, and offers several

different methods to design hardware.

Various HDLs are supported, such as AHDL, VHDL, Verilog and SystemVerilog. In addition

the Quartus II environment allows the design of modules to be in state machines or block design

diagrams. A project can contain combinations of different design files. This option allows the

developer to choose the best design technology to match the project’s goals.

Figure 1. Quartus II Development Environment from Altera.

Quartus II performs the necessary steps required to create a working hardware design. The first

step is the analysis and synthesis. Based on the design files in the project, the synthesizer begins

minimizing the logic elements and maps the logic operations in the design onto the resources
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of the targeted device architecture. In the next step the Quartus II Fitter performs the place

and route for the identified device resources. The logic functions are assigned to logic cells with

specific locations in the FPGA and the interconnection paths and pin assignments for input and

output are assigned. The Fitter tool uses additional information about timing requirements from

the analysis and synthesis step, when selecting the logic cells for the logic functions.

The Quartus II environment uses one of the two Timing Analysis Tools. The Classic Timing

Analyzer and the TimeQuest Timing Analyzer. The first Classic Timing Analyzer is a proprietary

solution by Altera which checks for specific parameters, like maximum clock frequency or signal

set-up and hold times. The TimeQuest Analyzer supports the Synopsis and Design Contraints

format, which is an industry standard for design constraints and timing assignments. Both of

these tools analyze the design and validate its performance. The tools estimate the signal run

times between the created interconnection paths for the specific target device. This helps the

developer to identify critical paths the synthesized design has created. The results can be used to

define performance constraints and assignments for the Fitter tool, improving the timing behavior

of the system.
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3.3.2 Altera IP Cores

For the design of hardware systems with more complex functionality, Altera provides a library of

modules that can be integrated into the architecture. These design blocks are known as intellectual

property (IP) cores (Figure 2). These cores are useful in that they fully implement a standard

area of a systems functionality. They often come with timing guarantees, technology features and

well defined documentation. A downside is that these cores may require additional licensing fees,

depending on various aspects of the design and its intended use.

Figure 2. MegaWizard PlugIn Manager for IP core selection.
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3.3.3 Quartus II - Waveform Simulator

For simulation and verification of the hardware design, the Quartus II tool has an integrated

simulator (Figure 3). It provides functional simulation, to identify logic design errors and timing

simulation to locate signal runtime problems. The tool uses waveform files as input and generates

waveform files as output. The design of a waveform input file is very time consuming, especially for

timing simulations. For timing simulation the signal set-up and hold times have to be according

to the timing requirements of the hardware design.

Figure 3. Quartus II waveform simulation.
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3.3.4 Model Sim - Simulator

The company Mentor Graphics offers another tool for simulation and debugging of hardware

designs. The ModelSim ALTERA STARTER EDITION (Figure 4) uses the HDL design files and

vendor libraries to create a simulation of the hardware design. In its current version the tool can

only simulate projects containing one kind of HDL. The tool allows to simulate the functional

behaviour of the system. Global signals and input values are defined in a testbench file, that

connect to the inputs and outputs of the system design. The simulator allows the source code to

be executed in a step-wise fashion.

This simulator makes the hardware debugging similar to software debugging, allowing the aver-

age programmer a degree of comfort in identifying logic errors. The downside to the simulator is

that it does not allow performance timing simulation. Without performance timing it is difficult

to identify problems with signal hold and set-up times.

Figure 4. ModelSim ALTERA STARTER EDITION.
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4 Hardware

Embedded systems have become increasingly important in modern technologies. As computing

components decrease in price and the use of electronics continues to invade all aspects of life, the

need to have options that allow flexibility is obvious. Embedded systems are processing systems

embedded into larger devices. These systems are designed with a narrow scope of functions which

operate in a variety of environments. With the loose definition of embedded systems the range

of devices that take that definition includes portable personal electronics, automation systems,

large networked controller systems. When an embedded system is adequately specified engineers

can optimize the various constraints to provide specific benefits such as cost, size and other

properties. With all the elements that make up an embedded system, the three tasks which

together determine the success of a system are hardware design, software design and the union of

the two, hardware/software codesign.

The task of hardware design has its roots in electric circuit design and electronic logic. This

design must consider not only the problem at hand, but also the rules that govern it. The hardware

engineer must take into account the laws of physics and electricity while balancing the tradeoffs

between the various properties of the system. Hardware designs can quickly grow in complexity,

creating the need for the engineer to manage the complexity or risk potential errors. These errors

can have adverse effects, in traditional Application Specific Integrated Circuits (ASICs) design if

errors are not caught before the design has been put on a chip, millions of dollars can be lost, as

there is no way to fix the problem. In programmable logic devices or general computing units,

changes to the underlying software can be made that may fix the problem, however fundamentally

flawed hardware is an expensive and problematic area to fix.

In programmable logic devices and general computing, software design is a very important part

of the system. Software design in embedded systems is often under much tighter constraints then

on desktop computers. Memory is often limited, power consumption a concern, traditional areas

handled by the operating system may not be available, this leads to the need for the programmer

to have a strong grasp of the hardware aspect of the system. Co-design starts becoming an issues

as well, changes in the hardware aspect of a system may lead to an obsolete code base, or worse.

If careful measures are not put in place to fully test a system after hardware changes, flaws in the

co-design could cause serious problems in the system.

4.1 Reconfigurable Computing

Reconfigurable computing is a technology which allows circuits to be defined through the use

of high level definitions then quickly loaded onto a circuit. Reconfigurable hardware promotes

design flexibility allowing system designers the ability to prototype, test and change their designs
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quickly. The advantages of this technology are its reconfigurability and its lower hardware design

costs. The ability to change the hardware after the system has shipped decreases the chance of

obsolescence and allows for continued customization. The design costs are lowered through the

ability to quickly get the system to market. Although modern reconfigurable devices are not as fast

as custom designed circuits technological developments have greatly improved overall performance.

The other issue with FPGAs is the cost per chip is higher then that of the Application Specific

Integrated Circuit, but lower than the microprocessor.

The first reconfigurable chips were called Programmable Logic Devices (PLD) and were intro-

duced in the 1970s. PLDs were the first chips to contain large amounts of configurable logic gates

connected by programmable switches. The first available technologies were Programmable Logic

Array (PLA) and Programmable Array Logic (PAL). A PLA is based on the sum-of-products

(SOM) description of a function. A fixed number of inputs go into a set of buffers and inverters.

From there the inputs are sent into a plane of AND gates and finally into a plane of OR gates

from where the function results are going out. With the programmable switches on the plane

of AND gates and the plane of OR gates, the desired logic function is realized by enabling or

disabling the switches. The PAL can be described as a less configurable PLA. Only one of either

the AND or OR logic plane is programmable while the other is fixed. This reduces the cost of

production but also requires significantly more logic planes, especially where complex functions

are being created.

The next generation of programmable devices after PLA and PAL was the complex pro-

grammable logic device (CPLD). It contains grids of PLDs where the interconnections between

those grids were programmable as well. The PLDs often included additional logic elements such as

flip-flops, multiplexers and tri-state buffers. CPLDs allow the implementation of complex circuits

which utilize between two and one-hundred of the “extended” PLD logic elements.

While the architecture of a Field Programmable Gate Array (FPGA) is similar to a CPLD,

the concept is quite different. An FPGA has I/O-blocks and interconnection wires like a CPLD.

Instead of programmable planes of AND-gates and OR-gates, an FPGA contains logic blocks.

Those logic blocks are freely programmable, that means they can realize any function that fits the

size of the block. For the design of larger functions, the logic blocks on the FPGA are combined

through interconnection wires. The architecture of a logic block can be realized in different ways.

A logic block is usually realized in the form of a look-up table (LUT). A LUT is capable to realize

any small logic function [8].

An advantage of the reconfigurability of FPGAs is hardware/software co-design. The goal

of hardware/software co-design is to find properties within the target problem that allows for

optimal design parameters to be met through a collaboration of hardware features and software
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design. An example of this is in the optimization of a complex functions through the use of

hardware supported load balancing and parallel execution. In most cases good to significant

improvements in performance are possible. One problem that occurs due to the complexity of

hardware/software co-design is that humans are not capable of finding all the possible points of

optimizations. However, with the invention of automated design tools, this problem has been

partially solved. Specialized design tools using heuristic approaches to perform optimizations and

place & route tasks have been successful in improving results beyond human capabilities [25].

Designing a circuit or system in an FPGA is often done through a high level description lan-

guage, this allows a compiler program to perform the monotonous tasks of logic reduction and

gate conversion, reducing the impact of human error. In FPGAs there are two common languages,

one is the Very High Speed Integrated Circuit Hardware Description Language (VHDL) and the

other is Verilog HDL [2, 22]. Both languages are about the same age but were designed for dif-

ferent purposes. The idea behind VHDL was an alternative way to describe the functionality of

hardware circuits. VHDL distinguished between three different design descriptions. Behavioural,

Structural, and RTL Dataflow Description, which can also be combined in one design known as

Mixed Description.

In a behavioural description the design is based on processes. This process works like an

interrupt in a PC, the process is executed every time the status of its input signals are changed.

The process flow of the system is fixed by the wiring of the process modules in the design.

Another design method is the structural description, this describes the internal and external

configuration of entities. The third method is known as Register-Transfer-Level (RTL) Description

and characterizes the system’s data-flow. Where the behavioural description defines processes

which execute on changing conditions like signals or register values. The RTL description defines

concurrent blocks of execution, the order in which the blocks must be executed and the connections

between the execution blocks.

The design intent of Verilog was to have a practical hardware description language that allowed

the simulation of hardware designs. One of the major design goals was to have the description

language be similar to the C programming language, a standard in both the software and hardware

engineering fields. This would allow many professional programmers to quickly use and become

comfortable with Verilog. The first Verilog standard was published in 1995 (IEEE 1364-1995 [15]).

With its last extension of the standard in 2001, Verilog is referred to as a verification languages

as well [16]. A hardware verification language (HVL) is a programming language which is used

to verify electronic circuits. Often HVLs provide simulated real world constraints testing and

functional test coverage assistance, allowing verification of complex circuits. Both HDLs have

their specialities for hardware design and can be combined in a single system if required [7].
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4.2 Application Specific Circuits

Application Specific Integrated Circuits (ASICs) are integrated circuits, that are customized

for use in a single application. The ASIC can provide both a lower physical cost and better overall

performance than the other technologies in this section. Through the use of economies of scale

and the removal or optimization of physical features, overall device cost is lowered. Performance

benefits from the inflexibility of its design, all extraneous features that are not required in the

application are removed, reducing latency and improving throughput. While the inflexibility of

design does increase performance, it is also ASICs biggest drawback. Designed for one purpose,

the ASIC is unable to be easily adapted to new functions or changing conditions within the

existing application. This increases the time-to-market and makes ASIC unattractive for rapid

prototyping purposes and target products with small production volumes. The ASIC design

requires a thorough understanding of the application area, a study of optimization possibilities

and most importantly a flawless final product [8].

Today a popular technique for prototyping an ASIC is through the use of FPGA technology.

The design is loaded onto a FPGA chip, this allows the circuit designers the ability to test and

verify quickly, without the cost of creating a chip layout. The place and route from the grid

structure of an FPGA design to an optimized chip layout is still an open problem. The generated

netlist for an FPGA design needs to be transformed into a formal ASIC design specification. The

FPGA prototyping method is of course not possible with all technologies, some ASIC designs will

be too complex to simulate, making it necessary for formal prototypes to be created. It must be

kept in mind that the required design space on a FPGA is several times higher, than the design

on the ASIC later on. With the small costs for high production volumes, ASICs are still the

most beneficial opportunity for mass production. The suppliers of ASICs can be categorized into

two groups, integrated device manufacturer (IDM) and fabless. An IDM supplier provides the

whole semiconductor manufacturing itself. A fabless supplier usually outsources many parts of

the production line. The IDM can be classified as both, depending on the production method

they utilize.

4.3 Microprocessors

A general purpose computer, or microprocessor allows a quick solution for a targeted embedded

system application. With the generic approach to the hardware issue, emphasis is placed entirely

on the software design aspect. The flexibility of software allows for quick changes of system be-

haviour allowing error correction, increased functionality and system updates. Another advantage

includes a fast time to market. The hardware does not have to be emulated or manufactured as it

does with other technologies, this allows rapid analysis, development, testing and implementation.
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Disadvantages to this approach includes expensive hardware and slower operation. Microprocessor

units are generally more expensive then other solutions, the requirement to be flexible significantly

increases the complexity of the chip design and the number of components that make up the chip.

This same complexity also creates the lower performance issue. The typical fetch-decode-execute

cycle and the generic approach to handling execution found in microprocessing units lowers the

performance of this technology. Pure hardware solutions only perform the execute stage, therefore

in order to perform at a similar level an increase in the processing speed must occur, this increase

is detrimental to many properties that are required in an embedded system.

The first commercially available microprocessor was the Intel 4004, released in 1971 [9]. The

processor was a 4-bit Central Processing Unit (CPU), the first of its kind to be placed on a single

chip. The CPU had a maximum of 32kb of ROM and 5kb of RAM, 46 instructions a max clock

rate of 740 Khz and the ability to execute 92,000 instructions per second [18]. The key to this

technological achievement was made possible through the use of P-channel silicon gate Metal

Oxide Semiconductor (MOS) technology. MOS is created by growing a layer of silicon dioxide on

top of a silicon substrate then amassing a layer of metal on top. The semiconductor is then able

to act as an amplifier or switch, modifying the electronic switches as necessary. The silicon gate

technology had a number of benefits over previous technology, they allowed for higher speeds with

lower power consumption, they were more cost effective and they were order of magnitudes more

reliable, a necessary property considering modern processors have as much as a billion transistors.

Hundreds of advances have occurred throughout the life of the microprocessor. These advances

have increased energy efficiency and performance while reducing physical size and cost. Todays

most advanced microprocessors use a greatly modified but still similar method of creation to the

Intel 4004. The Intel i7-980x CPU is a 6-core 32nm microarchitecture processor containing 1.17

billion transistors on a 248mm2 die size. The CPU can handle a maximum of 24GB of RAM,

contains a 64-bit instruction set has a max clock rate of 3.6 Ghz and can perform approximately

44 instructions per clock cycle [19]. Testing shows the I7-980x performs at about 147,600 million

instructions per second [23].

Embedded systems have been using an increasing number of processors every year, it is esti-

mated that in 2008 98% of the ten billion processors sold were used in an embedded system [4].

Embedded systems have to be efficient and often do not require the verbose instruction sets found

on modern personal computers. Instead efforts must be made to find microprocessors that closely

map to the instruction set required for the application environment and have an efficient compiler.
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5 Communication

With more complex problems often a single hardware device will no longer adequately meet

the requirements of the system. It is often necessary to build a communication bus or network

that will allow the various aspects of a system to coordinate and communicate with one another.

The method in which devices communicate to one another is in generally the bus or network

topology. In the bus topology a central controller handles the scheduling and data traffic. The

messages contain the address of the needed device, these messages are then broadcasted to all and

the device matching the address will then handle the message and do what is requested. As in

the bus topology, a controller handles the data, however instead of broadcasting the message for

everyone to see, the message is routed to the specific device which will handle the request. The

bus topology is much less resource intensive to implement and performs well when the number of

node devices on the bus is small. Although a controller is required to perform the communication,

it is simple in design. The network topology is more resource intensive, requiring a greater number

of interconnects, communication lines and controller logic elements. It is then also able to handle

more parallel communications, as it is designed to have no communication collisions even at

high speeds. Early communication technology was little more than bundles of wire attaching the

various components. The devices communicated to one another through proprietary and custom

protocols with their own timings, voltage and instructions. This method fragmented the various

vendors with each of them building devices on top of their own formats. Eventually solutions to

various problems in communications occurred. Interrupt driven controllers vastly improved time

efficiency. Increased throughput allowed for greater speeds and eventually allowed the promotion

of serial as opposed to parallel communication methods. With the changes and advances in

technology, standards organizations created specifications. This move consolidated much of the

computing and electrical engineering fields as a specification governed by a standards organization

allowed device makers to operate their hardware on any platform that conforms to the targeted

specification. Today there are hundreds of specifications that outline communication technologies

and how they address the assorted concerns of their respective industry.

5.1 Communication Methodology

The method in which devices communicate is an easy concept to understand. A device com-

municates by applying a number of signals to a medium using a predetermined messaging format.

This encoded message then travels over the medium and is received by the targeted device. The

message is then deciphered and acted on using an agreed upon guide or specification. Through

this process there are a number of aspects that must be considered, these decisions affect the var-

ious tradeoffs that make up a communication system. In the concept example developed earlier
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in the paragraph three specific items were left in an ambiguous state, that of medium selection

(what do messages travel on and how does it get on the medium), message encoding (what makes

up a message) and communication specification (how do we handle a message). These three items

make up a layering of technologies, with each choice beneath the current level both limiting and

promoting various properties of the current layer. The Open System Interconnection (OSI) Ref-

erence Model is a seven layer description that promotes good layered communications. From a

hardware perspective, the bottom two layers are the most applicable the physical and data link

layer. For the purpose of describing how hardware interacts with a communication system, three

sub-sections of the two layers will be considered. These divisions are the physical media section,

the line coding section, and the communication definition section.

5.2 Physical Media

The first consideration is that of physical media section. In this section the primary concern is

with medium selection, the physical constraints surrounding each choice and the method in which a

bit is represented on the medium. Possible medium selections include copper wires, wireless signals

and optical fibers. Each possibility influences how a bit is represented and the inherent limitations

of the media. Copper wires utilize an electrical voltage to simulate the bit. Through the process

of transmitting bits over a wire, noise from the surrounding electromagnetic environment can

degrade the quality of the line voltage. Copper wires are the traditional method for transporting

information and as such the equipment required to utilize them is generally inexpensive, however

the copper wires themselves can become a factor in total cost. Wireless signals apply energy

to an electromagnetic or radio wave, this energy in combination with the wave simulates the

bit. Wireless signals operate in a much noisier environment, this causes wireless technologies to

often have a slower throughput than wired communications. Wireless signals often have a higher

overall power consumption[13] than the other communication methods, this is because the distance

a signal can travel is directly related to the energy used to create the signal. With copper and

fiber optics the medium can contribute significantly to the overall cost, where as with a wireless

technology this is not so. Finally, optical communication uses light as a carrier wave in which bits

are transmitted over an optical fiber. This process is resistant to much of the issues inherent in the

electrical wiring and wireless communication technologies. it is immune to electromagnetic noise,

has significantly higher data throughput and is able to travel further without signal boosting. The

main disadvantage is a large medium and communication component costs. Another disadvantage

is the lack of commercial devices that directly support fiber optic communication, thus fiber optic

communication is not overly relevant in the embedded system community.
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5.3 Line Coding

Where physical media selection determines the medium, and how the bits access it, the line

coding section identifies the methods which maps values and timings on the carrier to both of the

binary representations of a bit. This mapping or encoding will allow the digital information to

be more resistant to signalling issues during transmission. Line codes are created with respect to

the following characteristics[6]:

• Intersymbol interference- Sections of the carrier have poor transfer performance in frequency

ranges. The receiver can suppress the unreliable frequencies which will reduce intersymbol

interference allowing the system to handle channel variations.

• Timing information extraction- The ability to derive the timing characteristics of the signal

from the encoded data itself.

• Transparency- The statistics of the signal should be well-defined and extractable, allowing

proper operation.

• Error monitoring- If possible, a line coding should be able to both detect and monitor errors

in the signal.

• Word alignment- If bits are encoded in blocks of data, the received sequence must be in the

correct order prior to the decoding phase.

• Added signals- A line coding should be able, if required, to handle additional signals added

to the carrier. This includes additional signals added such as power or digital and analog

information.

• Efficiency- The line code should be optimal, that is it should maximize available data rate

and minimize the use of information redundancy.

• Cost- An equilibrium should be met between the value the line coding provides and its

inherent costs.

Combine these characteristics, the properties of the physical medium and the various application

possibilities and you have the necessity for a large number of unique line codings. The basic

categories of line codes include: return-to-zero and non-return-to-zero [6]. Return-to-zero and

non-return-to-zero simply specify whether the waveform returns to the base or zero volt level for

a portion of time between pulses. Return-to-zero is self-clocking, that is because the line voltage

returns to zero an external timing device is not necessary to determine where each value lies[5].
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However the time it takes the line to return to zero has a negative effect on overall rate of signal

transmission. Where as non-return-to-zero is able to have a faster signal transmission rate then

return-to-zero[5]. The tradeoffs with non-return-to-zero problems are synchronicity and larger

bandwidth requirements[5]. Many line codes exist with varying degrees of complexity, all provide

various trade-offs that must be taken into account when choosing the optimal encoding.

5.4 Communication Definition

The last consideration is the communication definition section. This section often refers to a

collection of standards defining how messages are formatted and handled by devices in the sys-

tem. These standards specify the medium, the line coding and any other information related

to transferring data between nodes. The main concerns are delivery protocols, addressing and

communication methods, and media arbitration. Delivery protocols include data formatting in-

formation, this information is unique to each definition and allows for a number of properties.

Common properties included in the data or frame format is:

• A start of frame indicator, allowing the protocol to synchronize the frame sections accurately.

• An address or identifier of the end destination of the message.

• A unique identifier, used to assist in error recovery and retransmission of missing frames.

• A size of payload value, used to indicate the size of the payload contained in the frame.

• The payload section, used to hold the actual communication message.

• An error checking section, often a cyclic redundancy check or other frame check sequence.

• An end of frame indicator, allowing accurate capture of the entire frame.

Numerous other values and sections are custom to the various specifications and allow for in-

novation, flexibility and reliability in data communication. Along with the actual formatting

responsibilities the specification also outlines how the frames are handled. For instance, many

specifications outline procedures that occur if a frame fails an error check or certain sections con-

tain predetermined values. In this case a section could identify how the payload data is encoded,

which allows the receiver to decode the data correctly. The addressing portion consists of a well

defined method in which communication can be targeted or established between two devices on

the network or bus. This may include the creation of a communication master which directs the

frames to the correct location through an addressing scheme, or a bus method which allows each

node to determine which messages it needs to handle. The final concern of these definitions is
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media arbitration, the specification must determine how to handle the situation in which more

than one device tries to communicate over the medium at the same time. This encompasses both

the detection of the frame collision and the method of recovery for such a collision. The most

used techniques for detection of collisions and recovery are the Carrier Sense Multiple Access with

Collision Avoidance or Collision Detection (CSMA/CA, CSMA/CD) protocols and their varia-

tions. CSMA listens to the channel to determine if it is in use, when it is not in use it attempts

to send a message. If a collision occurs the protocol dictates that the transmitters wait a random

time before attempting to transmit again. This protocol suffers greatly from the effect of propa-

gation delay causing a large number of collisions to occur [26]. The CA modification causes the

transmitter to listen on the wire for a given period of time, after this if the channel was clear it

would put a small request frame on the carrier. This frame is used to tell other devices not to

transmit, then the transmitter would send its full message. This improved the performance over

plain CSMA and is often used where CD is not possible (due to the inability to both listen and

transmit)[26]. The CD modification uses the ability to sense when another device is interrupting

a transmission. Once an interruption is detected the original transmitter then puts a jam signal

on the carrier. This signal forces all devices to stop transmitting and a semi-random algorithm

determines when the devices should retransmit. The algorithm uses a random number which is

multiplied by an exponential collision counter, simply put as a device continually gets caught in

a collision, the amount of time it waits to retransmit increases in a random exponential fashion

to a pre-defined maximum value. The best aspect of this protocol is the ease in which it is able

to be setup[26].

5.5 Example Communication Standards

The following three examples give a good contrast between standards crafted to work in radically

different areas. The three standards are: Controller Area Network bus (CAN-bus), RS-232 and

802.15.4.

5.5.1 CAN-bus

The CAN-bus is a serial communication standard used to handle secure and realtime commu-

nication between electrical and microcontroller devices. The CAN-bus was originally created to

support the automotive industry and its increased reliance on electronics, however because of

its reliability, high speed and low-cost wiring it has been used in many additional areas. The

CAN-bus supports bit rates of up to 1Mbps and has been engineered to handle the constraints

of a security conscious realtime system[1]. The physical medium is shielded copper wiring, which

utilizes a non-return-to-zero line coding. The CAN message frame is either an 11 bit identifier
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base frame or the 29 bit identifier extended frame. There are a number of custom bit identifiers

of which most are used to synchronize messages, perform error handling or signal various values.

The CAN standard operates on a network bus therefore all devices have access to each message,

addressing is handled by identifiers in each message frame. The CAN-bus standard outlines the

arbitration method as CSMA/BA where the BA stands for bit arbitration. The bit arbitration

method allows any device to use the bus if it is free. If there is a collision the transmitter with the

greatest priority, identified by all devices comparing their transmitted message with the received

message, if there exists a dominant bit where recessive bit was transmitted the device looses

arbitration and then backs off for a predefined period of time. This allows the highest priority

messages to get handled fastest. Other important properties defined in this standard are:

• Message prioritization - Critical devices or messages have priority on the network. This is

done through the media arbitration protocol.

• Guaranteed latency - Realtime messaging latency utilizes a scheduling algorithm which has

a proven worse case and therefore can be reliable in all situations[20].

• Configuration flexibility - The standard is robust in its handling of additional nodes, nodes

can be added and removed without requiring a change in the hardware or software of any

device on the system.

• Concurrent multicasting - Through the addressing and message filtering protocols in place,

the CAN-bus can have multicasting in which it is guaranteed that all nodes will accept the

message at the same time. Allowing every node to act upon the same message.

• Global data consistency - Messages contain a consistency flag which every node must check

to determine if the message is consistent.

• Emphasis on error detection - Transmissions are checked for errors at many points through-

out messaging. This includes monitoring at global and local transmission points, cyclic

redundancy checks, bit stuffing and message frame checking[1].

• Automatic Retransmission - Corrupted messages are retransmitted when the bus becomes

idle again, according to prioritization.

• Error distinction - Through a combination of line coding, transmission detection, hardware

and software logic the CAN-bus is able to differentiate between temporary disturbances,

total failures and the switching off of nodes.

• Reduced power consumption - Nodes can be set to sleep mode during periods of inactivity.

Activity on the bus or an internal condition will awaken the nodes.
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5.5.2 RS-232

The RS-232 standard dictates the method in which two binary serial devices communicate using

Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE). This standard

does not dictate all three sections of communication as the CAN-bus and 802.15.4 standards did.

Instead only the most basic physical components are defined and the rest is left up to the device

or software designer. This technology has existed since the early 1960’s where it was first applied

to handle communication between teletypewriters and low-speed modems. The technology has

been extended and adapted to new technologies and applications, as a natural process of doing

so a number of design limitations have been encountered[14]. The RS-232 specification supports

bit rates up to 20,000 bps however speeds in excess of 115,200 bps are common place in devices.

The standard specifies a wired medium with a maximum cable capacitance of 2500 pf[11]. It

also outlines the circuits required to manage the connections, how the devices operate under

synchronous and asynchronous transmission and how voltage levels map to the logical ones and

zeroes required for digital communication. In this respect, RS-232 differs from most digital devices

in that it uses +3 to +15 volts as a logical 1 and a -3 to -15 as a logical 0[11]. Conventions exist

that provide structured communication, this is done through the use of pre-defined signals and

hand-shaking.

5.5.3 802.15.4

The 802.15.4 standard deals with low-rate, low-energy, wireless personal area networks. The

standard is designed to maximize the desired properties of embedded system components, while

allowing for a simple and flexible protocol. 802.15.4 has data rates of 250 kbps, 100 kbps, 40

kbps and 20 kbps, communicates in a peer-to-peer or a star network over a wireless medium. For

the arbitration technique 802.15.4 mainly uses CSMA-CA, however it also utilizes Time Division

Multiple Access (TDMA) Guaranteed Time Slots. This allows contention free communication

between two predetermined devices for a time specified by the network controller, the Personal

Area Network (PAN) Coordinator[17]. The standard defines different levels of device functionality,

the reduced functionality node and the fully functional node. It also requires a fully functional

node to become the PAN coordinator. When used in a star topology, the PAN coordinator controls

the communication through-out the network, in this situation all information is passed through

the PAN coordinator. In the peer-to-peer topology, all fully functional devices operate in the

best interest of the PAN coordinator, they are free to handle requests and route data as required

without having to work directly through the PAN coordinator. In both networks the reduced

functionality devices transmit and receive data under the direction of the PAN Coordinator, they

are not able to provide any network controller assistance.
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The line coding used in this standard is a statistical multiplexing technique known as orthogonal

code division multiplexing (OCDM). OCDM allows multiple nodes to share the wireless medium

through use of added pseudonoise. The carrier wave is modulated with pseudorandomly generated

+1’s and -1’s, giving the carrier the appearance of noise. The receivers who had been synchronized

with the transmitters prior to this, are able to recreate the pseudonoise which can then produce

the original carrier wave. This method allows all communication devices on a single channel to

focus on the signals which contain the known pseudonoise and ignore other white noise, which

can in turn be other devices communications[17].

The message frame for 802.15.4 depends upon the mode of operation. The two modes, beacon

and non-beacon mode use different communication methods, which use different framing. Both

non-beacon and beacon mode use a similar frame (Figure 5) during data contention periods. The

frame contains the usual identifying, error correcting, synchronizing and addressing fields.

Figure 5. 802.15.4 Data Frame

Figure 6. 802.15.4 Super Frame structure

In beacon mode the frames are encapsulated by a superframe (Figure 6). This superframe

contains three content sections, the contentious access period (CAP), the contention free period

(CFP) which consists of a number of guaranteed time slots (GTS) and the inactive period. The

beacon and beacon extension period are administrative sections that help initiate the superframe.

The length of time spent in each section and the use of each section is dependent on network

settings and the PAN coordinator. During the CAP section devices use the CSMA-CA network

29



arbitration. During the CFP TDMA communication is guaranteed between predetermined de-

vices, allowing the two devices to have full bandwidth access without the possibility of collisions

allowing for full speed data transmission. During the inactive state, devices often enter low-power

sleep mode while the PAN coordinators would enter into another superframe in which it would

communicate with other areas of the network. The administrative sections are used to synchronize

communications and initiate the CAP setup.
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6 Summary

This report has shown that the considerations when implementing an embedded system are

numerous. Careful evaluation of a projects goals and constraints with an understanding of the

tools and technologies is necessary in order to have a successful solution. This report has presented

details of successful projects, outlined tools and methods used to build embedded systems and

given a synopsis of the hardware and communication ideas and technologies essential to a good

project. While each project is different, the information that has been displayed in this paper

should provide a good starting point, providing a general understanding of embedded projects,

with emphasis on actual biomedical engineering solutions.

The four sections of the report were embedded system projects, analysis and design, hardware

components and communication technologies. The embedded systems section communicated the

challenges facing system designers. The section also highlighted embedded projects, specifically

the University of New Brunswick Hand project, showing examples and techniques used in success-

ful projects. The analysis and design section gave a synopsis of best practices and methodologies

used in system design today. The section also showed off the Altera tool suite, useful in the anal-

ysis, design and testing phase of an embedded FPGA system. The hardware section provided the

history and an overview of the three main embedded technologies, programmable logic devices,

application specific integrated circuits and microprocessors. Finally, the communication section

outlined methods used to communicate within and outside of embedded systems, properties of the

communication systems including physical medium properties, line codings and communication

definitions and examined three protocols: Controller Area Network bus, RS-232 serial communi-

cation and 802.15.4 wireless communication.

Embedded Systems, as this report has shown are complex technologies. Tools and best practices

are continually updated and redefined to reflect new methods in developing successful solutions.

A good understanding of the technology behind embedded systems and related fields is necessary

in order to manage the trade-offs and risks that occur within all projects.
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