

This is an unaltered
copy of the author's

MCS thesis

Natural Language Morphology Representation

by

Mikaël P.A. Roussillon

A Thesis Submitted in Partial Fulfilment of
the Requirements for the Degree of

Master of Computer Science

in the Graduate Academic Unit of Computer Science

Supervisor: Bradford G. Nickerson, PhD (RPI), Computer Science

Examining Board: Przemyslaw R. Pochec, PhD (UNB), Computer Science, Chair
Eric Aubanel, PhD (Queen’s), Computer Science
Wladyslaw Cichocki, PhD (Toronto), French

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

December, 2004

c©Mikaël P.A. Roussillon, 2005

Pour mes parents, qui
ont toujours cru en moi.

Abstract

This thesis defines Lightweight Morphology, an alternative to stemming, which cre-

ates inflection and derivations from an input word using (1) a set of pattern matching

rules producing morphological variants, (2) rules in Java and (3) an exception ta-

ble to handle exceptions of a language. A language (LiteMorph) was developed to

represent natural language morphology specifications for Lightweight Morphology. A

French specification was created using LiteMorph, requiring 526 rules, 41 rule sets and

16,842 exception table words. A comparison between an exact query, stemming and

Lightweight Morphology was performed. Using a differential recall measure on a col-

lection of 533 documents (Hansard proceedings of the 36th parliament of Canada), we

showed that Lightweight Morphology has, on average, 3.9 times more queries retriev-

ing fewer irrelevant documents than stemming. The French version has, on average,

2.5 times more queries retrieving more relevant documents compared to stemming.

Two new measures (reflexivity and transitivity) of morphological consistency were

defined and tested. The English and French LangLMs have reflexivity scores around

0.9 and transitivity scores under 0.09.

iii

Acknowledgements

I thank my supervisor, Dr. Bradford Nickerson, for giving me the opportunity to work

on such an interesting project, for the many discussions that led to this thesis, for his

guidance and inspiration.

I would like to thank Dr. Stephen Green, from Sun Microsystems, for all the

handy explanations he provided me and for helping me in solving some of my problems

and Dr. William Woods, also from Sun Microsystems, for creating such an incredible

information retrieval system, and for the many comments and information he provided

me.

I am thankful to Dr. Anna Maclachlan, for introducing me to linguistics, and for

the many resources she was able to provide me.

Special thanks to the Faculty of Computer Science and Linda Sales for their help

on many occasions.

Finally, I want to show my sincere gratitude to my family and my friends for

their support and their affection.

iv

Table of Contents

Abstract . iii

Acknowledgements . iv

List of Figures . xii

List of Tables . xiv

Glossary . xv

1 Introduction . 1

1.1 Background on Information Retrieval 1

1.1.1 Different approaches for different sizes of collections 2

1.1.2 Natural language implicit problems for information retrieval . 3

1.2 Motivation . 4

2 Improving Information Retrieval with Morphological Analysis . . 7

2.1 Morphological and lexical terminologies 7

2.1.1 Morphological terminology . 8

2.1.2 Lexical terminology . 10

2.2 Stemming . 11

v

2.3 Beyond simple suffix stripping . 13

2.3.1 Architecture of Sun Microsystems information retrieval system 13

2.3.2 Lightweight Morphology . 14

2.3.3 Conceptual Indexing . 16

2.3.4 Heavyweight Morphology . 17

3 Lightweight Morphology . 19

3.1 Generating Morphological Variants 19

3.1.1 Components of Lightweight Morphology 21

3.1.1.1 Architecture of Lightweight Morphology 21

3.1.1.2 Defining a Language Specification for Lightweight Mor-
phology . 22

3.1.2 Aggregation of rules with a rule set 22

3.1.3 Generating variants with pattern-matching rules 25

3.1.3.1 Left hand side to define a pattern 27

3.1.3.2 Right hand side to define morphological variants . . 30

3.1.4 Java rule set: user-defined rules with Java 33

3.1.4.1 Writing Java code 34

3.1.4.2 Calling a rule set . 35

3.1.4.3 Defining Table and List 36

3.1.5 Exception table . 37

3.1.6 Lightweight Morphology flow 39

3.2 Xerox Finite State Morphology representation 40

4 LiteMorph: a language for Lightweight Morphology 43

vi

4.1 LiteMorph as a language for Linguists 44

4.2 Abstracting Java with LiteMorph . 45

4.2.1 LiteMorph pattern matching rules grammar 45

4.2.2 Extending LiteMorph grammar 46

4.2.3 Adding Java support to LiteMorph 47

4.2.4 Putting it together . 49

4.3 Translating LiteMorph into Java . 49

4.3.1 Java LightweightMorphology implementation 49

4.3.2 Creating a compiler compiler 52

4.3.3 Architecture of LiteMorph2Java compiler 55

5 French Lightweight Morphology . 57

5.1 Essentials for French morphology . 57

5.1.1 Considerations on French inflection 58

5.1.2 Considerations on French derivation 59

5.1.3 Considerations on French exceptions 60

5.1.4 French spelling rectifications 61

5.2 Representing French LangLM with LiteMorph 63

6 Testing . 67

6.1 Validating the rules . 67

6.1.1 Sampling . 68

6.1.2 LangLM measures . 69

6.1.3 LangLM measure results . 73

6.1.4 LangLM conclusion . 74

vii

6.2 Improvement in information retrieval system 75

6.2.1 Evaluating information retrieval systems 75

6.2.2 Differential recall . 78

6.2.2.1 Differential recall preprocessing 78

6.2.2.2 Differential recall results 79

6.2.2.3 Conclusion . 81

6.2.3 Recall and precision with TREC 83

6.2.3.1 TREC queries preprocessing 83

6.2.3.2 TREC results . 84

6.2.3.3 Conclusion . 85

7 Future research and improvements on natural language representa-
tion . 90

7.1 Lightweight Morphology . 90

7.1.1 Framework implementation improvement 90

7.1.2 LiteMorph Language improvement 92

7.1.2.1 User-defined rule set 93

7.1.2.2 Exception table improvements 93

7.1.2.3 Weighted Lightweight Morphology 95

7.1.3 Improving LangLM authoring 95

7.1.3.1 Improving the LiteMorph compiler 96

7.1.3.2 LiteMorph-friendly Integrated Development Environ-
ment . 96

7.1.4 Improving French LangLM . 97

7.1.5 Measuring and testing Lightweight Morphology 98

viii

7.1.6 Automatic generation of LangLM with machine learning and
data mining . 98

7.2 Heavyweight Morphology . 98

7.2.1 Prolog and RuleML approach 99

8 Conclusions . 102

References . 104

A LiteMorph and modified Java — Grammars 108

A.1 LiteMorph grammar . 108

A.2 Modified Java grammar (based on Java 1.4 grammar) 110

B LiteMorph — JavaCC source code . 115

B.1 JavaCC source code for LiteMorph 115

C LiteMorph LangLM source code . 123

C.1 French LangLM . 123

C.1.1 Head of French LangLM with samples of the exception table . 124

C.1.2 Default rule set for French LangLM 124

C.1.3 Sample rule set for French LangLM 128

C.2 Spanish LangLM . 129

C.2.1 Java rule set for Spanish LangLM 129

C.2.2 Sample rules set for Spanish LangLM 133

C.3 English LangLM . 134

C.3.1 Sample ending rule set for English LangLM 134

ix

D Comparison of Lightweight Morphology, stemming and wildcard
variants . 135

D.1 Sample from English randomly selected words with variants created
and relevance/irrelevance judgements 136

D.2 Sample from English frequency selected words with variants created
and relevance/irrelevance judgements 138

D.3 Sample from French randomly selected words with variants created and
relevance/irrelevance judgements . 140

D.4 Sample from French frequency selected words with variants created
and relevance/irrelevance judgements 142

E Differential Recall results . 145

E.1 Differential recall results for English randomly selected words 146

E.1.1 Relevance criterion . 146

E.1.2 Irrelevance criterion . 148

E.2 Differential recall results for English frequency selected words 149

E.2.1 Relevance criterion . 149

E.2.2 Irrelevance criterion . 151

E.3 Differential recall results for French randomly selected words 153

E.3.1 Relevance criterion . 153

E.3.2 Irrelevance criterion . 155

E.4 Differential recall results for French frequency selected words 156

E.4.1 Relevance criterion . 156

E.4.2 Irrelevance criterion . 158

F TREC queries and results . 161

F.1 Set 1 queries . 161

x

F.1.1 Sample of queries . 162

F.1.2 Results . 162

F.2 Set 2 queries . 163

F.2.1 Sample of queries . 163

F.2.2 Results . 164

F.3 TREC recall and precision measures 165

F.3.1 Algorithm for determining PI(r) 166

F.3.2 Algorithm for determining P 167

F.3.3 Algorithm for determining P (d) and PR(d) 167

VITA

xi

List of Figures

2.1 Examples of decomposition of words using morphological terminology. 8

2.2 Example of inflection and derivation of the verb to judge. 9

2.3 Examples of compounding. 10

2.4 The S-stemmer . 11

2.5 Relationships introduced by stemming. 12

2.6 Sun Microsystems information retrieval system architecture. 15

2.7 Relationship introduced by Lightweight Morphology. 16

2.8 -fish Heavyweight Morphology rule written in Lisp (from [39]). 18

3.1 Lightweight Morphology variant production and filtering. 20

3.2 Lightweight Morphology implementation architecture. 21

3.3 Rule sets grammar (LiteMorph formalism). 24

3.4 Pattern matching rule grammar (LiteMorph formalism). 26

3.5 Example of LM pattern matching rule for English. 27

3.6 Table and List grammar (LiteMorph formalism). 37

3.7 Morphological finite state transducer for the French word joli. 41

3.8 Translating LiteMorph formalism to XFSM formalism. 42

4.1 Extension to LiteMorph grammar. 47

xii

4.2 Lightweight Morphology Java implementation UML diagram. 50

4.3 LM2Java building architecture. 56

5.1 Sample entries from the French LangLM exception table 64

5.2 Rule set to process singular feminine nouns and adjectives with sample
rules. 65

5.3 Rule set to create indicative present form for 2nd group verbs. 66

5.4 Rule set to process -age derivation from noun forms to verb forms. . . 66

5.5 Rule set to process -age derivation from verb forms to noun forms. . . 66

6.1 TREC average precision graphs for topics 51 to 200 with set 1 queries. 86

6.2 TREC average precision graphs for topics 51 to 200 with set 2 queries. 87

7.1 -fish Heavyweight Morphology rule converted to Prolog. 100

7.2 Prolog architecture. 101

xiii

List of Tables

3.4 Language exceptions from English, French and Spanish 38

6.1 Reflexivity estimate for English and French LangLM. 73

6.2 Transitivity estimate for English and French LangLM. 74

6.3 Differential recall Win-Lose scores for 100 randomly selected words. . 80

6.4 Differential recall Win-Lose scores for 100 frequency selected words. . 81

6.5 TREC global results for topics 51 to 200. 88

F.1 TREC average interpolated precision-recall for topics 51 to 200 on set
1 queries. 162

F.2 TREC average precision after d documents retrieved for topics 51 to
200 on set 1 queries. 163

F.3 TREC average interpolated precision-recall for topics 51 to 200 on set
2 queries. 164

F.4 TREC average precision after d documents retrieved for topics 51 to
200 on set 2 queries. 165

xiv

Glossary

∩A
B (or A ∩B) One of the differential recall measure defined as the number of rel-

evant documents returned by both A and B, where A and B are two
different IR systems. The same measure can be computed with the num-
ber of irrelevant documents, p. 77.

∆A
B (or A−B) One of the differential recall measure defined as the number of rele-

vant documents returned by A but not B, where A and B are two different
IR systems. The same measure can be computed with the number of ir-
relevant documents, p. 77.

abstract syntax tree Tree where a terminal or non-terminal of the grammar is rep-
resented as a node, p. 54.

ad hoc retrieval Retrieval of text documents given a text query from a user. The
retrieved documents can be ranked, p. 1.

affix Morpheme that provides additional meaning. See also circumfix, infix,
prefix, suffix, p. 8.

affixation Act of adding an affix to a stem. Circumfixation, infixation, prefixation
and suffixation can also be used to specify the kind of affix added, p. 8.

ambiguity Refers to phrases and words that can have different meanings, p. 3.

circumfix Affix that precedes and follow the stem, p. 8.

collection Set of documents used to satisfy users requests, p. 1.

conjuguaison (conjugation) Set of inflexions of the verbs, p. 57.

default rule set Specific type of rule set containing the first pattern-matching rules
to be tried. See also rule set, p. 23.

derivation Word formation from a stem with a grammatical morpheme that changes
the meaning or the use, p. 8.

differential recall Measure comparing two systems on the intersection and differ-
ence of relevant documents each system retrieved, p. 77.

xv

document Unit of text indexed in a information retrieval system and available for
retrieval, p. 1.

document corpus See collection, p. 1.

ending rule set Specific type of rule set containing all rules that process input words
with the same ending. See also rule set, p. 23.

exception table Lightweight Morphology’s hard coded set of morphological vari-
ants, p. 37.

F-measure Measure combining precision and recall. See precision and recall, p. 76.

finite state automata Automata that has a finite set of states, edges going from a
state to another and each edge is labeled with a symbol. One state is the
start state, certain of the states are final states. Finte state automata are
usually used to represent regular expressions, p. 40.

finite state transducer Two level finite state automata. Each edge has two sym-
bols, one being the symbol to match to go from a state to another, the
other being used to create the output, p. 40.

grammaire (grammar) Set of rules to build correct statements, p. 57.

homonymy Relation between words that have the same form but unrelated mean-
ings, p. 3.

infix Affix that is inserted in the stem, p. 8.

inflection Word formation from a stem with a grammatical morpheme that reflects
grammatical features, p. 8.

information retrieval (IR) Technology for finding information from indexed mate-
rials in response to a user query, p. 1.

information retrieval system (IR system) Program or set of programs whose goal
is to perform information retrieval. Usually consisting of an indexer and
a query processor, p. 13.

Java Compiler Compiler (JavaCC) Parser generator and lexical analyzer genera-
tor producing Java code, p. 53.

java rule set Specific type of rule set containing all rules that process input words
with the same ending. See also rule set, p. 34.

LangLM processor Program that can create morphological variants given the rules
provided in a LangLM, p. 21.

xvi

Language Specification for Lightweight Morphology (LangLM) Set of rules and
exception list used to perform Lighweight Morphology, p. 21.

lemma Single abstract word representing a set of lexical forms having the same
stem, major part of speech and word sense, p. 10.

lexeme Individual entry in a lexicon, most of the time a lemma, p. 10.

lexical analyzer Program breaking an input into tokens, given a specification of
tokens, p. 53.

lexicon A finite set of lexemes, p. 10.

Lightweight Morphology (LM) Morphological analysis technique which tries to
produce morphological variants from a word without lexicon, p. 14.

LiteMorph Language to specify a complete LangLM, p. 43.

lower language Output word of a finite state transducer, p. 40.

morpheme Smallest unit of meaning in language, p. 8.

morphological analysis Analysis of the morphology of words to derive rules that
govern word creation, p. 10.

morphology Study of the formation of words by combining morphemes, p. 9.

morphotactics Type of morphology rules explaining which classes of morphemes
can follow other classes of morphemes, p. 10.

ontology Hierachical organization of knowledege of distinct objects into subcate-
gories of concepts, p. 11.

orthographe (spelling) Set of rules that define the way of writting words in a lan-
guage, p. 57.

orthographic rules Type of morphology rules that model the changes that occur to
a word when two morphemes are combined, p. 10.

PI(r) (interpolated recall-precision at level r) Precision defined maxR(x)≥r(P (x))
where x is the number of relevant documents returned by the IR system
(TREC measure), p. 84.

P (average precision) Precision calculated after each relevant document is retrieved
and averaged over the number of relevant documents retrieved (TREC
measure), p. 85.

xvii

P (d) (precision after d documents have been retrieved) Precision with a cutoff
at d documents (TREC measure). See also R-precision, p. 85.

paradigm Linguisitic: set of different lexical units or different forms of a word that
can commute in the same linguistic context. Grammar: set of different
forms of a verb, p. 58.

parser Program checking that a text has a syntax following a given a grammar,
p. 53.

part of speech Grammatical categorization of a word, p. 8.

pattern-matching rule Lightweigh Morphology rule defining a pattern a word has
to match in order to apply the rule and a list of morphological variations
that are to be applied on the previously matched word, p. 25.

polysemy Word that has a diversity of meanings, p. 3.

precision (P) Measure judging the accuracy of an information retrieval system,
p. 76.

prefix Affix that precedes the stem, p. 8.

query User’s information need expressed as a set of terms, p. 2.

R-precision (PR(d)) Precision calculated with the first r documents retrieved by a
query, where r is the total number of relevant documents for the query,
p. 77.

recall (R) Measure judging of the ability of an information retrieval system to re-
trieve relevant documents from a collection, p. 75.

regular expression Expression standing for a set of strings using special characters
to represent some patterns, p. 25.

relevance Subjective judgement on the relation between query and a retrieved doc-
ument, p. 75.

root Word without any affixation, p. 8.

rule set Feature of Lightweight Morphology to group pattern-matching rules. See
also default rule set, ending rule set and javaruleset, p. 22.

spelling rules See orthographic rules, p. 10.

stem Morpheme that carries the main meaning, p. 8.

stemmer Set of rules that will perform stemming, p. 11.

xviii

stemming Morphological analysis technique which tries to produce stems from
words, p. 11.

subsumption Relation between meaning of words. A more general term subsumes
a more specific term, p. 4.

suffix Affix that follows the stem, p. 8.

surface form Spelling of a word implicitly containing morphological information.
For example, an -s ending is usually the surface form for the plural in
English or French, p. 41.

synonymy Relation between words that have the same meaning, p. 4.

taxonomy Science of ontology-like organization, usually creating tree-like structures
as arrangements, p. 11.

term Lexical item that can possibly occur in a collection, p. 2.

upper language Input word of a finite state transducer, p. 40.

vagueness Phrase or word that does not carries a precise meaning, p. 3.

visitor Design pattern to separate the syntax from the interpretation when travers-
ing a data structure, p. 54.

word Ambiguous term defining an association of characters, p. 10.

Xerox Finite State Morphology (XFSM) Set of tools developped by Xerox using
finte state automata to preform lexical/morphological analysis, p. 40.

xix

CHAPTER 1

Introduction

Information retrieval is a wide ranging area that deals with storage and retrieval

of any kind of media. In this thesis, our focus is on the retrieval of text documents

(the retrieved documents can be ordered with a ranking algorithm) given a text query

from a user. This type of task is known as ad hoc retrieval. We explore the use of

morphological analysis on words to improve information retrieval.

1.1 Background on Information Retrieval

Before going into the details of information retrieval, we will introduce some termi-

nology useful to information retrieval (terminology quoted from [23]).

Document is ‘the unit of text indexed in the system and available for retrieval’.

A document can take various shapes, like a web page, a newspaper article, a

paragraph or a sentence.

Collection or Document corpus is ‘a set of documents being used to satisfy users’

requests’.

1

1.1. Background on Information Retrieval 2

Term is ‘a lexical item that can possibly occur in a collection’.

Query is ‘a user’s information need expressed as a set of terms’.

1.1.1 Different approaches for different sizes of collections

The way information retrieval is approached is different depending on the document

corpus one wants to retrieve information from. When this document corpus is the

Internet (assuming that a great number of pages have been indexed), and provided

a good search algorithm is employed, users are almost sure that the term(s) they

provided as the query will be present in the document they are seeking, or at least

that the returned documents are somewhat relevant to them.

When the size of the corpus is smaller, the users cannot expect to always retrieve

the information they seek with the terms in a query. For example, if users issue a

query with car and the corpus has only documents indexed with cars, they will never

retrieve the information they are seeking. This first problem comes from systems

that don’t use morphological analysis on query words. Furthermore, if the document

contains neither car nor cars but vehicle, the users will not find the document until

they find the right word (a synonym or a related word) for their idea. This second

problem is an ontology problem, where there is a need to attach meaning to a word,

and retrieve words with similar meaning.

1.1. Background on Information Retrieval 3

1.1.2 Natural language implicit problems for information
retrieval

The previous considerations are an introduction to the problems involved with

natural languages, because they are ambiguous and vague. Ambiguity refers to

phrases (or even words) that can have different meanings. The phrase ‘I made her

duck’ (an example given in [23]) can have (at least) five different meanings:

1. I cooked a duck (animal) for her;

2. I cooked a duck (animal) belonging to her;

3. I created the duck (a representation of an animal) she owns;

4. I caused her to quickly lower her head or body;

5. I waved my magic wand and turned her into undifferentiated duck (animal).

These different meanings come from different ambiguities existing in natural lan-

guages. The ambiguities that are of interest for us are homonymy, a relation be-

tween words that have the same form with unrelated meanings and polysemy a word

that has a diversity of meanings, which can be summarized into lexical ambiguities.

For example, duck can be a verb or a noun (homonymy) and make can mean either

create or cook (polysemy). The other possible ambiguity is semantic ambiguity,

describing the way words are semantically analyzed to produce a meaningful phrase.

This will be of minor interest in this thesis since semantic ambiguity uses word sense

disambiguation in a context, and not morphological analysis of the word.

Vagueness is related to ambiguity. The phrase ‘I want to eat Italian food’ [23] is

vague since we don’t really know what the speaker really wants to eat when referring

1.2. Motivation 4

to Italian food — it can be pizza or pasta or something else. This can be seen as an

example of synonymy, where different words are related to the same meaning.

More general than synonymy is the notion of subsumption. A more general

term A subsumes a more specific term B. For example, vehicle subsumes car and

truck since they are both a kind of vehicle. Another example is subsumption subsumes

synonymy.

This thesis considers words as our field of interest, since our focus is morphological

analysis, but not the association of words in phrases. The context in which those

words are used is of lesser interest (even though it can be important for information

retrieval) for the simple reason that queries on ad hoc retrieval are often constructed

of one to three words and they do not necessarily form a semantic phrase.

1.2 Motivation

Computational linguistics is a very interesting topic since it unites two worlds that

are quite different in appearance : computer science and natural languages. The aim

of this thesis is to provide a bridge between the two fields. Who else than a linguist,

expert in natural language morphology and in ontology, can define morphological

analysis rules (Lightweight Morphology and Heavyweight Morphology) for a natural

language? Computer scientists could do that but not without the constant counselling

of linguists.

Sun Microsystems information retrieval system is written Java and Lisp. The

morphology definitions for any natural language is done in one of those two languages

(Lightweight Morphology in Java, Heavyweight Morphology in Lisp). Although these

1.2. Motivation 5

are powerful computer languages, natural language morphology definitions do not

need all the features (and complexities) from Java and Lisp. Also, one should not be

constrained to a particular computer language when defining morphologies (new and

obsolete computer languages are common, but natural languages are here to stay for

quite a long time). Providing a representation for natural language morphology is a

necessary step since

1. It produces a language that abstracts the underlying computer science language;

2. It produces a language that is not bound to the underlying computer science

language.

The second challenge of this thesis is to test the controversial hypothesis ‘linguistic

knowledge can improve information retrieval’. The elements that will be explored are:

1. Using linguistic knowledge in a deeper way than it can be used in stemming;

2. Linguistic knowledge, especially morphological analysis for highly inflectional

languages, can improve information retrieval;

3. Basing results of the usefulness of linguistic knowledge over only one language

(English) is not a satisfactory way to proceed.

To achieve these goals, we define clearly what Lightweight Morphology is, using

a context free grammar. We introduce LiteMorph, a language that can specify a

Lightweight Morphology for a natural language, and we implement a specification for

French in LiteMorph. We finally test the usefulness of Lightweight Morphology in

information retrieval.

1.2. Motivation 6

This thesis is organized as follows: Chapter 2 presents some background on mor-

phological analysis for information retrieval, Chapter 3 presents Lightweight Mor-

phology and its representation. Chapter 4 presents LiteMorph, a language to specify

a Lightweight Morphology for a natural language. Chapter 5 presents an application

of a Language specification for Lightweight Morphology (LangLM) for French using

LiteMorph. Chapter 6 introduces some measures on the quality of clusters obtained

from morphological analysis and tests the benefits of using Lightweight Morphology

for information retrieval. Chapter 7 presents future directions for Lightweight Mor-

phology representation (with LiteMorph) and testing (with introduced measures),

and Heavyweight Morphology representation.

CHAPTER 2

Improving Information Retrieval with
Morphological Analysis

The main hypothesis of this thesis is that morphological analysis (and more generally

linguistic knowledge) can improve information retrieval. This hypothesis is quite

controversial since different studies confirm or infirm the usefulness of morphological

analysis for information retrieval. We will see in the following chapters that the

conclusion of the usefulness of morphological analysis is often biased by the fact that

tests are made with English, a language that presents few inflectional forms.

2.1 Morphological and lexical terminologies

The following terminology definitions are in part quoted from [23].

7

2.1. Morphological and lexical terminologies 8

2.1.1 Morphological terminology

A morpheme is the smallest unit of meaning in language. For example, car consists

morphologically of a single morpheme (the morpheme car) whereas cars consists of

two morphemes car and -s. We can therefore divide the morphemes in two categories:

the stems which provides the main meaning, and affixes that provide additional

meanings to a stem. Different kind of affixes exist: prefixes that precede the stem,

suffixes that follow the stem, circumfixes that do both and infixes that are inserted

inside the stem. The act of adding an affix to a stem is called affixation and the

result can be another stem. A word without any affixation is called a root. Figure

2.1 gives two examples of decomposing words.

in

ent

suffice

insufficient

root
stem

morpheme

:

:

:

:

prefix

suffix
affix

entin +suffice+ insufficient

insufficient + cy insufficiency

Figure 2.1: Examples of decomposition of words using morphological terminology.

Part of speech tagging is a grammatical categorization of words. Many parts

of speech exist but the most common ones are nouns, verbs, adjectives, adverbs and

articles. Word formation from morphemes is divided into two classes: inflection and

derivation. Inflection is the combination of a stem with a grammatical morpheme

that results in

1. changing the form of the word (as in paradigm or declension);

2.1. Morphological and lexical terminologies 9

2. retaining the part of speech;

3. reflecting grammatical features such as number, gender or person.

Verbal systems are a good example of inflection. Derivation is the combination of a

stem with a grammatical morpheme that results in

1. deriving a new word by changing meaning or use;

2. often changing the part of speech.

Nominalization (forming a noun from a verb or adjective) is a good example of

derivation. Figure 2.2 presents an example of inflection and derivation.

judged
(verb)

judgment
(noun)

judge
(verb)

derivation

inflection

Figure 2.2: Example of inflection and derivation of the verb to judge.

Compounding is the action of combining two roots to create a compound word.

We define the head of a compound word as the root that carries the principal meaning

of the word. Usually, the head is the last root. Figure 2.3 present some examples of

compound words.

Morphology1 is the study of the formation of words by combining morphemes.

More generally, morphology is the explanation of the formation of a word in terms

1From Greek morphê, form, shape.

2.1. Morphological and lexical terminologies 10

cat

bit

root root and head

map

fish

compound word

bitmap

catfish+

+

Figure 2.3: Examples of compounding.

of morphemes. Morphological analysis consists of analyzing the morphology of

a word, to identify the rules that govern word creation. The rules are divided into

two classes: morphotactics, explaining which class of morphemes can follow other

classes of morphemes (e.g. the plural morpheme follows the noun in English) and

orthographic rules (or spelling rules), to model the changes that occur to a word

when two morphemes are combined (e.g. city + s → cities but not *citys2). Inflection

and derivation are part of both morphotactics and orthographic rules.

2.1.2 Lexical terminology

Word is too ambiguous to be of any use for lexical terminology. Instead, we will use

the notion of lexeme, an individual entry in a lexicon. Most of the time, the lexeme

will be a lemma, a single abstract word representing a set of lexical forms having the

same stem, the same major part of speech and the same word sense. The key entries

in any language dictionary are lemmas (e.g. if you are looking for sings, you will look

for the lemma sing representing the infinitive). A lexicon is a finite set of lexemes.

Others notions that are useful to provide relations among lexemes are the previously

defined notions of homonymy, polysemy and synonymy.

2Every non-existing word quoted in this thesis will be prefixed by *.

2.2. Stemming 11

An ontology refers to the hierarchical organization of knowledge of distinct ob-

jects into subcategories of concepts. A taxonomy is the science of such organization,

usually creating tree-like structures as arrangements.

2.2 Stemming

Morphological analysis has a well-known technique called stemming that is defined

as producing stems from inflected (and possibly derived) forms. Two famous stem-

mers are the Lovins stemmer [28] and the Porter stemmer [32]. A stemmer consists

of a series of rules that will strip affixes from a word until there are no more affixes to

remove. Each stemmer differs in the number of rules it uses, how the rules are tried

and which affixes are removed. An example of a stemmer is shown in Figure 2.4.

1: if word ends in ies but not eies or aies then
2: ies −→ y
3: end if
4: if word ends in es but not aes, ees or oes then
5: es −→ e
6: end if
7: if word ends in s but not us or ss then
8: s −→ ε
9: end if

Figure 2.4: A simple stemmer, the S-stemmer, removing s plural in English
(from [18]).

Quoting Krovetz [24], stemming can be seen as (see Figure 2.5)

1. a mechanism for automatic query expansion (adding terms that were not pro-

vided in the query);

2.2. Stemming 12

2. a mechanism for clustering words (stems are shared among related words);

3. a mechanism to normalize a query by using a concept (the search in the collec-

tion will be made with the stems, not the words from the query).

cluster of words
having the same stem

retrieved words)
(query words and

stem (indexed term and
normalized query term)abrog

abrogates

abrogating

abrogate
abrogations

abrogation

abrogated

Figure 2.5: Relationships introduced by stemming.

The major interest of stemming is that, while reducing the number of terms in-

dexed by indexing stems (there are fewer stems than terms occurring in a document),

we hope that the stem will retrieve more relevant documents. While stemming seems

interesting (especially for languages with numerous morphological variants [30]), it

presents serious limitations which led to the conclusion that morphological analysis

was not useful for information retrieval (based on the English language) [18]. The

problems, as pointed out by Krovetz [24], are the following :

1. The result of removing affixes is a stem and not necessarily a root. Iteration

will be turned into the stem iter where the root is iterate. Therefore, different

2.3. Beyond simple suffix stripping 13

words with different meanings can result in the same stem or words with the

same meaning can result in different stems;

2. The stemmer does not take into account the meaning of a word. For example,

gravitation will be turned into gravity, ignoring the sense of gravity force and

producing a stem with the meaning serious.

The problem is not that morphological analysis is a bad thing but that, as for

today’s knowledge, stemming has some drawbacks that makes it less useful for in-

formation retrieval. In [24, 25, 41], different approaches are presented (taking full

advantage of the knowledge of a language or using a machine-readable dictionary in

conjunction with a stemmer) showing that by going beyond a simple stemming step,

morphological analysis is very useful for information retrieval.

2.3 Beyond simple suffix stripping

The approach used by Sun Microsystems information retrieval system [41] is to

provide morphological analysis and an ontology at two different stages: the indexer

and the query processor.

2.3.1 Architecture of Sun Microsystems information re-
trieval system

The Sun Labs Search Engine [15] provides morphological analysis both on indexing

and querying. The query processor tries to obtain morphological variants of the

2.3. Beyond simple suffix stripping 14

query terms with two morphological analysis techniques: a stemmer and Lightweight

Morphology. One can also choose not to perform morphological analysis on the query

terms or specify which technique has to be used for each term of the query.

The indexer’s goal is to create a classical index of the documents along with

building an optional taxonomy of concepts. Aggressive morphological analysis as-

sisted by a lexicon is used to build the taxonomy. The taxonomy can then be used by

the query processor to obtain subsumed concepts of the terms provided in the query.

Figure 2.6 presents an architectural overview of the engine.

2.3.2 Lightweight Morphology

Lightweight Morphology is a morphological analyzer of terms provided in queries.

It consists of producing morphological variants from a query term, whereas stemming

tries to reduce terms to a unique stem. This can be seen, from a mathematical point

of view, as creating the equivalence class of the word. If we have a noun as input,

we want the word’s inflections and derivations (and the inflections of the derivations)

as part of the query. For example, for the French word étudiant, we would want

étudiants, étudiante and étudiantes, along with étudier and all its inflected forms as

an intrinsic part of the query.

Lightweight Morphology’s goal is to build a cluster of words that approximate

the equivalence class. An example of such a cluster can be found in Figure 2.7.

The analogy to the mathematical concept of equivalence class is not total: during

Lightweight Morphology processing we can create non-existent words or we can have

a word appearing in different equivalence classes but with a different meanings (e.g.

found −→ find or found −→ founder). The non-existent words are not a problem

2.3. Beyond simple suffix stripping 15

Document Handler
− tokenizer
− markup interpreter

Lexical analyzer

Aggressive
morphological rules

Lexicon
Specialized
lexicon(s)

Syntactic and
semantic
information

Taxonomic
classifier

collection
Indexed

taxonomy
Concept

Collection Tokens

IR System − Indexer

(a) Indexer.

Query parserQuery
Query terms and

information
preprocessing

Subsumed terms

Concept
expansion

Morphological
variants

Lightweight
Morphology

Stemmed
variants

Stemmer

Concept
taxonomy

Expanded query
ranking algorithm

Query evaluator
and

of documents
Ranked list

collection
Indexed

IR System − Query processor

(b) Query processor.

Figure 2.6: Sun Microsystems information retrieval system architecture.

2.3. Beyond simple suffix stripping 16

because if they do not exist, they will (hopefully) not appear in an indexed text and

never be retrieved.

Cluster of words built by
Lightweight Morphologyabrogates

abrogating

abrogations

abrogation

abrogate

abrogated

Figure 2.7: Relationship introduced by Lightweight Morphology.

Lightweight Morphology shares some of the properties of stemming: automatic

query expansion and clustering. Lightweight Morphology, however, does not normal-

ize a query. This is one of its strengths; normalizing means having a single representa-

tive for a class. In natural languages, this representative can fall short in representing

its whole class.

2.3.3 Conceptual Indexing

As previously pointed out, information retrieval systems can be improved by providing

morphological analysis at a higher level and solving part of the paraphrase problem

(i.e. how to formulate a search for a concept as a query, until the terms appear in a

relevant document indexed by the IR system). Lightweight morphology provides some

morphological analysis, or better said, uses morphological information to produce

possible morphological variants.

2.3. Beyond simple suffix stripping 17

Conceptual indexing [38] goes beyond producing morphological variants. It tries

to organize knowledge with a taxonomy using the notion of subsumption.

To build this conceptual index (a taxonomy of subsumed terms), a core lexi-

con containing about 40,000 subsumption axioms (mostly for roots and irregularly

inflected forms) and an aggressive morphological analysis [38, 39] (or Heavyweight

Morphology) of about 1200 rules dealing with prefixes, suffixes, inflections and com-

pounding are used. The role of the morphological analysis is to identify syntactic

features along with semantic relationships. The core lexicon will handle the cases

where the aggressive morphological analysis fails.

The taxonomy is used at query time by automatically adding more specific terms

to the query. Adding more general terms is also possible but not suitable. For

example, a query containing vehicle will probably look for documents containing car

and truck.

2.3.4 Heavyweight Morphology

Aggressive morphological analysis (or Heavyweight Morphology to contrast with the

Lightweight Morphology) is relying on rules. A typical Heavyweight Morphology rule

is presented in Figure 2.8. The rule is divided between conditions and inferences.

The first line of Lisp is a condition/action performing the following: if the word ends

in fish, remove this ending and let root be the stripped word (e.g. catfish will be

turned into cat). The next two lines are conditions, checking if root is a plausible

root (e.g. it has at least a vowel in it) and if the root is an adjective or a noun. The

second condition also creates a category nmsp, ‘a category indicating a word that has

a mass sense, a singular count sense, and can also be used as a plural (e.g. Goatfish

2.3. Beyond simple suffix stripping 18

are funny-looking).’ [39], in which the word is assigned.

The following lines are the inferences: given that the previous conditions are true,

the root of the word is a false root, the word is defined as a kind of fish, the prefix

of the word is root, fish is the real root of the word and the word belongs to an es

inflectional paradigm.

((f i s h) (kill 4)

(test (plausible-root root))

(cat nmsp (is-root-of-cat root ’(adj n))

eval (progn (mark-dict lex ’false-root root t t)

(mark-doct lex ’kindof ’fish t t)

(mark-dict lex ’has-prefix root t t)

(mark-dict lex ’root ’fish t t)

’-es)))

Figure 2.8: -fish Heavyweight Morphology rule written in Lisp (from [39]).

The rules are ordered from the most specific to the most general following an

heuristic. As in Lightweight Morphology, the process will stop at the first rule en-

countered that is successful.

CHAPTER 3

Lightweight Morphology

Lightweight Morphology (LM) should be seen more as a methodology than a pro-

gram (although there is a Java implementation). As a methodology, it should provide

a formalism that is independent of the underlying implementation. Lightweight Mor-

phology is a concept that was introduced by William Woods [40], but lacked a formal

representation. Specifications for English, German and Spanish were already existing.

The Java implementation is in part the work of William Woods and is used in the Sun

Labs Search Engine [15]. This chapter introduces what this methodology consists of

and presents a representation to specify a Lightweight Morphology for any natural

language using affixes.

3.1 Generating Morphological Variants

Lightweight Morphology is a methodology that is similar to stemming because it

uses natural language morphological analysis. If both approaches use morphological

information, LM and stemming results are opposite.

19

3.1. Generating Morphological Variants 20

In stemming, the goal is to strip affixes from a word to reduce related words

(either by inflection or by derivation) into a common stem. The LM approach is

rather different since it focuses less on finding the right affix to strip and more on the

construction of a word with reasonable affixes the root could have. Also, it does not try

to reduce morphologically related words into a common stem but instead it explicitly

creates those morphologically related words. Of course, affixes are important in LM,

since word creation is essentially ruled by affixation, but affix stripping can sometimes

be too weak to generate the root of the word.

The term lightweight refers to the fact that this methodology does not have ac-

cess to a lexicon or dictionary to perform word look up, so no a priori part-of-speech

decision is made. Instead, the methodology relies on the fact that the morphol-

ogy of the word (ending letters, letter at a certain position) is sufficient to guess

the part-of-speech of the word, and that non-valid morphological variants (e.g. con-

trol −→ *controlest) will be naturally filtered by the collection (see Figure 3.1).

Lightweight Morphology
Engine

Existing
words

words
Non−existing

Indexed collection

not in the
collection

Morphological variants Filter

not retrieved

not retrieved

in the collection

Query word

retrieved

Figure 3.1: Lightweight Morphology variant production and filtering.

3.1. Generating Morphological Variants 21

3.1.1 Components of Lightweight Morphology

We need to distinguish two components of Lightweight Morphology: the overall ar-

chitecture needed to implement a Lightweight Morphology (of limited interest for the

following discussion) and the architecture needed to specify a Lightweight Morphology

for a specific natural language.

3.1.1.1 Architecture of Lightweight Morphology

A Lightweight Morphology engine is divided between the natural language specifica-

tions, called Language Specification for Lightweight Morphology (LangLM),

whose responsibility is to represent how morphological variants have to be created

for a defined natural language and the LangLM processor that is responsible for

creating the variants using this representation (see figure 3.2).

LangLM specification

LangLM processorQuery
word variants

List of

Lightweight Morphology
implementation

en es ... de fr

Figure 3.2: Lightweight Morphology implementation architecture.

3.1. Generating Morphological Variants 22

3.1.1.2 Defining a Language Specification for Lightweight Mor-

phology

LangLM is a set of three interacting parts. The first one (mandatory) is a set of rules

that define patterns the word must match and the morphological variations that are

applied to the matched word. The second one (optional) is a way for the user to

define their own rules in Java, thus completing the expressiveness of LM. The third

one (optional, but strongly suggested) is an exception table, which is designed to

capture all the exceptions of a language that would be too complicated or too tedious

to implement as rules (e.g English irregular verb think inflecting to thought).

We will present in the following section how the rules are structured, describe

each component in detail and how the three components interact with each other.

Two formalisms exist to write a LangLM — writing Java code directly or using

the LiteMorph language (see Chapter 4). The two formalisms are very close, since the

LiteMorph formalism is based on the Java formalism. We decided to present LM with

the LiteMorph formalism because it avoids talking about some Java considerations.

Section 4.3.1 will describe the Java formalism. In the following sections, if a paragraph

begins with [Java implementation] we are talking about the Java formalism.

3.1.2 Aggregation of rules with a rule set

Before going into the details of how to write rules, we define here the notion of a

rule set. As we will see in Section 3.1.6, ordering the rules is important. Moreover,

some rules should only be tried in certain conditions, for example when creating a

noun derived from a verb. LM provides a way to perform such operations. Each rule

3.1. Generating Morphological Variants 23

is encapsulated and ordered in a rule set. The default rule set is the first one to

be tried, and the others are used only if an explicit call is made to them. We can

somewhat change this behaviour by defining an ending rule set, a rule set where

all rules that process input words with the same ending are grouped together. In this

case, if a word has this ending, the default rule set will not be tried first, but the rule

set defined with this ending will. If the rule set is neither a default rule set nor an

ending rule set, then it is a common rule set, which can be called but has no special

behaviour.

A Java rule set also exists. It is a specific kind of rule set containing Java code

instead of pattern-matching rules (see Section 3.1.4).

As further explained in Section 3.1.6, the order of the rules inside a rule set is

important, since Lightweight Morphology stops at the first successfully matching rule

it encounters inside a rule set. The order of the rule sets does not matter.

Here are summarized the four existing rule sets, and the grammar for the rule

set is given in Figure 3.3:

Default rule set The rule set to try first when given a new input word to process.

Defined with:

DEFAULT RULESET rule set name { rule 1 . . . rule n }

Ending rule set The rule set to try first if the new input word to process ends by

the character sequence defined by the rule set. Defined with:

RULESET rule set name ENDING ending letters { rule 1 . . . rule n }

Rule set A common rule set that can be called. Defined with:

RULESET rule set name { rule 1 . . . rule n }

3.1. Generating Morphological Variants 24

Java Rule set A rule set defined with Java. Defined with:

JAVARULESET Java code ENDJAVARULESET

1 RuleSetDefault ::= RULESET DEFAULT Id { { Rule }+ }
2 RuleSetEnding ::= RULESET Id ENDING Id { { Rule }+ }
3 RuleSetNormal ::= RULESET Id { { Rule }+ }
4 JavaRuleSet ::= JAVARULESET { JavaCode }* ENDJAVARULE-

SET
5 Id ::= Letter { Letter | Digit | - }*

Figure 3.3: Rule sets grammar (LiteMorph formalism).

For example, a rule set containing rules to process words ending with -s (the

plural ending for English) will be defined by RULESET sEnding ENDING s { ...}.

[Java Implementation] In the Java version of LM, each rule set is defined as

a string array, except for the Java rule set. Each identifier (variable name) defin-

ing the string array is then mapped to another identifier which is the real name

of the rule set via the method defRule(String real rule set name, String[]

array of string name). The distinction between the different kinds of rule sets

is done with the name of the rule set by (1) prefixing the name by ‘:’ if it is a rule

set, (2) not prefixing if it is an ending rule set and defining the name as the ending

pattern, and (3) defining the default rule set with the name ‘:unnamed’. Java rule

set valid names are defined in the computeMorphArgs() method.

[Java Implementation] For the previous example, the Java implementation

would first define the following array:

String[] sString = { "rule 1", ... , "rule n"};

and then call

3.1. Generating Morphological Variants 25

defRule("s", sString)

3.1.3 Generating variants with pattern-matching rules

A pattern-matching rule is made of the following elements:

1. On the left hand side of the rule, a pattern the word has to match in order

to apply the rule. The pattern is defined with regular expressions, and some

mechanism is provided to interact with the right hand side.

2. On the right hand side of the rules, a list of morphological variations that are

to be applied in order to obtain the variants.

3. The left hand side is separated from the right hand side with the ‘->’ production

symbol.

The grammar for the pattern-matching rule is given in Figure 3.4 and an example

of a simple pattern-matching rule for English is given in Figure 3.5. In this example,

the word timeless matches the left hand side pattern (the word has to end with less

and the letter before less has to be a vowel), and the right hand side production creates

time, timer, timers, *timest, timed, timing, timings, timely, *timeness, *timenesses ,

*timement, *timements, and *timeful (remove less from time and append the list of

endings).

Pattern-matching rules offer more functionality than regular expression rules.

Pattern-matching rules have knowledge of the previous states (the previously matched

characters) to make a decision for the current state whereas regular expression rules

can only make a decision based on the current state. Moreover, while performing the

3.1. Generating Morphological Variants 26

1 Rule ::= PatternElements -> ModificationPatterns ;
2 PatternElements ::= [FirstPattern] { LeftPatternEnd }* [LeftPat-

ternInside] { LeftPatternEnd }* [LastPattern
]

3 FirstPattern ::= [BeginWord] { LeftAnchoredPattern }* Begin-
Delimiter

| BeginWord
4 BeginDelimiter ::= -
5 BeginWord ::= #
6 LeftPatternEnd ::= [.] LeftAnchoredPattern
7 LeftPatternInside ::= < { LeftAnchoredPattern }* >
8 LeftAnchoredPattern ::= OpSet Letters | &
9 OpSet ::= [|] [˜] [* | + | ?]
10 Letters ::= UnOrderedList | OrUnorderedList | LetterVari-

able
11 LastPattern ::= EndDelimiter { LeftAnchoredPattern }* [End-

Word] | EndWord
12 EndDelimiter ::= +
13 EndWord ::= #
14 ModificationPatterns ::= RightPattern { , RightPattern }*
15 RightPattern ::= ReapplyPattern [&] [EndSubstitution | Inside-

Substitution]
| > Mode UnOrderedList > UnOrderedList / [

UnOrderedList]
| & [EndSubstitution | InsideSubstitution]
| * [EndSubstitution | InsideSubstitution]
| { EndSubstitution | InsideSubstitution }

16 ReapplyPattern ::= [TRY] ([Id])
17 EndSubstitution ::= UnOrderedList [-] UnOrderedList | Un-

OrderedList | [-] UnOrderedList | [-] Un-
OrderedList |

18 InsideSubstitution ::= < [UnOrderedList] > [ContextPattern]
19 ContextPattern ::= / [EndSubstitution]
20 Mode ::= * | < | >
21 Id ::= Letter { Letter | Digit | - }*
22 UnOrderedList ::= Letter { Letter | Digit }*
23 OrUnorderedList ::= Letter { | { Letter | Digit } }+
24 LetterVariable ::= $ Letter { Letter | Digit | - | }*
25 Letter ::= { A | ... | Z | a | ... | z }
26 Digit ::= { 0 | ... | 9 }

Figure 3.4: Pattern matching rule grammar (LiteMorph formalism).

3.1. Generating Morphological Variants 27

.aeiou + l e s s -> ,s,er,ers,est,ed,ing,ings,ly,ness,nesses,

ment,ments,ful;

Figure 3.5: Example of LM pattern matching rule for English.

pattern-matching, some tagging is done in order to know how and where to generate

the morphological variations.

[Java Implementation] The Java version of LM uses almost the same grammar

for pattern-matching rules. The major differences are (1) rules are strings and placed

inside quotes so no ‘;’ is needed to end a rule, (2) a call to rules is made by specifying

the kind of rule set to call (with a ‘:’ or ‘!’ prefix), and (3) a blank can have a more

important meaning.

3.1.3.1 Left hand side to define a pattern

The left hand side of the pattern-matching rule has two purposes: (1) define a pattern

on which the rule has to apply, and (2) define the parts on which the morphological

modifications have to be applied.

The character sequences are defined as follows:

Unordered letters A group of letters separated with a space stands for a concate-

nation. For example, ‘x y z’ stands for ‘x’ followed by ‘y’ followed by ‘z’;

Or Unordered letters (alternation) A group of 2 or more letters with no blank

stands for a choice between letters. For example, ‘xyz’ stands for ‘x’ or ‘y’ or

‘z’;

3.1. Generating Morphological Variants 28

‘&’ (double operator) Intended to repeat the last letter encountered in the pat-

tern. For example, ‘mn &’ stands for ‘m’ or ‘n’ followed by the repetition of the

same previously matched letter;

Letter variable A letter or a group of letters prefixed with a ‘$’ is a letter variable,

previously defined. For example, one can define ‘$Vowel = aeiou’ and then use

‘$Vowel’ variable instead of ‘aeiou’;

‘ ’ (blank) is used to separate character sequences or some special operators.

The different operators that help to define a pattern by modifying the meaning

of a character sequence are the following:

‘#’ (boundary operator) Defines the beginning and the end of a word, depending

on where it is placed. If no character precedes ‘#’ then it defines the beginning

of a word; if no character follows ‘#’ then it defines the end of a word; the other

cases are errors. For example ‘# x’ means a word beginning with ‘x’, ‘x #’ a

word ending with ‘x’;

‘.’ (anywhere operator) Used as a prefix operator of a letter (or a group of letters)

to indicate that the letter (or the group of letters) can be encountered anywhere

in between the preceding and the following patterns. For example ‘x .y z’ means

a word containing an ‘x’ with a ‘z’, and a ‘y’ between the ‘x’ and the ‘z’, thus

‘xyz’ and ‘xdeyfz’ both match the previous pattern. Without being preceded

by this symbol, a letter (or a group of letters) has to be encountered where it

is defined in the pattern, as with ‘x y z’ (so ‘xdeyfz’ is not recognized by this

pattern);

3.1. Generating Morphological Variants 29

‘|’ (or operator) Used as a prefix operator of a group of letters to indicate a choice

between letters. For example ‘|xyz’ stands for ‘x’ or ‘y’ or ‘z’ and it is equivalent

to ‘xyz’. This operator can also be used inside a group of letters between each

letters, for an equivalent meaning. For example ‘x|y|z’ stands for ‘x’ or ‘y’ or

‘z’;

‘˜’ (not operator) Used as a prefix operator of a letter (or a group of letters) to

indicate that the letter (or the group of letters) should not be encountered. For

example, ‘# ˜n’ consists of all the words that do not begin with ‘n’.

‘?’ (zero-one operator) Used as a prefix operator of a letter (or a group of letters)

to indicate that the letter (or the group of letters) should be encountered zero

or one times;

‘+’ (one-many operator) Used as a prefix operator of a letter (or a group of

letters) to indicate that the letter (or the group of letters) should be encountered

one or more times;

‘*’ (zero-many operator) Used as a prefix operator of a letter (or a group of

letters) to indicate that the letter (or the group of letters) should be encountered

zero or more times;

The following operators describe how to define a pattern that will interact with

the right hand side of the rule:

‘- ’ (begin substitution marker operator) Indicates the start of a word that has

to be stripped. Everything before this operator is like the rest of the pattern

matching rule (except no anywhere operator and no inside substitution operator

3.1. Generating Morphological Variants 30

are allowed after this operator). Therefore, ‘y z - .wx’ designs a word that

contains ‘w’ or ‘x’ and that starts with ‘yz’. The word that is passed to the

right hand side is the word stripped of ‘yz’. Note that ‘-’ has the same meaning

as ‘#’ at the beginning of a rule (if ‘#’ is not followed by the ‘- ’ operator with

a substitution pattern);

‘+ ’ (end substitution marker operator) Indicates the ending of a word that

has to be stripped. Everything after this operator is like the rest of the pattern

matching rule (except no anywhere operator and no inside substitution operator

are allowed after this operator). Therefore, ‘.wx + y z’ designs a word that

contains ‘w’ or ‘x’ and that ends with ‘yz’. The word that is passed to the right

hand side is the word stripped of ‘yz’. Note that ‘+ ->’ has the same meaning

as ‘#’ at the end of a rule (if ‘#’ is not preceded by the ‘+ ’ operator with a

substitution pattern);

‘< pattern >’ (inside substitution marker operator) Used at most once be-

fore the ‘+ ’ operator to define a pattern that can be modified by the right

hand side of the rule. For example, ‘< n > |bmp + s’ indicates a word ending

with ‘nbs’, ‘nms’ or ‘nps’, where the ‘n’ can be modified by the right hand side

of the rule.

3.1.3.2 Right hand side to define morphological variants

The right hand side is a listing of morphological variations to apply to the identified

pattern. The most common way to create morphological variants is to define mor-

phological variations to append at the end of the matched word or to substitute at

the ending of the matched word (which has been marked on the left hand side of the

3.1. Generating Morphological Variants 31

rule with the ‘+ ’ operator) with some morphological variations. The matched word

(which contains markers on where modifications can take place) is called the root

term.

On the right hand side of the rule, the meaning of a character sequence is different.

The meanings are as follows

Ordered letters ‘abc’ stands for ‘a’ followed by ‘b’ followed by ‘c’, so ‘abc’ will be

appended at the end of the root term. ‘a b c’ is an error;

‘&’ (double operator) As the first character of a character sequence, it specifies

the doubling of the last character of the root term. The ‘&’ must appear only

at the beginning;

‘ ’ (empty operator) Stands for the empty string.

LM provides other operations to perform morphological variations, as follows:

‘leftadd rightadd’ (prefix-suffix substitution operator) Append ‘leftadd’ be-

fore the root term and ‘rightadd’ after the root term. ‘leftadd’ and/or ‘rightadd’

can be an empty string.

‘< morphological variation >’ (inside substitution operator) Refers to the

same operator on the left hand side of the rule. Different possibilities are given

with this operator:

‘< .. >’ or ‘< .. >/’ or ‘< .. >/ ’ Substitutes the matched character se-

quence on the left hand side by the one defined in the right hand side. No

other operation is carried out;

3.1. Generating Morphological Variants 32

‘< .. > /rightadd’ or ‘< .. > / rightadd’ Substitutes the matched char-

acter sequence on the left hand side by the one defined in the right hand

side, and ‘rightadd’ will be appended at the end of the root term;

‘< .. > /leftadd rightadd’ Substitutes the matched character sequence on

the left hand side by the one defined in the right hand side, ‘rightadd’

will be appended at the beginning of the root term and ‘rightadd’ will be

appended at the end of the root term;

‘(rule set name) morphological variation’ (call operator) Used to call the

rule set (see Section 3.1.2) defined inside the parenthesis, and to apply the rules

defined inside the rule set on the root term modified by the operations (referred

as ‘morphological variation’) following the ‘(rule set name)’ operator. If no

rule set name is provided, the default rule set will be called. So ‘(MySet)able’

will append ‘able’ to the root term and then apply the rules in the rule set

‘MySet’ on this modified stem.

[Java implementation] In the Java version of the LM, if the rule set name is

prefixed by ‘:’ (:MySet), we are calling a rule set; if the rule set name is prefixed

by ‘!’ (!MySet), we are calling a Java rule set; finally if we do not prefix the

rule set name (MySet), we are calling an ending rule set.

‘TRY’ (try operator) One can prefix the call operator with TRY, so if the whole

rule does not produce any variant, the next rule will be tried. This can be useful

when calling a user defined rule in Java using a small lexicon of exceptions

and the matched word is not one of this exception. For example, ‘+ e r -

> TRY(:ErVerb), able’ will try the next rule if the call to ‘ErVerb’ does not

produce variants, else it will stop;

3.1. Generating Morphological Variants 33

‘*’ (reapply operator) As the first character of a character sequence, it indicates

to call with the root stem modified by the character sequence following the

operator the proper ending rule set (if existing) or the default rule set. Calling

‘()’ (no rule set name specified) or ‘*’ will not always produce the same effect.

For example ‘+ s -> * ’ will strip the ‘s’ from a word ending with ‘s’ and call

the proper rule set on this root term (an ending rule set if appliable on the root

term, a default rule set if not). ‘+ s -> () ’ will call the default rule set;

‘> mode >> pattern > modif / leftadd’ (pattern substitution operator)

Operator that will append ‘leftadd’ to the root stem (if left add is not empty)

and then search for ‘pattern’ that will be substituted by ‘modif’. Three substi-

tution modes defined by ‘mode’ are available:

‘*’ substituting every appearance of ‘pattern’

‘<’ substituting the left most appearance of ‘pattern’

‘>’ substituting the right most appearance of ‘pattern’

Each of the ways to define morphological variants can be juxtaposed on the right

side of the rule by separating each morphological variant with a comma (‘,’) and

indicating the end of the rule with a colon (‘;’).

3.1.4 Java rule set: user-defined rules with Java

Sometimes, pattern-matching is not enough to describe morphotactics. LM provides

an escape mechanism to call a rule that is defined in Java. The user defined rules

in Java are a special type of rule set that are written in Java instead of the rule

formalism introduced in the previous section.

3.1. Generating Morphological Variants 34

A java rule set, from a pattern-matching rule point of view, behaves just like

an ordinary rule set; that is, it can be called by a rule exactly the same way a rule

calls a rule set and it returns a set of morphological variants. A Java rule set can also

call pattern matching rule sets.

3.1.4.1 Writing Java code

The method where the Java code for every Java rule set will be written is called

computeMorph. The prototype of the method (with the description of each variable)

is the following:

String[] computeMorph(String input, String arg, int depth,

String prefix, String suffix)

where

input is the input stem to process,

arg is the name under which the user defined rule is called,

depth is a variable to get the recursion depth,

prefix is a variable to pass the prefix of the current stem,

suffix is a variable to pass the suffix of the current stem, and

Output should be an array of strings where each element of the array is a morpho-

logical variation.

When using the LiteMorph language (see Chapter 4), there is no need to write

down the prototype of the function. This is done at compile time and everything

3.1. Generating Morphological Variants 35

between JAVARULESET and ENDJAVARULESET will be inserted in the body of this func-

tion. One has to know what variables can be used, and what types of objects have

to be returned.

As we can see, if one chooses to create two Java rule sets named A and B, the

associated Java code for both rules is inside the computeMorph method, but the call

is made with a different arg value. The selection of the code to execute will be made

by an if-else or a switch statement on the value of arg.

3.1.4.2 Calling a rule set

To call a rule set with Java code, one has to use the morphWord method whose

prototype is as follows:

void morphWord(String word, int depth, String ruleSetName,

Vector variants)

where

word is the input stem to process,

depth is a variable to get the recursion depth,

ruleSetName is the rule set to call, and

variants is a vector to store the morphological variations that are produced.

The LiteMorph language (see Chapter 4) provides a shortcut to this function:

void applyrule(String word, String ruleSetName, Vector variants)

The compiler automatically generates a call to the function with the value of depth

3.1. Generating Morphological Variants 36

incremented by 1. It is highly recommended to use this shortcut since it will check if

‘ruleSetName’ is an existing rule set.

3.1.4.3 Defining Table and List

One can also manipulate two useful data structures that we call Table and List. Table

consist of multiple entries where each entry consist of a list of words. The Table data

structure allows one to retrieve every word of an entry from any of the words in the

same entry. Two kinds of tables exist, one which normalizes the number of words

per entry and one which does not. Normalized Tables are mainly used to store a

restricted paradigm of irregular verbs. List is an easier data structure that contains

a list of words. This structure is mainly used to store a list of affixes. One can also

create new lists by concatenating other lists.

[Java implementation] A Table is in fact an array of strings then transformed

to a special kind of Hashtable. The purpose of tables is to store multiple entries were

an entry is composed of multiple words. Each word of the entry is then a key to

retrieve the entry. A List is just a string were each word is separated with a space.

The following list along with the grammar in Figure 3.6 define the usage of tables

and lists:

Normalized Table Contains the same number of words per entry as defined in the

header. Defined with:

TABLE { [header 1, . . . , header n] entry 1 . . . entry m}

entry i is word 1, . . . , word n; (If n headers are defined, only n words are

allowed)

3.1. Generating Morphological Variants 37

General Table Contains any number of words per entry. Defined with:

TABLE { entry 1 . . . entry n}

entry i is word 1, . . . , word j; (There is no constraint on the number j of

words)

Lists Contains a list of words. Defined with:

LIST { word 1; . . . ; word n;}

1 Id ::= Letter { Letter | Digit | - }*
2 Word ::= Letter { Letter | Digit | - }*
3 TableDef ::= TABLE Id { [[Id { , Id }*]] {Word { , Word }* ; }+ }
4 ListDef ::= LIST Id { { Word ; }+ }
5 ListConcat ::= LIST Id = Id { + Id }* ;

Figure 3.6: Table and List grammar (LiteMorph formalism).

3.1.5 Exception table

Every language has exceptions or irregularities, and some are so exceptional that they

cannot be encoded as rules. Most of the time, those exceptions are intensively used

words that earned a very irregular pattern over the centuries. Classical examples that

apply to many languages are ‘to be’ and ‘to go’. Table 3.4 highlights some of those

morphological variations.

LM provides a mechanism to write this kind of exception via an exception table

(a special case of the tables described in the previous Section). The exception table

can be seen as a kind of lexicon where morphological inflections and derivations of a

3.1. Generating Morphological Variants 38

Table 3.4: Some language exceptions of to go and to be in English, French and
Spanish.

verb English French Spanish

to be be, am, are, was, were être, suis, es, sommes,
êtes, fus, serai

ser, soy, eres, somos,
fui, seré

to go go, goes, went, gone aller, vais, allons, irai,
aille

ir, voy, iba, fui, fuese

word are grouped together. For example, an entry for the verb to go would look like

‘go, goes, went, gone, going, goings, goer, goers;’. If gone is the input word all the

words from the entry of to go will be returned, since gone is one of the to go entries.

The way to build an exception table is the following:

EXCEPTIONS { entry 1 . . . entry n }

The exception table can also be used for words where rules produce incorrect

morphological variations (morphological variations that are real words but are not

related to the input word), or for words that do not require processing by rules, like

adverbs.

Sometimes, a word can have different meanings, and both of those meanings are

correct. For example found can be related to to find or to to found. LM does not

discriminate one of the forms. If there are two entries in the exception table, one

with morphological variations of to find and one with morphological variations of to

found, and if the input word is found, morphological variations of both entries will be

returned. If find is the input word, however, only morphological variations from the

to find entry are returned.

As we will see in 3.1.6, if an input word matches a word in the exception table,

3.1. Generating Morphological Variants 39

all the related words from the exception table are returned, but no rules are tried.

This is the desired behaviour, since an exception must not be processed by rules if

we know it is an exception.

[Java implementation] In the Java version of LM, the exception table is an

array of string where each element is an entry. Also, words are separated by blanks

(‘ ’) instead of comas (‘,’).

3.1.6 Lightweight Morphology flow

The order in which each component is processed is important, since not all the rules

are tried and since the exception table has a higher precedence than the rules. The

flow of LM is as follows:

1. Check if a word in the exception table matches the input word. If a word

matches, then all the morphological variants from each entry containing the

input word are retrieved from the exception table and no rule will be tried. If

this step produced variants, exit and return the morphological variants, else go

to 2.

2. Check if an ending rule set is defined and if the input word ends with this

predefined ending. In this case, the starting rule set will be the ending rule set,

otherwise the starting rule set will be the default rule set. The starting rule set

becomes the current rule set. Go to 3.

3. If the current rule set is a pattern matching rule set, go to 4. If it is a Java rule

set, go to 5.

3.2. Xerox Finite State Morphology representation 40

4. See if the input word matches a pattern in the current rule set. The rules are

tried from first to last. When a rule succeeds, no further rules are tried (unless

the TRY operator is used) and the matching rule does everything asked on the

right hand side. Go to 6.

5. Execute the Java code on the input word. If the method returns null, the Java

rule set will be considered to have failed. Go to 6;

6. If the rule explicitly calls a specific rule set, then the current rule set will be this

specific rule set. Also, the input word for this specific rule set will be a modified

stem (a word resulting from the morphological variation operation defined in

the calling rule). Go to 3 if a call to a rule set is made, else exit and return all

morphological variants found so far.

3.2 Xerox Finite State Morphology representation

Xerox Finite State Morphology (XFSM) [3] is a set of tools using finite state

automata to perform lexical/morphological analysis. We investigated the possibility

of using XFSM to implement a Lightweight Morphology. The complete results of this

investigation is available in [33]. This section will only cover the most important

points.

A finite state transducer is a two level finite state automata where the first

level, called the upper language, is the input word and the second level, called the

lower language, is the output. This difference between input and output is purely

artificial since the lower language can be the input and the upper language can be

the output.

3.2. Xerox Finite State Morphology representation 41

Finite state transducers are used to map a set of letters into another set of

letters. Different uses are made of finite state transducers: translation from a natural

language to another (the translation is bidirectional so it does not matter which one

is the upper language), morphotactics (see Figure 3.7 where from the surface form

jolies we can produce the analysis +adj +fem + plur) or pronunciation.

j

ε

o

ε

l

ε

i s

ε

eε

+adj +fem +plur
s

+plur

Figure 3.7: Morphological finite state transducer for the French word joli.

One interesting feature of XFSM is its representation of replacement rules. That

is exactly the kind of behaviour we are facing with the pattern matching rules in

Lightweight Morphology, and the syntax used in XFSM is quite similar to the one

used in Lightweight Morphology. Our goal was to see if the replacement rule formalism

could successfully represent the pattern matching rules from LM and if the finite state

technology produced the same set of variants. We did not try to create rule ‘thinking’

in XFSM. We used a straightforward approach, translating a subset of the English

LangLM pattern matching rules into a set of rules in the XFSM formalism that we

thought would have the same behaviour. Figure 3.8 contains an example of such a

transformation.

Different problems arose when testing this representation. The finite state au-

tomata produced from the XFSM rules suffered from a ‘recursion problem’, producing

words like *controlnessesed showing that first -nesses was appended to control, then

-ed was appended to *controlnesses. It is indeed very hard to control how variants

3.2. Xerox Finite State Morphology representation 42

.aeiouy + -> s,er,ers,est,ed,ing,ings,ly,ness,

nesses,ment,ments,less,ful;

(a) LiteMorph formalism.

[0] -> [s]|[e r]|[e r s]|[e s t]|[e d]|[i n g]|[i n g s]|

[l y]|[n e s s]|[n e s s e s]|[m e n t]|[m e n t s]

|[l e s s]|[f u l] || $[a|e|i|o|u|y] .#.

(b) XFSM formalism.

Figure 3.8: Translating LiteMorph formalism to XFSM formalism.

are produced with XFSM. We tried different approaches to constrain the context in

which the rule should apply but without useful results. Lightweight Morphology offers

complete control on how variants should be produced from a pattern. XFSM tries

to produce as many variants as it possibly can following the patterns. This includes

having the morphological variants produce other morphological variants.

Some attempts were made to control the production of variants, mainly by im-

plementing a kind of rule set, but the time efficiency dropped drastically.

The other problem of XFSM is that is does not support the notions of exception

lists, rule sets and user defined rule sets (it was not designed to produce multiple

morphological variants). Even if XFSM could successfully represent a subset of the

pattern matching rules, it would fall short in trying to support the missing features.

Our conclusion is that XFSM is not suitable to represent a Lightweight Morphology.

CHAPTER 4

LiteMorph: a language for Lightweight
Morphology

LM has already been implemented by Sun Microsystems in Java. In Sun’s version,

there is no separation between the core engine of the Lightweight Morphology, (the

LangLM processor that will parse and execute the rules) and the language modules

(LangLM that define the rules for a language). Each LangLM is defined in a class

that extends the Lightweight Morphology engine class. There are two problems with

this approach:

1. A new LangLM has to be defined in Java. Some methods have to be redefined

(overloaded) and some variables have to be initialized in a certain way that

deal with Java syntax and knowledge of the parent class. This complexity is

not needed and can be automated.

2. LangLM is written in Java, so there is no error checking for rules (syntax, use

of non-initialized variables) until the code is compiled and the engine is run.

43

4.1. LiteMorph as a language for Linguists 44

4.1 LiteMorph as a language for Linguists

Since the framework for LM was already present and since it appears not possible

to easily use another representation for LM (see Section 3.2), we decided to ease the

writing of a LangLM by introducing a formal representation. The aim is to have a

representation that is close enough to the existing representation (i.e. the pattern

matching rule syntax) but that would avoid Java syntax (i.e. defining rule sets inside

arrays of string) and unnecessary complexity for linguists.

The best representation we could think of was to create a language that would

be translated into its equivalent in Java. The main benefits of this approach are:

1. No unnecessary Java syntax has to be used when writing a new LangLM or

modifying an existing one.

2. Most of the initialization in the Java code (i.e. creation of predefined methods,

call to specific methods, initialization of some variables) can be automated at

compile time.

3. Error checking can be performed at compile time, especially the pattern match-

ing rule syntax (see Section 3.1.3), avoiding run-time debugging to detect such

errors.

4. LM can be implemented in different computer object-oriented languages (e.g.

C++, Python) and the existing LangLM can be translated (with the appropri-

ate compiler) to the computer language the LM framework is using.

5. There is no need to rewrite a LM framework to perform testing.

4.2. Abstracting Java with LiteMorph 45

4.2 Abstracting Java with LiteMorph

We abstracted the Java code into the LiteMorph language via the following steps:

1. Defining a context free grammar for the pattern matching rules.

2. Adding expressiveness to the grammar by adding features such as rule set sup-

port or language definition.

3. Including support for Java and control integration with LiteMorph.

4.2.1 LiteMorph pattern matching rules grammar

This step is the most important one and also the most complicated. The sources to

define the grammar are of four kinds: (1) documentation to build a Java Lightweight

Morphology [43], (2) existing LangLM in English, German and Spanish, (3) Java

source code to parse the pattern matching rules, and (4) William Woods, creator of

Lightweight Morphology. The first two sources appeared to be the most useful, along

with William Woods to check if our grammar was as he intended LM to be.

Our grammar construction method was straightforward. First, we tried to build

the grammar with the available documentation. Then, we tested our grammar by

parsing the existing LangLM. We iterated the steps of building the grammar and

testing until we could successfully parse all three existing LangLMs. Not all docu-

mented features of the pattern matching rules are used in the different LangLM and

the documentation does not fully explain the allowed syntax. We had to produce a

‘test LangLM’ to see if the grammar could parse the document features that were

4.2. Abstracting Java with LiteMorph 46

not used. This ‘test LangLM’ was also used to see which undocumented syntax was

accepted by the Java LM.

The resulting grammar (which can be seen in Figure 3.4) successfully parsed the

three existing LangLMs.

4.2.2 Extending LiteMorph grammar

Parsing pattern matching rules is a big step but not enough to cover a full LM. There

are multiple features that need to appear, namely:

Language definition The language definition of the LangLM, consisting of an iden-

tifier. The identifier is used to define the name of the class that contains the

LangLM (the English LangLM will have the class name ‘LiteMorph en’).

Debugging options LM has run-time debugging options that can be turned on or

off in the LangLM.

Letter variable initialization As we have seen, pattern matching rules can use

letter variables and we should be able to initialize the value of such variables.

Exception table One of the features of LM defined in Section 3.1.5.

Rule sets One of the features of LM defined in Section 3.1.2.

Comments Useful for every language.

The features are added either as keyword-value pairs or as keywords and can be seen

in Figure 4.1.

4.2. Abstracting Java with LiteMorph 47

The grammar follows the order of the previously introduced features that need

to be included. The grammar also follows the formalism that was introduced in

Section 3.1. The ∞ symbol refers to ‘anything’ so any kind of token can be matched

by this symbol. The ‘\n’ has the usual meaning of new line. Therefore one can see

that the comments are defined using the usual C (or Java) syntax, but will not appear

in the definitive LiteMorph grammar because they are removed at the lexical analysis

step.

1 Language ::= LANG = Id ;
2 Options ::= DEBUG ; | TRACE ;
3 DefLetterVariable ::= LetterVariable = UnOrderedList ;
4 Exceptions ::= EXCEPTIONS { { ExceptionsList }+ }
5 ExceptionsList ::= Word { , Word }* ;
6 RuleSetNormal ::= RULESET Id { { Rule }+ }
7 RuleSetEnding ::= RULESET Id ENDING Id { { Rule }+ }
8 RuleSetDefault ::= RULESET DEFAULT Id { { Rule }+ }
9 JavaRuleSet ::= JAVARULESET { Modifiedjavacode }* END-

JAVARULESET
10 Id ::= Letter { Letter | Digit }*
11 LetterVariable ::= $ Letter { Letter | Digit | - }*
12 UnOrderedList ::= Letter { Letter | Digit }*
13 Word ::= Letter { Letter | Digit | - }*
14 Comments ::= // ∞

| /* { ∞ [\n] }+ */

Figure 4.1: Extension to LiteMorph grammar.

4.2.3 Adding Java support to LiteMorph

One of the most interesting features is the possibility to use Java code to define our

own morphological rules. While this is quite easy to do when LangLM is using a Java

formalism (everything is using Java syntax so Java rule sets are just part of it), it is

4.2. Abstracting Java with LiteMorph 48

challenging to implement such features in LiteMorph in a linguist-friendly way. The

challenges include:

• Create a Java parser.

• Include a grammar (Java) in another grammar (LiteMorph) with possible col-

lision.

• Deal with the Interaction between Java rule sets and other rule sets (check that

called rule sets exist).

• Interact between Java rule sets and defined tables and lists.

We decided that the best way to approach such problems was by building a second

parser for the Java code with existing resources (an open source Java grammar). We

avoided a lengthy LiteMorph grammar with all the possible collisions that could arise

from mixing two different grammars. We modified the Java grammar to include built-

in methods (such as applyrule()) and statements (e.g. RULE(rule set name)) that

ease the interaction between Java rule sets and other rule sets.

The interaction between tables or lists and Java rule sets appeared impossible

to resolve in a satisfactory way. If it was fully integrated in a LiteMorph formalism,

many of the features of the underlying data structures of those objects would have

been lost, or we would have hidden too much from the underlying data structures.

We decided not to provide a particular modification to the grammar except a double

‘initialization’ with TABLE table name or LIST list name to be used in the Java

code to check for the existence of the variable names. This initialization is optional

and does not provide the features of a symbol table (check for each variable its type,

value and scope).

4.3. Translating LiteMorph into Java 49

4.2.4 Putting it together

The resulting LiteMorph grammar is presented in Appendix A. The grammar also

includes tokens.

4.3 Translating LiteMorph into Java

The previous sections introduced some concerns about the Java implementation. This

section focuses on the link between the LiteMorph formalism and the Java formalism

to write LangLM, presenting how LiteMorph should be translated into Java code.

4.3.1 Java LightweightMorphology implementation

The Java implementation is separated in two classes LiteMorph and LiteMorphRule

(see Figure 4.2). The LiteMorph class is an abstract class and each new LangLM

specification should inherit from LiteMorph. The convention is to name the new

subclass LiteMorph xx where xx stands for the two letter ISO language code (e.g.

en for English, fr for French). The LiteMorphRule class is a part of the LangLM

processor. More precisely, this class is responsible for creating morphological variants

from pattern matching rules, being a ‘pattern-matching rule processor’. The other

part of the LangLM processor is in LiteMorphRule.

We will present how one should implement the subclass of LiteMorph to define

a new LangLM specification, by going through the previously defined concepts with

LiteMorph formalism.

4.3. Translating LiteMorph into Java 50

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

ngnova.lexmorph

LiteMorph

#traceFlag :boolean

#traceAuthor :boolean

#rulesTable :Hashtable

#exceptions :Hashtable

#initialize ():void

#initialize (hashTable :Hashtable ,formsTable :String[]):void

+ variantsOf (word :String):String[]

#morphword (word :String ,depth :int ,ruleSetName :String ,variants :Vector):void

#computeMorph (stem :String ,arg :String ,depth :int ,prefix :String ,suffix :String):String[]

#computeMorphArgs ():String[]

#defRule (name :String ,ruleStrings :String[]):void

#defVar (name :String ,valString :String):void

LiteMorph_yyLiteMorph_xx

LiteMorphRule

+ LiteMorphRule (expression :String ,ruleName :String ,morph :LiteMorph):

+ getExpansions ():String[]

+ match (word :String ,depth :int ,skipnum :int):Vector

Figure 4.2: Lightweight Morphology Java implementation UML diagram.

4.3. Translating LiteMorph into Java 51

Rule sets (except Java rule sets) A rule set is defined as an array of string in the

initialize() method. Each element of the array is a pattern matching rule.

The variable of the array of string has to be mapped to its rule set name with the

method defRule(name, ruleStrings) storing the association between rule set

name and rules in the rulesTable hashtable. The rule set name is responsible

for the behaviour of the rule set. If it starts with ‘:’ then it is a normal rule

set, else (with the exception of ‘!’, used for the Java rule sets) it is an ending

rule set. For the ending rule set, the rule set name defines the ending pattern.

For example a normal and an ending rule set (ending is s) will be defined as

follows:

public void initialize() {
...

String[] normalRuleSet = { "rule 1", ... , "rule n"};
String[] sRuleSet = { "rule 1", ... , "rule m"};
defRule(":ruleSet1", normalRuleSet); // rule set name: ruleSet1

defRule("s", sRuleSet); // rule set name and ending pattern: s

...

}

Java rule sets Java rule sets are defined in the computeMorph method and the Java

rule sets names are defined in the computeMorphArgs method. The method

computeMorph knows which Java rule set name should be used with the arg

parameter. The computeMorphArgs is used only to check calls from a pattern

matching rule to a Java rule set. See Section 3.1.4 for available methods in Java

rule sets.

Exception table Exceptions lists are defined in an array of string in the method

initialize(). Each exception entry (set of morphological variants) is an ele-

ment of the string array. The exception list is then transformed in the Hashtable

exceptions calling the initialize(hashTable, formsTable) method. An

4.3. Translating LiteMorph into Java 52

exception table will be defined as follows:

public void initialize() {
...

String[] exceptionTable = { "entry 1", ... , "entry n"};
initialize(exceptions, exceptionTable);

...

}

Letter variable Letter variables are initialized calling defVar(name, valString)

method in the initialize() method and storing the association in the Hash-

able rulesTable . A letter variable will be defined as follows:

public void initialize() {
...

defVar("$Vowel", "aeioy");

...

}

Note: In the LiteMorph to Java compilation, we replace each letter variable by

its actual value.

Table Defining a Table should be done by first specifying a new private static

Hashtable object as an attribute of the current class. The process is then

exactly the same as defining an exception table.

List Defining a List should be done by defining a private static String[] as an

attribute of the current class.

4.3.2 Creating a compiler compiler

Now that we have a working grammar, we need a tool to transform the LiteMorph

grammar into a program that will be able to parse LiteMorph files. This kind of tool

4.3. Translating LiteMorph into Java 53

is called a compiler compiler. One well known compiler compiler is the duo Lex and

Yacc [27] (or their open source equivalent Flex and Bison). The output of Lex is a

lexical analyzer written in C, a program that will break the input into individual

tokens. Yacc will produce a parser written in C from a grammar, a program that

will check that a document is valid given the grammar.

For our project, we decided to use JavaCC [22] with a modern compiler approach

described in [1]. The advantages of JavaCC over Lex/Yacc are the following:

1. The parser generator and lexical analyzer generator are combined in the same

tool. Language lexical and grammar specifications are defined in a single file.

2. JavaCC is an LL(k) parser generator (this is an advantage for our grammar).

3. JavaCC is written in Java and outputs Java code, natively supporting Unicode

characters.

4. Abstract syntax tree building can be automated with JJTree [22] or JTB [21].

5. JavaCC is able to switch to different lexical states, therefore having different

interpretation of tokens depending on the state.

We converted the grammars (LiteMorph grammar and Modified Java 1.4 gram-

mar) into JavaCC grammars (see Appendix B). The definition of tokens is problem-

atic with the LiteMorph grammar since identifier tokens (a letter followed by any

kind of character) and word tokens (a letter followed by a letter or a digit) are over-

lapping. Using lexical states is a solution but it is better in such cases to rewrite the

grammar so as to correctly define an identifier or a word. We defined different tokens

where one token was included in the other (e.g LETTER1 with only letters and digit

4.3. Translating LiteMorph into Java 54

allowed and LETTER2 with letters, digit, ‘-’ and ’ ’ allowed) and assigned one or more

of those tokens to a grammar production, one named Id and the other one called

UnorderedLetters. The Id production contains all tokens that match an identifier

definition; the UnorderedLetters production contains all tokens that match a word

definition.

This problem drove the use of capital letters for keywords so if someone uses

try as a word in an exception table or as a pattern in a pattern matching rule, the

compiler will not complain about try being a keyword. This problem also influenced

us in separating the LiteMorph grammar from the modified Java grammar (avoiding

words to be analyzed as Java keywords).

Two possibilities can be used to perform the LM to Java compilation step. The

first one is to include lexical and semantic actions directly in the JavaCC code. The

second solution is to generate an abstract syntax tree, a tree where each node

corresponds to a terminal or non-terminal of the grammar. A set of visitors (using

the visitor pattern [13]) is used to traverse the abstract syntax tree and perform

interpretation depending on the type of visitor and the type of node. The second

approach is preferred since we separate the interpretation of the grammar from its

syntax.

We used JTB to automatically build abstract syntax trees. We wrote our own

visitors to perform the different interpretations. For each grammar, one visitor is

needed to initialize symbol tables and other initialization information, and a second

visitor is used to translate the LiteMorph code into Java code, following the Java

formalism defined in 4.3.1.

4.3. Translating LiteMorph into Java 55

4.3.3 Architecture of LiteMorph2Java compiler

Figure 4.3 presents the global architecture to build LM2Java and a functional LM

engine.

4.3. Translating LiteMorph into Java 56

JT
B

Ja
va

C
C

.ja
va

 fi
le

L
ite

M
or

ph
 p

ar
se

r f
ile

s

.ja
va

 fi
le

M
od

if
ie

d
Ja

va
 p

ar
se

r f
ile

s
.o

ut
.jj

 fi
le

M
od

if
ie

d
Ja

va
 g

ra
m

m
ar

.o
ut

.jj
 fi

le

L
ite

M
or

ph
 g

ra
m

m
ar

M
od

if
ie

d
Ja

va
 b

as
e

gr
am

m
ar

.jj
 fi

le

L
ite

M
or

ph
 b

as
e

gr
am

m
ar

.jj
 fi

le

A
bs

tr
ac

t S
yn

ta
x

tr
ee

/V
is

ito
r f

ile
s

(f
or

 L
ite

M
or

ph
 g

ra
m

m
ar

)
.ja

va
 fi

le

A
dd

iti
on

al
 V

is
ito

r f
ile

s

.ja
va

 fi
le

A
bs

tr
ac

t S
yn

ta
x

tr
ee

/V
is

ito
r f

ile
s

(f
or

 M
od

if
ie

d
Ja

va
 g

ra
m

m
ar

)

A
dd

iti
on

al
 V

is
ito

r f
ile

s

Ja
va

c

Modified JavaLiteMorph

LM2Java COMPILER CONSTRUCTION

(c
om

pi
le

r)
L

M
2J

av
a

na
tu

ra
l l

an
gu

ag
e

L
ig

ht
w

ei
gh

t M
or

ph
ol

og
y

L
ite

M
or

ph
 s

pe
ci

fi
ca

tio
n

fo
r

.li
m

o
fi

le

Ja
va

 s
pe

ci
fi

ca
tio

n
(c

la
ss

) f
or

 n
at

ur
al

 la
ng

ua
ge

.ja
va

 fi
le

L
ig

ht
w

ei
gh

t M
or

ph
ol

og
y

pr
oc

es
si

ng

Ja
va

c

L
ig

ht
w

ei
gh

t M
or

ph
ol

og
y

en
gi

ne
ba

se
 c

la
ss

es
.ja

va
 fi

le
s

.ja
va

 fi
le

s

Ja
va

 s
up

po
rt

 c
la

ss
es

L
ig

ht
w

ei
gh

t M
or

ph
ol

og
y

en
gi

ne
m

op
ho

lo
gi

ca
l v

ar
ia

nt
s

L
is

t o
f

T
ex

t Q
ue

ry

JAVA COMPILATION
LITEMORPH TO

PRODUCTION
VARIANTSLM ENGINE

COMPILATION

Figure 4.3: LM2Java building architecture.

CHAPTER 5

French Lightweight Morphology

French can be a difficult language to learn. The reason it is difficult is summarized

in this well know French sentence ‘l’exception qui confirme la règle’1. Almost every

French grammatical rule is accompanied by its list of exceptions, a few words that

will follow a different rule. We focus on different components of French morphology

that are useful for French LangLM specification.

5.1 Essentials for French morphology

This section presents the different morphological and grammatical considerations use-

ful for building a French Lightweight Morphology.

The knowledge of French can be divided in three (overlapping) categories: ‘gram-

maire’, ‘orthographe’ and ‘conjuguaison’. ‘Grammaire’ (grammar in English) is

the set of rules used to build correct statements. ‘Orthographe’ (spelling in English)

is the set of rules that define the way of writing words in a language. ‘Conjugaison’

1the exception that confirms the rule

57

5.1. Essentials for French morphology 58

(conjugation in English) is the set of inflexions of the verbs. All forms of a same verb

constitute its paradigm. As we previously pointed out, these three categories are

overlapping. For instance, the ‘orthographe’ is divided into ‘orthographe lexicale’

(lexical spelling) the way to spell a particular word independently from its context

in a phrase and ‘orthographe grammaticale’ (grammatical spelling) the way to

graphically indicate variable elements from a word (e.g. plural, conjugation of a verb).

5.1.1 Considerations on French inflection

The two categories we focus on for Lightweight Morphology are conjugation and

spelling (more precisely, grammatical spelling). Indeed, the most prolific way to

produce morphological variants in French is by building the paradigm of every verb

(about 45 morphological variants for each verb), and the result of (masculine, fem-

inine) × (singular, plural) for nouns and adjectives (each noun or adjective has in

general 4 morphological variants, some can have up to 6 morphological variants).

These two ways of creating morphological variations represent the inflectional mor-

phology of French, and should be the core of every Lightweight Morphology.

In French, the verbs are usually classified in three groups plus the two auxiliary

verbs avoir (to have) and être (to be). The first group contains all verbs whose

infinitive ending is -er except for aller (to go). They are the most numerous and

almost all neological verbs are constructed following this conjugation. The second

group contains all verbs whose infinitive is ending with -ir and whose stem remains

constant by inflection. There are more than 300 verbs in this group and some neolog-

ical formations are constructed on this model. The third group contains all irregular

verbs. The infinitive endings encountered in this group are -ir, -oir and -re (and the

5.1. Essentials for French morphology 59

only irregular verb ending with -er, aller).

5.1.2 Considerations on French derivation

The other interesting topic for Lightweight Morphology is the derivational morphol-

ogy. Although very interesting since it can reunite a verb with its noun and its

adjective (e.g. in French manger ←→ mangeur ←→ mangeable), this process is often

more difficult to formalize since there is no standard rule to perform such an opera-

tion. To convice oneself of this, one should look at an etymology book of a language

and see how derivations are produced. For French, different influences can be iden-

tified: Latin (the main influence), Greek (Greek and Latin influenced each other),

Italian, Spanish, English and many more. Such an example is given by fluctuation

and flottaison, both originating form the Latin word fluere, fluctum, which gave the

French word flotter (to float). More generally, different suffixes can have the same

meaning. For example the suffixes -aison, -ision, -ation and -ition have the same

meaning when appending to a verb: marking the action or the result, that is the

state. Also ambition is derived from the verb ambitionner (not *amber) but abolition

is derived from the verb abolir.

It is possible to identify productive suffixes. By productive suffixes we mean

suffixes that (1) will produce a meaningful noun or adjective when appended to a

word stem, and (2) will produce a meaningful verb when stripped from a noun or

an adjective (the verb is lexically related to its generator). Some examples of these

suffixes in French are -able (producing an adjective whose meaning is ‘that can be’)

and -ion (producing a noun whose meaning is ‘the resulting action of’).

5.1. Essentials for French morphology 60

5.1.3 Considerations on French exceptions

As we pointed out before, exceptions are an essential part of the French language.

Some of these exceptions can be rules by themselves: the feminine form of a noun

is generally formed by adding -e at the end of the masculine noun (apprenti −→

apprentie). Masculine nouns ending in -eur can have three different kinds of fem-

inine noun, by transforming -eur into -euse (vendangeur −→ vendangeuse), -rice

(instituteur −→ institutrice) or eresse (chasseur −→ chasseresse). This behaviour

is quite common in French where there is no certainty over how inflection has to be

done depending on the ending pattern (adjoint −→ adjointe, but chat −→ chatte,

confus −→ confuse, but bas −→ basse).

Other exceptions are found in verbs. The third group contains both very used

verbs (aller, to go, voir, to see, faire, to do) and obsolete verbs or forms of verbs

(oüır, to hear, falloir, to be necessary, gésir, to lie), mainly used in expressions or only

in some tenses. The Bescherelle [4], a well-known resource for French conjugation,

counts 65 verbs used as paradigm models to inflect about 370 verbs. It is not trivial

to build the 370 paradigms from the 65 models since (1) verbs are derived from the

model verb by prefixation which can sometimes be complicated (the prefix re- can

be found under different forms: tenir −→ retenir, souvenir −→ ressouvenir, asseoir

−→ rasseoir, admettre −→ réadmettre, épandre −→ répandre) and (2) a model can

be used for totally different verbs (sentir, to smell/to feel, and partir, to leave, are

inflected in the same way).

It is also interesting to introduce some consideration on etymology for deriva-

tions. One interesting question is whether a word is a morphological derivation or

a morphological generator. For example, the French word mettre (to put) has the

5.1. Essentials for French morphology 61

inflected form mis for the past participle2 which by another inflection produces the

feminine past participle mise (put). Mise (a bet) is also a noun, an example of

nominalization and a perfect example of polysemy. What is more interesting is the

derivational neologism miser (to bet, to gamble) from mise. Note that mettre is an

irregular verb and miser is a regular verb (like all neologism verbs). These two verbs

have different meanings but a common morphological form mise that comes from the

etymology. Summarizing, we have

inflection

(tense)

inflection

(gender) (nominalization)

derivation

(neologism)

derivation

(nominalization)

derivation

mis mise mise misermettre

but the meaning relation would be

mettre mise miser

Finally, some exceptions cannot be encoded as rules. Such examples can be found

with nouns where the feminine is not based on the masculine. This is particularly

used in feminines of animals (e.g. bouc −→ chèvre, goat in English).

5.1.4 French spelling rectifications

A living natural language is a language that adapts itself to the modifications intro-

duced by its usage, in the following ways:

2it can also be an adjective, but that is not the point

5.1. Essentials for French morphology 62

1. Harmonizing the actual pronunciation of words and their lexical spelling,

2. Adapting the grammar to effective habits,

3. Modifying the meaning of its lexeme, and

4. Adding or borrowing lexemes.

From a morphological point of view, only the first point is of real interest. The

other points can also impact a lightweight morphology in the following different man-

ners:

• Two lexemes sharing the same etymological roots can have different meanings.

For example près (near) and presser (to press) come from the same Latin root

permere, pressum (to tighten);

• A derivational word can lose its etymological meaning (pomme −→ pommade

but a pommade is not exclusively made from apple and grease anymore);

• Lexemes from a foreign language can follow a different grammatical spelling

(e.g. rugbyman has the plurals rugbymans and rugbymen in French);

The last spelling rectification was recommended by le Conseil supérieur de la

langue française in 1990 [7]. Arrivé in [2] presents an interesting analysis of spelling

rectification in general, and the last one in particular. Since this rectification is not

a reform, both spellings can be used nowadays (the one used before 1990 and the

one introduced with this rectification). Lightweight Morphology has to be able to

generate spellings arising in all documents, both past and present.

5.2. Representing French LangLM with LiteMorph 63

5.2 Representing French LangLM with LiteMorph

French and Spanish are both languages derived from Latin. The existing Spanish

LangLM was used as a base to build the French Lightweight Morphology. The previ-

ous considerations decided the way the French LangLM should be built:

1. Irregular verbs (3rd group verbs) should be hard coded in the exception table.

The list of irregular verbs is finite (370 verbs) and the prefixation is sometimes

too complicated to be encoded as (Java) rules (see Figure 5.1).

2. Articles and adverbs, along with some inflectional irregularities, should be in-

cluded in the exception table (see Figure 5.1).

3. Adjective and noun inflections are similar so they are grouped in four rule

sets, one for feminine each pair (gender, number), for example (, plural) (see

Figure 5.2).

4. Inflection of verbs for simple tenses is divided in rule sets according to the usual

French verb classification (1st/2nd group and tense, see Figure 5.3).

5. Bidirectional derivation (verb ←→ noun and verb ←→ adjective) is made with

the suffixes -age, -ance, -ment, -eur, -ion, and -able. Each directional derivation

is grouped in a rule set (see Figures 5.4 and 5.5).

6. The default rule set role is to capture the more general patterns and each specific

rule set is used to produce accurate morphological variants (see Appendix C).

Grouping each kind of derivation into a separate group of rule sets makes it easy

to add or remove a specific derivation for processing. Rule sets are also helpful to

5.2. Representing French LangLM with LiteMorph 64

EXCEPTIONS {

...

asseoir, assoir, assieds, assied, asseyons, asseyez, asseyent,

asseyais, asseyait, asseyions, asseyiez, asseyaient, assis, assit

, asssı̂mes, assı̂tes, assirent, assiérai, assiéras, assiéra,

assiérons, assiérez, assiéront, assiérais, assiérait, assiérions,

assiériez, assiéraient, asseye, asseyes, assisse, assisses, assı̂t

, assissions, assissiez, assissent, asseyant, assise, assises,

assois, assoyons, assoyez, assoyent, assoyais, assoyait, assoyions

, assoyiez, assoyaient, assoirai, assoiras, assoira, assoirons,

assoirez, assoiront, assoirais, assoirait, assoirions, assoiriez,

assoiraient, assoie, assoies, assoyant;

beau, bel, beaux, bels, belles;

çà;

...

}

Figure 5.1: Sample entries from the French LangLM exception table

group conceptually identical morphotactics (verbs inflection grouped in paradigms,

noun and adjectives inflection grouped by gender and number). Other examples of

rules and rule sets are given in Appendix C.

The following resources were used to build the French LangLM:

• French verbs paradigms: Bescherelle [4].

• Lexical spelling and grammar: le Bled [5], le Grevisse [16], le Dictionnaire de

l’Académie Française [12, 11] and their online versions [9, 10].

• Etymology: les Racines et la signification des mots Français [8].

5.2. Representing French LangLM with LiteMorph 65

RULESET NomAdjSingFem {

// generates adjectives and nouns
// assumes the input is singular feminin form of adjective or noun

.$Letter + è r e -> er,ers,ère,ères; // (printanier, printanière)

.$Letter i + g n e -> n,ns,gne,gnes; // (bénin, bénigne)

.$Letter e t + t e -> _,s,te,tes; // (violet, violette)

.$Letter + è t e -> et,ets,ète,ètes; // (complet, complète)

.$Letter + a l e -> al,aux,ale,ales; // (initial,initiale)

.$Letter + e l l e -> eau,el,eaux,els,elle,elles;

.$Letter e i l + l e -> _,s,le,les; // (spirituel,spirituelle, pareil,pareille
)

.$Letter + e r e s s e -> eur,eurs,resesse,eresses; // (vengeur,
vengeresse)

.$Letter + o r e s s e -> eur,eurs,oresse,oresses; // (vengeur,
vengeresse)

[...]

.$Letter + a s s e -> e,es,asse,asses; // (blondasse, blonde)

.$Letter + e s s e -> _,e,s,es,esse,esses; // (adj finissant par −e,
nom finissant par −e pauvre,pauvresse)

.$Consonant + s s e -> s,x,sse,sses; // (bas,basse, faux,fausse)

.$Letter + e u s e -> eur,eux,eurs,euse,euses; // (rieur,rieuse)

.$Letter s + e -> _,e,es; // (ras,rase)

.$Consonant l|n + & e # -> _,s,&e,&es; // (net,nette, gentil,gentille, pâlot
,palotte)

.$Letter + è v e -> ef,efs,ève,èves; // (bref,brève)

.$Letter + v e -> f,fs,ve,ves; // (näıf,näıve)

.$Letter + r i c e -> eur,eurs,rice,rices; // (créateur,créatrice)

.$Letter + e r e s s e -> eur,eurs,eresse,eresses; // (vengeur,
vengeresse)

.$Letter + c e -> x,ce,ces; // (doux, douce)

.$Consonant + c q u e -> c,cs,cque,cques; // (grec, grecque)

.$Consonant + q u e -> c,cs,que,ques; // (turc,turcque)

.$Letter g + u e -> _,s,ue,ues; // (long,longue)

.$Letter + e -> _,s,e,es; // (adj finissant par −e, joli,jolie, règle par
défaut)

.~s|x|z # -> s; // (absurdité)
}

Figure 5.2: Rule set to process singular feminine nouns and adjectives with sample
rules.

5.2. Representing French LangLM with LiteMorph 66

RULESET IrPres {

//generate present forms for −ir verbs, from verb stem
//Assume input has stripped infinitive −ir

.$Letter # -> is,it,issons,issez,issent; // (finir)
}

Figure 5.3: Rule set to create indicative present form for 2nd group verbs.

RULESET AgeNounToVerb {

.$Letter + i s s a g e -> (RegIrParadigm)_, // (attérissage)
(RegErParadigm)iss; // (glissage)
.$Letter + c a g e -> (RegErParadigm)qu; // (blocage)
.$Letter + a g e -> (RegErParadigm)_, // (abordage)
(RegIrParadigm)ag; // (avantage)

}

Figure 5.4: Rule set to process -age derivation from noun forms to verb forms.

RULESET IrAgeNoun {

.$Letter # -> issage,issages;

}

Figure 5.5: Rule set to process -age derivation from verb forms to noun forms.

CHAPTER 6

Testing

Testing is an essential part of building a successful LangLM. One has to check that

the rules produce correct morphological variants and avoid spurious morphological

variants. We do not consider meaningless morphological variants (words that are not

part of the language) since they do not affect the way LM should work.

The usefulness, in terms of information retrieval, of Lightweight Morphology in

general, and the French LangLM in particular, is another important part of this

investigation.

6.1 Validating the rules

The difficulty of validating a LangLM comes from the enormous number of words

available in a language (theoretically infinite). If a French dictionary reports 50,000

lexemes, the French language will probably contain between 400,000 and 1,000,000

words when including inflections and non-indexed lexemes. Even if one carefully

restranscribes the information provided in French resources (mainly lexical spelling

67

6.1. Validating the rules 68

and verb paradigms), it is impossible to say if the rules are correct for every word.

Looking at the morphological variants of 1,000,000 words is an impossible task, both

in terms of time (if we suppose that we can check the validity of morphological

variants of a word in 10 seconds, it would take between 3 to 7 1/2 years), repetition

(if during the testing process we modify one or more rules, we have to check again all

tested words) and knowledge (we have to know for each word its valid morphological

variants).

Two solutions can be used. The first one, sampling, consists of taking a limited

number of words and checking if the morphological variants are correct. The second

one tries to introduce measures that indicate how the LangLM behaves.

Our collection used for testing is the aligned Hansard of the 36th parliament of

Canada from 1997 in French and English [14], referred in the following sections as

the Hansard. It consists of 533 documents and a total of 19,999,604 tokens for the

English version and 22,801,063 tokens for the French version.

6.1.1 Sampling

Sample testing is tedious work for Lightweight Morphology. It should be considered

as part of the debugging step but it does not provide extensive information on the

validity of the rules. Sampling was performed for the French LangLM has follows:

1. Select a corpus of words from the Hansard constituting the sample to test.

2. Run the Lightweight Morphology engine on the sample.

3. Examine the output with three goals in mind:

6.1. Validating the rules 69

(a) Check if the variants are correct (spelling, morphological validity);

(b) Check that no unrelated words are part of the variants;

(c) Check if variants are missing (inflectional and derivational).

4. Modify or add rules, then retry the Lightweight Morphology on the sample.

Of course, the sample should not always be the same, avoiding a biased LangLM.

Sampling does not provide any measurable information on the quality of a LangLM.

6.1.2 LangLM measures

We pick up on our analogy of LM as an equivalence class. A set of morphological

variants is not properly an equivalence class (for example, found is both in the equiv-

alence class of to find and to found) but for the majority of the words, it can be

considered as such.

The goal of LM is to approximate each equivalence class by building a cluster

that explicitly defines the equivalence class. We want to see how well a LangLM

builds clusters to approximate each equivalence class. For this, we define a relation

and different properties of a relation.

Definition 1 A relation R over a set E is such that R ⊂ E ×E. We will note xRy
to say (x, y) ∈ R.

Definition 2 A relation is reflexive if xRx.

Definition 3 A relation is symmetric if xRy =⇒ yRx.

6.1. Validating the rules 70

Definition 4 A relation is transitive if xRy and yRz =⇒ xRz.

Definition 5 An equivalence relation is reflexive, symmetric and transitive. The
equivalence class of x ∈ E according to an equivalence relation R, denoted CR(x) or
x̄, is defined as:

CR(x) = {y ∈ E; xRy}.

In our case, E is the set of all existing words of a language (lexemes and inflec-

tions) and R is a morphological relation. LM tries to generate an approximation of

CR(x) for every word x. We focus on the relation RLM (or LM), the one that will

produce the cluster CRLM
(x) (or CLM(x) if there is no confusion about the relation) for

every word x. We can use the previous definition of an equivalence relation to build

measures of a LangLM. Only two characterizations are useful; the symmetric relation

and the transitive relation. The reflexive relation is evident since we automatically

include a word into its set of variants.

The first measure is based on symmetry, measuring how much LangLM is sym-

metric. We classify each pair (x, y) into three categories:

• xLMy and yLMx then (x,y) is a symmetric pair,

• xLMy and not yLMx then (x,y) is a linked pair, and

• not xLMy and not yLMx then (x,y) is not a linked pair.

For example, consider the two following rules (assuming no other rule is tried):

.aeiouy l + l e r -> &,&s,&est,&ed,&ing,&ings,ly,lely,&ness,

&nesses,&ment,&ments,&ful,&ers,&ered,

&ering,&erings,&erly,&erness,&ernesses,

&erments,&erless, &erful;

6.1. Validating the rules 71

.aeiouy l l + -> s,er,ers,est,ed,ing,ings,y,ness,nesses,ment,

ments,-less,ful;

From caller, the first rule will produce the existing words call, calls, called, calling,

callings, and callers. From call, the second rule will produce the existing words calls,

caller, callers, called, calling, and callings. Words caller and call are a linked and

reflexive pair.

We measure the symmetry (SLM) of a LangLM by studying the linked pairs with

the following formula:

SLM =
Number of symmetric and reflexive pairs

Number of linked pairs
(6.1)

Ideally, S = 1 so we have a fully symmetric relation. We could achieve this result

if xLMy and yLMx for every (x, y) ∈ E × E, meaning we have only one set of

morphological variants, or by having bigger sets of unrelated variants. However, this

is not what we desire.

Our second measure will be based on transitivity, measuring how much LangLM

creates bridges between different clusters. We define a footbridge word as a word y

such as xLMy and yLMz but not xLMz. For example found is a footbridge word

connecting find and founder. For this, we measure the transitivity TLM as:

TLM =
Number of footbridge words

Number of words of E
(6.2)

Ideally, TLM = 0 so we do not connect two different clusters, therefore we have an

equivalence class. Such a result is of course impossible to achieve (think of the natural

footbridge word found). Again, one could lower TLM by classifying a footbridge word

into one of its clusters or by creating bigger but meaningless clusters (e.g. a cluster

6.1. Validating the rules 72

where find can get founder).

The symmetry and transitivity measures are based purely on morphological vari-

ants produced by LM. A third characteristic to measure the quality of each cluster

constructed for a word x can be defined. The quality is measured by the related

meaning of the cluster to the word x, not by related morphology. Morphological

analysis is performed to add meaning to the query word. We can define a measure of

related meaning RMCLM(x) in a cluster as:

RMCLM(x) =
Number of related words to x in CLM(x)

Number of words in CLM(x)
(6.3)

For example, the French LangLM will produce attention (caution) from attenter (to

make an attempt) by doing the common derivation of adding the -tion suffix to a

verb. We are creating two words that are in the same cluster but with different

meanings, since even their etymology is different. The other example is found that

will produce find and founder. Since we are only interested in the related meaning

of produced variations to found, it is not important that find and founder are not

related in meaning.

The difficulty is to define how two words are related in meaning (if xLMy ⇐⇒

xRy). The solution is to use a lexical semantic net that can identify related meanings

and related derivations between x and y. WordNet [29] presents a partial solution to

this problem.

6.1. Validating the rules 73

6.1.3 LangLM measure results

As presented in the previous section, LangLM measures are supposed to get access

to a corpus containing all existing words of a language. Fortunately, we can use

a sampling approach to estimate SLM and TLM. We used a reduced set of words

E, consisting of all the terms that appear in the Hansard (French Hansard to test

the French LangLM, English Hansard to test the English LangLM). The process

is simple: we retrieve all terms (consisting only of letters) from the Hansard and

compute the morphological variants for the term. If a variant is not in the collection,

it is ignored. We also looked at the difference introduced by selecting only lower case

terms (removing proper nouns).

For the symmetry measure, we keep a count of linked pairs (term ←→ variant).

If a linked pair appears twice, it is a reflexive pair. We use these values to compute

the symmetry estimate S̃LM. The results for the English and French LangLM are

given in Table 6.1.

Table 6.1: Reflexivity estimate for English and French LangLM.

LangLM Terms Linked pairs Reflexive pairs S̃LM

English 55,323 39,661 34,918 0.8804
English (Lower Case) 39,931 37,145 33,145 0.8923

French 76,031 287,968 259,516 0.9011
French (Lower Case) 59,395 282,694 255,528 0.9039

The transitivity measure is calculated by identifying all the footbridge words

among the terms. For every term x appearing in the collection, we have access

to the morphological variants Yx = y1
x, . . . , y

m
x produced by the term. Each mor-

phological variant yi
x is a term so we also have access to the morphological vari-

6.1. Validating the rules 74

ants Zyi
x

= z1
yi

x
, . . . , zn

yi
x

it produces. Therefore, a footbridge word is defined as

{y ∈ Yx | ∃z ∈ Zy, z 6∈ Yx}. Table 6.2 presents the results for the transitivity estimate

T̃LM.

Table 6.2: Transitivity estimate for English and French LangLM.

LangLM Terms Footbridge words T̃LM

English 55,323 4,072 0.0736
English (Lower Case) 39,931 3,579 0.0896

French 76,031 5,132 0.0674
French (Lower Case) 59,395 4,426 0.0745

6.1.4 LangLM conclusion

English and French offer similar results, with symmetry scores being around 0.9 and

transitivity scores below 0.09. The lower/upper case distinctions in both languages

offer few differences between the measures. These results are near the optimal values.

These measures provide interesting overall results on the quality of LangLM.

For example, only 10% of pairs formed by two words are not symmetric. True non-

symmetric pairs are supposed to be even lower. Some spurious words exist in the

Hansard resulting in adding a node and an edge that should not exist. Similar con-

siderations hold for the transitivity measure. The most interesting measure, related

meaning, could not be computed because of the complexity involved in its definition.

6.2. Improvement in information retrieval system 75

6.2 Improvement in information retrieval system

The usefulness of LM in information retrieval systems was tested with two approaches:

(1) using differential recall on single term queries over the Hansard and (2) using

TREC topics and relevance judgements to get recall and precision measures. On the

first approach, we tested both French and English languages. In the second approach,

we only tested English since no TREC collection set is available for French.

The following abbreviation will be used in the next sections: LM (Lightweight

Morphology), S (Stemmer), W (Wildcard) and EQ (Exact Query).

6.2.1 Evaluating information retrieval systems

Evaluating an information retrieval system is based on the subjective notion of rele-

vance, a judgement of a human to decide whether a document is relevant to the query

or not. This notion of relevance has much to do with the previously defined notion

of homonymy, polysemy and synonymy. Let’s consider the word tear and two of its

meanings: (1) tear from a teardrop, and (2) tear from something that is torn. One

can consider that documents retrieved from meaning (1) and (2) are relevant since

no one (computer or human) can differentiate the two meanings when only given

tear as a query. On the other hand, if the user thought of the meaning (1) for the

query tear, all the returned documents retrieved from meaning (2) will be classified

as non-relevant. This simple example shows the difficulty of defining the notion of

relevance of a document in response to a query.

Two major quantifying measures are used to evaluate an information retrieval

system. The first one is a recall measure, judging the system’s ability to retrieve

6.2. Improvement in information retrieval system 76

relevant documents from the collection. The recall (R) is given by the formula [23]:

R =
Number of relevant documents returned

Total number of relevant documents in the collection
(6.4)

Since a system could achieve 100% recall by only returning all the documents in

the collection, we define a second measure, namely precision, which measures the

accuracy of the system. This value indicates how many of the documents returned

are relevant for a given query. The precision (P) is given by the formula [23]:

P =
Number of relevant documents returned

Number of documents returned
(6.5)

We can see that precision and recall are related, and improving one of them often

results in decreasing the other one (by making the system more or less selective). A

third measure, called the F-measure, can be used to balance precision and recall

using a parameter β. F-measure (F) is defined as follows [23]:

F =
(β2 + 1) PR

β2P + R
(6.6)

If β = 1, precision and recall are given the same weight. If β > 1 (resp. β < 1)

precision (resp. recall) is favoured.

In information retrieval systems, it is more important to rank the documents

than to make explicit relevance judgements. This is very understandable since users

do not want all relevant documents to their query, but the most relevant ones. There-

fore, many systems will retrieve more documents than the relevant ones (improving

the recall by deliberately decreasing the precision) but compensate by providing a

relevance ranking. The recall and precision measure can still be calculated by, for

6.2. Improvement in information retrieval system 77

example, specifying cutoffs in the ranking. The R-precision for example is the pre-

cision calculated for a cutoff at r documents, where r is the total number of relevant

documents for the query. Also, one can decide to evaluate the system by checking if

the most relevant documents are ranked in the first documents.

Another difficulty is deciding how to compare two information retrieval systems.

Is a system having a higher recall score better than a system having a higher precision

score? The F-measure can help to combine recall and precision into a single measure.

Another solution is to calculate a differential recall where the interest is to see how

many documents the two systems retrieve in common and how many documents a

system retrieved but the other system did not. In differential recall, we compare two

systems A and B and calculate:

A ∩B (or ∩A
B) = Number of relevant documents returned by both A and B

A−B (or ∆A
B) = Number of relevant documents returned by A but not B

B − A (or ∆B
A) = Number of relevant documents returned by B but not A

One can also complete the differential recall measure by using an irrelevance

criterion instead of the previous relevance criterion to see how much ‘garbage’ each

system returns.

This section presented some useful notions and measures to evaluate information

retrieval systems and pointed out the difficulty of providing a rigorous testbed which

needs a collection, a set of queries and their associated relevant documents. TREC

(Text REtrieval Conference) [19, 35, 37] provides such a testbed, which consists of

sets of documents accompanied by sets of queries and relevance judgements.

6.2. Improvement in information retrieval system 78

6.2.2 Differential recall

The goal of differential recall is to compare two different information retrieval systems

A and B by checking which documents were retrieved by only one system. We

focus on a comparison between two different query preprocessing techniques A and

B. Our analysis is based on the ‘difference’ score (∆A
B and ∆B

A) from differential

recall measures. For the relevance criterion, if ∆A
B > ∆B

A, A is awarded 1 point

(A is retrieving more relevant documents than B). For the irrelevance criterion, if

∆A
B > ∆B

A, B is awarded 1 point (B is retrieving less irrelevant documents than A).

We compared LM with a stemmer algorithm, an exact query and a wildcard

query. The Porter stemmer [32] is used for English, while a stemmer created by Martin

Porter [31] is used for French. For the wildcard query the allowed query operators

are ‘?’ (zero or one of any character) and ‘*’ (zero or more of any character).

6.2.2.1 Differential recall preprocessing

For each language, we indexed our collection with an indexer provided by Sun Mi-

crosystems (the tokenization and indexing issues are not covered here). Two different

word query sets were chosen to test the different techniques.

The first query set is composed of 100 randomly selected words from an Ispell [20]

dictionary. If a selected word has no relevant or irrelevant hit in the collection with

at least one of the techniques used, it is discarded and another word is randomly

selected.

For the second query set, we classified the words appearing in the Hansard by

6.2. Improvement in information retrieval system 79

frequency and selected the first 100 most frequent and meaningful words. We consider

that a meaningful word is a word that is not common. Common words can be an

article (e.g. the, a), a common verb (be, go) or any word that would not make any

sense in a query as a single word (e.g. however, first).

As a result, each query is a single word. For each word, we had to create an

equivalent wildcard query. We removed the ending of the word and replaced it by a

‘*’ operator, so as to provide a kind of stem. For example, the word slaying will have

slai1 as the stem and slay* as the wildcard query.

We also wanted to see the impact of processing the derivations for French. Two

LangLMs were used for this purpose; one processing derivations for the suffixes -age,

-ance, -ment, -eur, -ion, and -able, and one that does not. We denote the second

LangLM as LM′. Both LangLM exception tables include morphological variants for

inflection and derivation.

6.2.2.2 Differential recall results

For each query word, we classified the variants produced by the different techniques

that appeared in the indexed collection as either relevant or irrelevant. Our relevance

criterion is the correctness of the variant regarding the input word. We do not consider

the correctness of the variant in the context of a collection. For example, from tear,

we consider that torn is relevant, but tearmann is irrelevant. Tear is classified as

relevant either in the context of a teardrop or of something that is torn. A sample

of query words and their classification list is given in Appendix D. The complete

1The Porter stemmer has a rule to transform y in i, so try and tries has the same stem tri. Slai
is the proper stem with the Porter stemmer.

6.2. Improvement in information retrieval system 80

differential recall measures for each query word are given in Appendix E.

The relevant win-lose scoring a - b between two techniques A and B is computed

as follows:

• a = Number of queries where ∆A
B > ∆B

A (with relevant criterion)

• b = Number of queries where ∆A
B < ∆B

A (with relevant criterion)

The irrelevant win-lose scoring a - b between two techniques A and B is computed

as follows:

• a = Number of queries where ∆A
B < ∆B

A (with irrelevant criterion)

• b = Number of queries where ∆A
B > ∆B

A (with irrelevant criterion)

Classification is used for calculating the differential recall measures. Results of the

win-lose score are given in Table 6.3 for the randomly selected words and in Table 6.4

for the frequency selected words. Bold values indicates the ‘winning’ technique.

Table 6.3: Differential recall Win-Lose scores for 100 randomly selected words.

LangLM Criterion LM - S LM′ - S LM - W LM - EQ S - EQ

English Relevant 24 - 24 N - A 8 - 44 82 - 0 81 - 0
English Irrelevant 4 - 1 N - A 39 - 0 0 - 1 0 - 4

French Relevant 35 - 13 25 - 36 11 - 33 90 - 0 93 - 0
French Irrelevant 5 - 2 5 - 1 26 - 1 0 - 2 0 - 5

6.2. Improvement in information retrieval system 81

Table 6.4: Differential recall Win-Lose scores for 100 frequency selected words.

LangLM Criterion LM - S LM′ - S LM - W LM - EQ S - EQ

English Relevant 11 - 17 N - A 8 - 33 71 - 0 73 - 0
English Irrelevant 21 - 4 N - A 63 - 2 0 - 9 0 - 25

French Relevant 17 - 7 12 - 13 23 - 14 73 - 0 70 - 0
French Irrelevant 20 - 5 19 - 3 50 - 7 0 - 11 0 - 23

6.2.2.3 Conclusion

First, we can see the usefulness of morphological analysis by comparing LM to EQ

and to W queries. Compared to EQ, LM provides more relevant documents on 70

to 90 queries but introduces more irrelevant documents on 1 to 11 queries. Most

of the time, performing morphological analysis on terms will retrieve more relevant

documents. In a few cases, more irrelevant documents will be retrieved.

When comparing to W, we can see the advantage of performing morphological

analysis: the user does not need to think about the query. Quickly stating an efficient

wildcard query is not easy since we need to think of the kind of related words we will

retrieve with the query. For example, we think of pity from pitier and create the

query pit*, but it will retrieve unrelated words like pitbull. If it is easy to often

retrieve more relevant documents with a straightforward wildcard query (e.g. ‘*’ will

always get all the relevant terms), it is also easy to retrieve more irrelevant documents.

Morphological analysis has a strong advantage since the user does not need to think

about putting wildcard operators at the right place to ensure retrieval of many related

and few unrelated words.

Compared to S, English LM is better, not always by retrieving more relevant

documents on a query basis but by always retrieving fewer irrelevant documents.

6.2. Improvement in information retrieval system 82

Retrieving fewer irrelevant documents will result in less confusion for the users. We

can see that for English, LM has a small advantage over S on the first query set

by retrieving fewer irrelevant documents in 4 queries and more in only 1. On the

second query set, S retrieves more relevant documents on 17 queries (11 for LM).

However, LM does not retrieve so many irrelevant documents: in 21 queries, S re-

trieves more irrelevant documents and retrieves fewer irrelevant documents in only 4

queries. The Porter Stemmer for example, found the stem intern from international

allowing variants such as internalize or interned.

French LM performs better than S in every case, retrieving more relevant doc-

uments and fewer irrelevant documents on a per query basis. French LangLM does

not find verbs from nouns ending with a consonant (e.g. accorder from accord or

travailler from travail) reducing its relevant retrieval efficiency.

Processing derivations in French is important. Ignoring the suffix derivations

included in the full LangLM decreases the relevant documents retrieved, making LM′

less efficient than S for returning relevant documents. LM′ also has a minor impact

on the irrelevant documents retrieved.

Concerning the test collection, we encountered ‘spurious’ terms that complicated

the relevant/irrelevant classification. In both the English and the French Hansard,

there are spelling errors (e.g. *financiére), neologisms (e.g. parliamentarianism),

French words in the English Hansard (e.g. affairs/affaires), English words in the

French Hansard (e.g. germes/germs) and spacing errors between words (e.g. *comit-

teeadopted). A solution would have been to look for every ‘spurious’ term in context

inside the collection, so as to classify it as either relevant or irrelevant given a sup-

posed meaning. These errors often appear in a document containing a relevant term,

6.2. Improvement in information retrieval system 83

minimizing the range of the error. We instead used an approach of classifying a word

as relevant if the meaning was correct, even if some spelling errors were present, and

as irrelevant if the meaning was doubtful.

6.2.3 Recall and precision with TREC

TREC was used to get recall and precision scores for LM, stemming and exact query.

In no way are single morphological analysis techniques aimed at competing with a full

information retrieval system. Comparing the following results with TREC competitor

results is pointless, and only a comparison between the three previously described

techniques is made.

6.2.3.1 TREC queries preprocessing

We used the TREC collection volume 1 and 2 [35] (known as Disks 1 & 2 or TIP-

STER Volumes 1 & 2) as the collection to index and topics 51 to 200 as the queries.

The collection consists of 741,856 documents from 5 English-language sources. The

documents contain approximately 185 millions words for disk 1 and 131 million words

for disk 2 and include, for example, news article from the Wall Street Journal (1987–

1992) and abstracts from the Department of Energy. The collection was indexed with

the same indexer used for differential recall.

Two sets of queries were used. The first set (set 1) of queries was slightly pre-

processed, by straightforwardly selecting the ‘title’ of each topic to be a query. We

manually preprocessed the queries to remove all articles and meaningless words and

included expanded acronyms (e.g. U.S. into United States). For example, query 51

6.2. Improvement in information retrieval system 84

is“Airbus Subsidies.”

The second set (set 2) aimed at providing an extensive list of words as a query. For

each topic we selected the following entries: ‘domain’, ‘title’, ‘description’, ‘summary’

and ‘concepts’. We processed the text to remove common words with a stop list [34]

and to remove punctuation symbols. Each resulting query is a list of unique and

meaningful words. For example, query 51 expands to a list of 64 terms and represents

a type of comprehensive query likely from a research librarian.

A sample of the queries used for this first and second set is provided in Ap-

pendix F.

6.2.3.2 TREC results

The results were obtained using the trec eval program [36]. The measures are

based on recall and precision, defined in Section 6.2.1. TREC measures use cutoffs to

calculate different precision and recall scores, using a set of relevance judgements. We

denote as L the number of relevant documents defined in the relevance judgements for

a query. For each query and each technique (LM, S, EQ), a ranked list of the first M =

1,000 documents retrieved by the IR system is considered. The ranking was provided

by the Sun Labs Search Engine using our morphological variants and a ‘smart OR’

operator between words. The ‘smart OR’ performs the sum of weights of each term

retrieved, instead of the usual ‘OR’ which takes the maximum weight of the term

retrieved. Each ranked list is automatically compared to the relevance judgements to

compute the following measures (a deeper explanation of these measures are given in

Appendix F, Section F.3):

6.2. Improvement in information retrieval system 85

PI(r) — Interpolated recall-precision at level r The precision defined PI(r) =

maxR(x)≥r(P (x)). x is the number of relevant documents returned by the IR

system.

P — Average precision The precision is calculated after each relevant document

is retrieved and averaged over the number of relevant documents retrieved.

P (d) — Precision after d documents have been retrieved The precision with

a cutoff at d documents.

PR(d) — R-precision The precision with a cutoff at d documents, d ≤ min(L, M).

The presented measures in Table 6.5 and Figures 6.1 and 6.2 are averaged over the

number of queries (150 in our case), using the notation X. For example, P refers to

the average over all 150 queries of the average precision measures (see Appendix F,

Section F.3)

The relevance judgements for topics 51 to 200 indicates a total of 37,836 relevant

documents over the 741,856 documents defining the collection. Table 6.5 presents an

overview of the retrieval results for the two query sets and the three techniques used.

Figures 6.1 and 6.2 are graphs presenting precision scores for the interpolated recall-

precision average and for the cutoffs at different number of documents returned. The

data to build these graphs is given in Appendix F.

6.2.3.3 Conclusion

Surprisingly, Lightweight Morphology and Stemming do not provide a significant

advantage on information retrieval compared to an exact query. On the contrary,

6.2. Improvement in information retrieval system 86

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall level r

LM
Porter Stemmer

Exact query

(a) Average interpolated recall-precision PI(r).

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 1 10 100 1000

P
re

ci
si

on

Number of documents d

LM
Porter Stemmer

Exact query

(b) Average precision after d documents retrieved P (d).

Figure 6.1: TREC average precision graphs for topics 51 to 200 with set 1 queries.

6.2. Improvement in information retrieval system 87

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall level r

LM
Porter Stemmer

Exact query

(a) Average interpolated recall-precision PI(r).

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 1 10 100 1000

P
re

ci
si

on

Number of documents d

LM
Porter Stemmer

Exact query

(b) Average precision after d documents retrieved P (d).

Figure 6.2: TREC average precision graphs for topics 51 to 200 with set 2 queries.

6.2. Improvement in information retrieval system 88

Table 6.5: TREC global results for topics 51 to 200.

Set 1 Set 2

LM S EQ LM S EQ

Documents 147,476 147,399 147,162 150,000 150,000 150,000

Relevant documents 10,227 10,416 9,399 11,639 11,487 12,080

P 0.0743 0.0770 0.0757 0.0802 0.0761 0.0898

PR(x) 0.1269 0.1322 0.1291 0.1386 0.1354 0.1506

they seem to worsen (slightly) the results provided with an exact query. This is even

more confusing as LM and S retrieve more relevant documents than EQ (around 1000)

with only a few more total documents (around 300) for the first set of queries.

Adding terms to a query (essentially semantically different terms) as performed

in the second query set improved the overall precision score of the methods. The

results between Lightweight Morphology and Stemming are still similar, and they

improved the results for the exact query by about 18%. The results obtained are

quite paradoxical. Between the first set and the second set we added terms (4 to 50

times more terms and morphological variants of the terms) to the queries and the

precision score was improved. Stemming and Lightweight Morphology automatically

add terms (2 to 20 morphological variants per term) to the queries but the precision

score does not increase as much as for the exact query (no increase for stemming, 8%

increase for Lightweight Morphology).

Different causes can explain this behaviour:

1. TREC relevance judgements are based on a pooling technique. LM and S could

have retrieved relevant documents that were not in the relevance judgement

6.2. Improvement in information retrieval system 89

set, thus counting possible relevant documents as irrelevant ones. This is even

more possible since, quoting the overview of TREC-2 [19], ‘Pooling proved to

be an effective method. There was little overlap among the 31 systems in their

retrieved documents.’ The incompleteness of the relevance judgements was also

noticed in [42].

2. The ranking algorithm does not take full advantage of LM and S. Thus, irrel-

evant documents can have a better ranking than relevant documents, affecting

the precision score.

3. The queries are badly formulated. Since the same set of queries is used for the

three approaches, this only explains why the results for the three approaches

are so low compared to TREC participants’ results.

4. S and LM add ‘noise’ to the query. While this can be true for S when looking

at the differential recall measures, it is less understandable for LM.

The lack of TREC data available for French is unfortunate since differential recall

measures demonstrated promising results for information retrieval of French docu-

ments.

CHAPTER 7

Future research and improvements on
natural language representation

7.1 Lightweight Morphology

Lightweight Morphology, especially its LiteMorph representation, is in the early stages

of development. LangLMs for different languages (besides English, French, German

and Spanish) have yet to be defined. Some problems with Lightweight Morphology

and LiteMorph are present, and are described below.

7.1.1 Framework implementation improvement

As Figure 4.3 shows, the implementation is based on a Java implementation. The

LiteMorph language is only hiding as best it can the underlying Java implementation

from a user to ease the definition of a LangLM. This implies two problems:

1. The Lightweight Morphology engine needs to be compiled every time a LangLM

is added or modified (with the two steps LM2Java to convert a LiteMorph into

90

7.1. Lightweight Morphology 91

Java and javac to compile the Java code into byte code);

2. Java rule sets rely heavily on Java and the design of LiteMorph is not optimal.

Compilation errors can appear at two stages: LiteMorph to Java compilation

and Lightweight Morphology engine compilation. Improving or adding Lang-

LMs would be easier if second stage compilation errors are reported in the first

stage.

These two problems can be redefined in terms of problems a linguist will en-

counter:

1. Even if a linguist does not have to write Java code, it is still their responsibility

to integrate the resulting Java code into the Java LM, including the compilation

of the LM code. Some knowledge of Java is still needed.

2. The relation between LiteMorph and Java is still strong because LiteMorph

was built on top of the Java version of LM. This is particularly noticeable in

the Java rule sets and the tight integration with Java that can be problematic.

Again, some knowledge of Java is needed.

We use a formalism to write LangLM that is strictly1 defined with a grammar

and explanation of all operators. The framework should be adapted to LiteMorph.

Building a new architecture that dissociates the LangLM processor from LangLM

specifications is needed. Ideally, the LangLM processor should read LiteMorph files as

input. One could also think of a compiled format that would be read by the LangLM

1Strictly in the sense that LiteMorph is properly documented, not in the sense that the language
will not improve (on the contrary)

7.1. Lightweight Morphology 92

processor. The LangLM processor should define an API that at minimum performs

the following jobs:

1. Define the natural language to use (and therefore the LiteMorph file to read);

2. Define the query word to do morphological analysis on;

3. Provide a structure that returns the morphological variants.

The new architecture needs another language to define the Java rule set (which

should be called user rule set). This topic is presented in the following section. The

real challenge in this new architecture is how to integrate the user rule set. The

user rule set should be defined in a language that is translated into the underlying

programming language. The most elegant solution for this problem is to define a new

language for the user rule set and provide an API in the LangLM processor that will

match the features of the user rule set language. A compiler is used afterwards to

convert the user rule set into the proper calls to the API.

7.1.2 LiteMorph Language improvement

LiteMorph language design relies on the Java Lightweight Morphology Framework.

We present features that are not present or that should be modified in Lightweight

Morphology.

7.1. Lightweight Morphology 93

7.1.2.1 User-defined rule set

The LiteMorph language can be further improved. First, the Java rule set is far from

being perfect. The underlying implementation in Java makes it less than convenient.

The use of the Table and List data structures is based on the knowledge of the

underlying representation in Java. Errors that occur in the Java rule set are at best

found in the LM2Java compilation step (lexical and syntactic errors) or at worst found

in the Java compilation step (improper call to object methods or use of undefined

variables) or at run-time (for Java run-time errors).

This should be avoided since debugging the last kind of error needs knowledge of

Java and knowledge of how LiteMorph is converted into Java.

The whole set of Java features is used in user-defined rule sets but this is un-

necessary. User-defined rule sets in LM represent morphological analysis that cannot

be done with pattern-matching rules. The user-defined rule set should be defined us-

ing its own language with advanced string manipulation and proper data structures

(like the predefined Table and List) with a simple syntax. One could use a scripting

language like Groovy [17], a JRE compliant scripting language.

7.1.2.2 Exception table improvements

Consider a word x producing a morphological variant y from a pattern matching rule.

It is possible that y appears in the exception table. Two cases can arise:

1. y should be valid and possibly retrieve all entries from the exception table. For

example, miser should retrieve mise even if it is in the exception table.

7.1. Lightweight Morphology 94

2. y should not be valid since y is in the exception table but not x. In other

words, there is no morphological relation between x and y. For example, fraise

(strawberry) will produce frais (cool). However frais is in the exception table

in the entry frais, frâıche, frâıches and should not be retrieved by fraise;

These behaviours need an exception table lookup every time a morphological

variant is produced by pattern matching rules.

The opposite behaviour can also appear. If a word x is in the exception table

but x is also a regular word, then it should be processed by the pattern matching

rules to produce Y1 = the set morphological variants from the exception table and

Y2 = the set of morphological variants from pattern matching rules. To quote the

previous example, if mise is produced, it should also produce inflections from miser.

The way the exception table works obliges one to encode a form that can be covered

by pattern matching rules as an exception entry. This behaviour is not suitable since

it can lead to a cascading of regular forms being hard coded in the exception table.

Some words (especially verbs) are not always completely irregular. Lightweight

Morphology should provide a mechanism to call special rules so it can avoid writing all

the entries. This can be done at compilation time, where the special rules are called

in order to produce the whole entry. For example, suppose that we want to create

entries for the French verbs ending with -enir in the exception table, like tenir, venir

or intervenir. Writing those entries as ‘t(enirVerbParadigm)’, ‘v(enirVerbParadigm)’

and ‘interv(enirVerbParadigm)’, where ‘(enirVerbParadigm)’ contains the inflections

for -enir verbs will (1) facilitate the use of the exception table, (2) avoid typos and

(3) ease the recursive modification of the same kinds of entries.

7.1. Lightweight Morphology 95

7.1.2.3 Weighted Lightweight Morphology

When considering the process introduced by Lightweight Morphology, we do not

differentiate the variants produced. A term will produce a set of variants that are

supposed to be equivalent. Some variants, however, are more related to the initial

term than other variants. For example, inflections are closely related to the term

(having the word as singular or plural does not change the meaning of the word)

whereas derivations are less related to the term (a derivation can introduce some

variation in meaning).

To highlight this difference, we can extended Lightweight Morphology to intro-

duce weights for each variant produced, where the weight represents how much the

variant is related to the term it comes from. A simple weighting system is to provide

a weight of 1 for inflections and 0.5 for derivations.

Different applications can be made of this weighting system. One can add the

weight of the variants to compute the relevance score of a document. One can also

decide not to consider morphological variants having a weight less than a certain

threshold.

7.1.3 Improving LangLM authoring

Tools that help a user to define LangLMs have to be developed. Here we present two

possible tools that are useful.

7.1. Lightweight Morphology 96

7.1.3.1 Improving the LiteMorph compiler

As we pointed out before, the Lightweight Morphology implementation framework

should be improved, and these improvements should be reflected in the compiler.

The aim is to catch all possible errors on the compilation step.

Some dynamic ‘errors’ should also be detected by the compiler. For example,

when a rule set is never called, the compiler should raise a warning. A second example

is to detect unreachable rules inside a rule set. This second type of error can have

great consequences on the way Lightweight Morphology behaves. Putting the most

general case before the most specific case will result in producing wrong variants since

the specific case is never reached.

7.1.3.2 LiteMorph-friendly Integrated Development Environment

Writing a LangLM can be tedious because of all the information that is included in a

single file. Going from Java to LiteMorph made this process less tedious since Lite-

Morph focuses on natural language morphology, not Java syntax. Further progress

can be made by providing an Integrated Development Environment (IDE) for Lite-

Morph. The most basic feature should be syntax coloration. Other helpful features

should include detecting multiple appearance of the same word in an exception table

entry, sorting and searching efficiently the exception table and displaying available

rule sets to call.

7.1. Lightweight Morphology 97

7.1.4 Improving French LangLM

The French LangLM can be further improved in many ways. First, one could be

more precise on the definition of the pattern matching rules to be more selective and

avoid spurious morphological variants. Also, one could look to add more derivations

to the current LangLM. The improvement of French LangLM, beyond using resources

for French (e.g. grammatical, spelling, etymology), should be done by constructing

statistical data on French, such as ‘how many words ending with -ation are derived

from a verb and how many are not?’. This would help identifying useful derivations.

A litigious point on the current French LangLM is the inclusion of irregular

verbs directly into the exception table. While it is easier to do that than defining

proper rules, and while it is probably faster on run time performance, it becomes

challenging to manage this list and add derivations. Spelling errors can also appear

in this list2. Finally, including words in this exception list can also block creation of

valid morphological variants (e.g. mise will produce the derivation of mettre but not

of miser).

Finally, some derivations are not correctly processed. Derivational endings are

not suffixes in some words and generate spurious variants, like creating attenter from

attention. This behaviour is hard to avoid without a lexicon or should require more

rules to prevent the creation of such variants. On the contrary, some derivations

are not implemented, such as -if/-ive suffix. Some noun to verb conversion is not

performed, when the ending of the word is a consonant, as for accorder from accord

or conseiller from conseil.

2no human is perfect, including myself

7.2. Heavyweight Morphology 98

7.1.5 Measuring and testing Lightweight Morphology

Chapter 6 introduced some ways to measure Lightweight Morphology and to test its

usefulness. These measures are not complete and some results were not obtained.

An interesting question is the representational power of Lightweight Morphology.

Can LM be used to create a stemmer? It seems that, by making heavy use of user-

defined rule sets, this could be achieved. If this is true, LiteMorph and Lightweight

Morphology can be used to perform what it was designed for (creating morphological

variants), it can also be used to encode different kinds of stemmers.

7.1.6 Automatic generation of LangLM with machine learn-
ing and data mining

Building a LangLM can be complicated because of the amount of data that has

to be encoded in it. The different resources are grammar, conjugation and etymology

references and dictionaries. An investigation could be to see whether machine learning

and data mining techniques can be applied so as to automatically generate a valid

LangLM for a specific language. Clustering algorithms could be investigated for such

a task.

7.2 Heavyweight Morphology

The original goal of this thesis was to provide a better representation for both

Lightweight Morphology and Heavyweight Morphology. LM was more challenging

than anticipated, and the representation for Heavyweight Morphology still remains

7.2. Heavyweight Morphology 99

to be done. The following section presents the initial architecture to provide this

better representation.

7.2.1 Prolog and RuleML approach

To represent the rules and make them portable, we choose rule markup languages.

The first one we focused on was XRML [26]. This choice appeared not suitable

since XRML is essentially designed for e-business and little activity is taking place to

further develop XRML.

We considered RuleML [6], an initiative to create a canonical Web language for

rules using XML markup. The goal pursued is to have a general-purpose language

to encode any kind of rule. RuleML is very similar to Prolog, and representing

Heavyweight Morphology rules with Prolog or RuleML is equivalent. The following

discussion supposes a Prolog approach. Figure 7.1 presents a possible conversion of

the -fish rule presented in Figure 2.8 into a Prolog representation.

Figure 7.2 presents an approach to implement the lexical analyzer introduced

in Figure 2.6 with a Prolog approach. Aggressive morphology rules are split into

‘morphological processing’ which will perform string manipulation and ‘Prolog rules’

that infer facts from the previous facts. This separation is recommended since Prolog

has weak string manipulation. The morphological processing step could be written

in Java to handle the string manipulation and create Prolog facts. The Prolog engine

will then infer facts from the facts created by the morphological processing step and

from the set of rules written in Prolog.

Different challenges are involved with this representation. First, the separation

7.2. Heavyweight Morphology 100

/∗ ∗∗∗
∗ FACTS CREATED BY MORPHOLOGICAL PROCESSING STEP ∗
∗∗∗ ∗/

noun(fish).

noun(cat).

plausible_root(fish).

plausible_root(cat).

word(catfish).

prefix(catfish ,cat).

suffix(catfish , fish).

/∗ ∗∗∗
∗ INFERENCE RULES FROM AGGRESSIVE MORPHOLOGY ∗
∗∗∗ ∗/

root(X,Y) :- word(X), suffix(X,fish), prefix(X,Y).

nmsp(X) :- root(X,Y), noun(Y), plausible_root(Y).

nmsp(X) :- root(X,Y), adj(Y), plausible_root(Y).

false_root(X,Y) :- root(X,Y), nmsp(X).

kind_of(Z,X) :- suffix(X,Z), nmsp(X).

real_root(X,Y) :- suffix(X,Y), nmsp(X).

inflectional_paradigm(X, es) :- nmsp(X).

Figure 7.1: -fish Heavyweight Morphology rule converted to Prolog.

between morphological processing and inference processing is non-existent in the orig-

inal Heavyweight Morphology rules in Lisp. Some difficulties will arise in providing

this separation and in providing the interactions existing in the original Lisp rules.

Second, the Lisp rules are launched in a specific order. Prolog engines do not provide

a convenient way to control how the inferencing is performed. Careful design of the

inference rules is necessary to respect the order of the rules. The order of rule fir-

ing can also be controlled by the syntactic facts created by morphological processing.

Third, we need to access the Prolog database, to retrieve all inferred facts. Finally, we

should be careful about the inferred facts created. Intermediate facts should not be

created since there is no way to know the fact is intermediate and it will be considered

7.2. Heavyweight Morphology 101

Morphological

(java)
processing Prolog Engine

facts
Syntactic Prolog

database

Semantic facts
and extended
syntactic facts

Taxonomic
classifier

Prolog rules

Translation
Aggressive morphological

rules
(Lisp)

Tokens

Lexicon facts

Lexicon

Lexical analyzer

Figure 7.2: Prolog architecture.

as a syntactic or semantic fact.

CHAPTER 8

Conclusions

We introduced a new representation for natural language morphology with Lightweight

Morphology and LiteMorph, a language to specify LangLMs. LiteMorph highly ab-

stracts the definition of a LangLM by removing all unneeded features of the underlying

computer language used to actually run the LM.

We tested LiteMorph by creating a French specification. Verbal, noun and ad-

jectives inflections are provided. Six kind of derivations for the suffixes -age, -ance,

-ment, -eur, -ion, and -able are integrated in the French LangLM, producing nouns

and adjectives from verbs (and vice-versa). 526 rules, 41 rule sets and 16,842 excep-

tion table words are used for this specification. The pattern-matching rules, along

with the exception table, are supposed to handle inflections for verbs, nouns and

adjectives. On a set of 200 French words, 5% produced incorrect variants (e.g. paye

from pays), and 7.5% did not produce one or more important morphological variant

(e.g. rapporter is not produced from rapport).

Morphological analysis provided opposite results on improving information re-

trieval. The differential recall measures showed that 9 out of 10 queries retrieved

102

Chapter 8. Conclusions 103

more relevant document than an exact query. On average, Lightweight Morphol-

ogy has 3.9 times more queries retrieving less irrelevant documents than stemming.

The French version has, on average, 2.5 times more queries retrieving more relevant

documents. TREC testing showed however that morphological analysis for English

decreases the efficiency of information retrieval. The precision scores for stemming

and Lightweight Morphology were equal to or lower than the precision scores for an

exact query, the opposite of what we anticipated. The lack of available TREC collec-

tions for French prevented us from saying that Lightweight Morphology is not helpful

for information retrieval.

Questions still remain. Where do the poor scores of morphological analysis on

TREC testing come from? One can wonder if the incompleteness of the TREC

relevance judgement is responsible for the results, if the ranking algorithm was not

suitable for morphological analysis or if morphological analysis brings noise to a query.

Lightweight Morphology offers an alternative to stemming to expand query terms

into morphological variants. It provides more control than a stemmer by offering a

more intuitive way to construct rules or conditions, often resulting in better results.

Lightweight Morphology can only go so far in morphological analysis since a lexicon

has to be used at some point to avoid erroneous analysis. For example, avoiding

analyzing visage (face) as vis + age and producing the inflections of viser (to aim)

needs the assistance of a lexicon.

Chapter 7 briefly presented a possible representation of Heavyweight Morphology

rules using Prolog. The specification and verification of such an approach still needs

to be done. The major challenge faced is to separate the morphological processing

from the inference rules while preserving the ordering in which the rules are fired.

References

[1] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 2nd edition, 2002.

[2] M. Arrivé. Réformer l’ortographe ? Presses Universitaires de France, Paris,
1993.

[3] K. Beesley and L. Karttunen. Finite State Morphology. CSLI Publications, 2003.

[4] Bescherelle : La Conjugaison pour tous. Hatier, Paris, 1997.

[5] E. Bled and O. Bled. Bled : orthographe-grammaire. Hachette, Paris, 2003.

[6] R. Boley, S. Tabet, and G. Wagner. Design rationale of RuleML: A markup
language for semantic web rules. In Proceedings of the First Semantic Web
Working Symposium, pages 191–202, 2001.

[7] Rapport du conseil supérieur de la langue française sur les rectifications de
l’orthographe. Documents officiels, Journal Officiel de la République Française,
100, December 1990.

[8] M. Delacroix. Les racines et la signification des mots français. Eugène Belin,
Paris, 4e édition, 1886.

[9] J. Dendien. Dictionnaire de l’Académie Française, 8e édition, version informa-
tisée. http://atilf.atilf.fr/academie.htm.

[10] J. Dendien. Dictionnaire de l’Académie Française, 9e édition, version informa-
tisée. http://atilf.atilf.fr/academie9.htm.

[11] Académie Française. Dictionnaire de l’Académie Française. Fayard, Paris, 9e

édition, 1993-2004. Only tomes 1 and 2 available (A-mappemonde).

[12] Académie Française. Dictionnaire de l’Académie Française. 8e édition, 1932-
1935.

104

References 105

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[14] Ulrich Germann. Aligned Hansards of the 36th parliament of Canada release
2001-1a (proceedings from September 25, 1997). Resources available at http:

//www.isi.edu/natural-language/download/hansard/.

[15] S. Green. Personal communication on Sun Labs Search Engine, October 14,
2004.

[16] M. Grevisse. Le Bon Usage: Grammaire française avec des remarques sur la
langue française d’aujourd’hui. Duculot, Paris, 11e édition, 1980.

[17] Groovy, project homepage. http://groovy.codehaus.org/.

[18] D. Harman. How effective is suffixing? Journal of the American Society for
Information Science, 41(1):7–15, 1991.

[19] D. Harman. Overview of the Second Text REtrieval Conference (TREC-2). In
The Second Text REtrieval Conference (TREC-2), NIST Special Publication
500-215. National Institute of Standards and Technology, 1993.

[20] Ispell. http://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell.html.

[21] JTB: Java Tree Builder, project homepage. http://compilers.cs.ucla.edu/

jtb.

[22] JavaCC: Java Compiler Compiler, project homepage. https://javacc.dev.

java.net/.

[23] D. Jurafsky and J. H. Martin. Speech and language processing. Prentice Hall,
2000.

[24] R. Krovetz. Viewing morphology as an inference process. In Proceedings of
the Sixteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Linguistic Analysis, pages 191–202, 1993.

[25] R. Krovetz. Homonymy and polysemy in information retrieval. In Proceedings
of the Thirty-Fifth Annual Meeting of the Association for Computational Lin-
guistics and Eighth Conference of the European Chapter of the Association for
Computational Linguistics, pages 72–79. Association for Computational Linguis-
tics, 1997.

[26] J. K. Lee and M. M. Sohn. The eXtensible Rule Markup Language. Communi-
cations of the ACM, 46(5):59–64, 2003.

[27] J.R Levine, T. Mason, and D. Brown. Lex & Yacc. O’Reilly, 2nd edition, 1995.

References 106

[28] J. B. Lovins. Development of a stemming algorithm. Mechanical Translation
and Computational Linguistics, 11(1-2):22–31, 1968.

[29] G. A. Miller. WordNet: A lexical database for English. Communications of the
ACM, 38(11):39–41, 1995.

[30] M. Popovič and P. Willett. The effectiveness of stemming for natural-language
access to Slovene textual data. Journal of the American Society for Information
Science, 43(5):384–390, 1992.

[31] M. F. Porter. French stemmer. http://snowball.tartarus.org/french/

stemmer.html.

[32] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[33] M. Roussillon, B. G. Nickerson, and A. E. Maclachlan. Lightweight natural lan-
guage morphology representation with Xerox finite state morphology. Technical
Report TR04-166, University of New Brunswick, 2004.

[34] English list of stop words used in the SMART information retrieval system.
ftp://ftp.cs.cornell.edu/pub/smart/english.stop.

[35] TREC collection volume 1 & 2 on Linguistic Data Consortium (references
LDC93T3B and LDC93T3C). http://www.ldc.upenn.edu/.

[36] TREC retrieval runs evaluation program trec eval. ftp://ftp.cs.cornell.

edu/pub/smart/trec2_eval.shar.

[37] E. M. Voorhees and D. Harman, editors. The Twelfth Text REtrieval Conference
(TREC 2003), NIST Special Publication 500-255. National Institute of Standards
and Technology, 2003.

[38] W. A. Woods. Conceptual indexing: A better way to organize knowledge. Tech-
nical Report TR-97-61, Sun Microsystems, 1997.

[39] W. A. Woods. Aggressive morphology for robust lexical coverage. Technical
Report TR-99-82, Sun Microsystems, 1999.

[40] W. A. Woods. Documentation of Sun Java Enterprise System search engine.
Internal Document, March 2004.

[41] W. A. Woods, L. A. Bookman, A. Houston, R. J. Kuhns, P. Martin, and S. Green.
Linguistic knowledge can improve information retrieval. In Proceedings of the
Sixth Conference on Applied Natural Language Processing, pages 262–267, April
2002.

References 107

[42] W. A. Woods, S. Green, P. Martin, and A. Houston. Halfway to question answer-
ing. In Proceedings of the Ninth Text REtrieval Conference (TREC 9), pages
489–511, 2000.

[43] W. A. Woods and A. Houston. Documentation of Sun Java Enterprise System
search engine. Internal Document, March 2004.

APPENDIX A

LiteMorph and modified Java —
Grammars

The following sections present EBNF grammar for LiteMorph and a modified version

of Java 1.4 used to parse the Java rule set from LiteMorph, based on a Java 1.4

grammar from Sriram Sankar used in JTB [21].

A.1 LiteMorph grammar

1 LiteMorphLanguage ::= Language { Options }* { DefLetterVariable }*
[Exceptions] [JavaPart] { { RuleSetEnding |
RuleSetNormal } }* RuleSetDefault { { RuleSet-
Ending | RuleSetNormal } }* EOF

2 Language ::= LANG = Id ;
3 Options ::= DEBUG ; | TRACE ;
4 DefLetterVariable ::= LetterVariable = UnOrderedList ;
5 Exceptions ::= EXCEPTIONS { { ExceptionsList }+ }
6 ExceptionsList ::= Word { , Word }* ;
7 RuleSetNormal ::= RULESET Id { { Rule }+ }
8 RuleSetEnding ::= RULESET Id ENDING Id { { Rule }+ }
9 RuleSetDefault ::= RULESET DEFAULT Id { { Rule }+ }
10 Rule ::= PatternElements -> ModificationPatterns ;

108

A.1. LiteMorph grammar 109

11 PatternElements ::= [FirstPattern] { LeftPatternEnd }* [LeftPat-
ternInside] { LeftPatternEnd }* [LastPattern
]

12 FirstPattern ::= [BeginWord] { LeftAnchoredPattern }* Begin-
Delimiter

| BeginWord
13 BeginDelimiter ::= -
14 BeginWord ::= #
15 LeftPatternEnd ::= [.] LeftAnchoredPattern
16 LeftPatternInside ::= < { LeftAnchoredPattern }* >
17 LeftAnchoredPattern ::= OpSet Letters | &
18 OpSet ::= [|] [˜] [* | + | ?]
19 Letters ::= UnOrderedList | OrUnorderedList | LetterVari-

able
20 LastPattern ::= EndDelimiter { LeftAnchoredPattern }* [End-

Word] | EndWord
21 EndDelimiter ::= +
22 EndWord ::= #
23 ModificationPatterns ::= RightPattern { , RightPattern }*
24 RightPattern ::= ReapplyPattern [&] [EndSubstitution | Inside-

Substitution]
| > Mode UnOrderedList > UnOrderedList / [

UnOrderedList]
| & [EndSubstitution | InsideSubstitution]
| * [EndSubstitution | InsideSubstitution]
| { EndSubstitution | InsideSubstitution }

25 ReapplyPattern ::= [TRY] ([Id])
26 EndSubstitution ::= UnOrderedList [-] UnOrderedList | Un-

OrderedList | [-] UnOrderedList | [-] Un-
OrderedList |

27 InsideSubstitution ::= < [UnOrderedList] > [ContextPattern]
28 ContextPattern ::= / [EndSubstitution]
29 Mode ::= * | < | >
30 Id ::= Letters1

| Letters2
31 UnOrderedList ::= Letters1
32 OrUnorderedList ::= Orunorderedlist
33 LetterVariable ::= Lettervariable
34 Word ::= Letters1 | Letters2
35 JavaPart ::= { TableDef | ListDef | ListConcat }* JavaRule-

Set

A.2. Modified Java grammar (based on Java 1.4 grammar) 110

36 TableDef ::= TABLE Id { [[Id { , Id }*]] {Word { , Word
}* ; }+ }

37 ListDef ::= LIST Id { { Word ; }+ }
38 ListConcat ::= LIST Id = Id { { + | + } Id }* ;
39 JavaRuleSet ::= JAVARULESET {Modifiedjavacode }* END-

JAVARULESET
40 Orunorderedlist ::= Letter { | { Letter | Digit } }+
41 Lettervariable ::= $ Letter { Letter | Digit | - | }*
42 Letters1 ::= Letter { Letter | Digit }*
43 Letters2 ::= Letter { Letter | Digit | - }*
44 Letter ::= { A | ... | Z | a | ... | z }
45 Digit ::= { 0 | ... | 9 }
46 Modifiedjavacode ::=

A.2 Modified Java grammar (based on Java 1.4

grammar)

1 ModifiedJavaCode ::= { ImportDeclaration }* { BlockState-
ment }* { ConditionBlockStatement
}* { RuleBlockStatement }+ EOF

2 ImportDeclaration ::= import Name [. *] ;
3 VariableDeclarator ::= VariableDeclaratorId [= VariableIni-

tializer]
4 VariableDeclaratorId ::= Identifier { [] }*
5 VariableInitializer ::= ArrayInitializer

| Expression
6 ArrayInitializer ::= { [VariableInitializer { , VariableIni-

tializer }*] [,] }
7 FormalParameter ::= [final] Type VariableDeclaratorId
8 Type ::= PrimitiveType | Name { [] }*
9 PrimitiveType ::= boolean | char | byte | short | int

| long | float | double | TABLE |
LIST

10 ResultType ::= void | Type
11 Name ::= Identifier { . Identifier }*
12 NameList ::= Name { , Name }*
13 Expression ::= Assignment

| ConditionalExpression

A.2. Modified Java grammar (based on Java 1.4 grammar) 111

14 Assignment ::= PrimaryExpression AssignmentOper-
ator Expression

15 AssignmentOperator ::= = | *= | /= |%= | += | -= | <<=
| >>= | >>>= | &= | ˆ= | |=

16 ConditionalExpression ::= ConditionalOrExpression [? Expres-
sion : ConditionalExpression]

17 ConditionalOrExpression ::= ConditionalAndExpression { || Condi-
tionalAndExpression }*

18 ConditionalAndExpression ::= InclusiveOrExpression { && Inclu-
siveOrExpression }*

19 InclusiveOrExpression ::= ExclusiveOrExpression { | Exclusive-
OrExpression }*

20 ExclusiveOrExpression ::= AndExpression { ˆ AndExpression }*
21 AndExpression ::= EqualityExpression { & EqualityEx-

pression }*
22 EqualityExpression ::= InstanceOfExpression { { == | != }

InstanceOfExpression }*
23 InstanceOfExpression ::= RelationalExpression [instanceof

Type]
24 RelationalExpression ::= ShiftExpression { { < | > | <= | >=

} ShiftExpression }*
25 ShiftExpression ::= AdditiveExpression { { << | >> |

>>> } AdditiveExpression }*
26 AdditiveExpression ::= MultiplicativeExpression { { + | - }

MultiplicativeExpression }*
27 MultiplicativeExpression ::= UnaryExpression { { * | / | % }

UnaryExpression }*
28 UnaryExpression ::= { + | - } UnaryExpression

| PreIncrementExpression
| PreDecrementExpression
| UnaryExpressionNotPlusMinus

29 PreIncrementExpression ::= ++ PrimaryExpression
30 PreDecrementExpression ::= - - PrimaryExpression
31 UnaryExpressionNotPlusMinus ::= { ˜ | ! } UnaryExpression

| CastExpression
| PostfixExpression

32 CastLookahead ::= (PrimitiveType
| (Name []
| (Name) { ˜ | ! | (| Identifier | this

| super | new | Literal }
33 PostfixExpression ::= PrimaryExpression [++ | - -]
34 CastExpression ::= (Type) UnaryExpression

A.2. Modified Java grammar (based on Java 1.4 grammar) 112

| (Type) UnaryExpressionNotPlusMi-
nus

35 PrimaryExpression ::= PrimaryPrefix { PrimarySuffix }*
| trace (Expression)
| applyrule (Expression , Identifier ,

Expression)
36 PrimaryPrefix ::= Literal

| Name
| this
| (Expression)
| AllocationExpression

37 PrimarySuffix ::= . this
| . class
| . AllocationExpression
| [Expression]
| . Identifier
| Arguments

38 Literal ::= Integer literal
| Floating point literal
| Character literal
| String literal
| BooleanLiteral
| NullLiteral

39 BooleanLiteral ::= true | false
40 NullLiteral ::= null
41 Arguments ::= ([ArgumentList])
42 ArgumentList ::= Expression { , Expression }*
43 AllocationExpression ::= new PrimitiveType ArrayDimensions

[ArrayInitializer]
| new Name { ArrayDimensions [Ar-

rayInitializer] | Arguments }
44 ArrayDimensions ::= { [Expression] }+ { [] }*
45 ConditionBlockStatement ::= CONDITION (Expression) Block
46 RuleBlockStatement ::= RULE (Identifier) Block
47 Statement ::= LabeledStatement

| Block
| EmptyStatement
| StatementExpression ;
| SwitchStatement
| IfStatement
| WhileStatement
| DoStatement

A.2. Modified Java grammar (based on Java 1.4 grammar) 113

| ForStatement
| BreakStatement
| ContinueStatement
| ReturnStatement
| SynchronizedStatement
| TryStatement

48 LabeledStatement ::= Identifier : Statement
49 Block ::= { { BlockStatement }* }
50 BlockStatement ::= LocalVariableDeclaration ;

| Statement
51 LocalVariableDeclaration ::= [final] Type VariableDeclarator { ,

VariableDeclarator }*
52 EmptyStatement ::= ;
53 StatementExpression ::= PreIncrementExpression

| PreDecrementExpression
| Assignment
| PostfixExpression

54 SwitchStatement ::= switch (Expression) { { SwitchLabel
{ BlockStatement }* }* }

55 SwitchLabel ::= case Expression :
| default :

56 IfStatement ::= if (Expression) Statement [else
Statement]

57 WhileStatement ::= while (Expression) Statement
58 DoStatement ::= do Statement while (Expression) ;
59 ForStatement ::= for ([ForInit] ; [Expression] ; [

ForUpdate]) Statement
60 ForInit ::= LocalVariableDeclaration

| StatementExpressionList
61 StatementExpressionList ::= StatementExpression { , StatementEx-

pression }*
62 ForUpdate ::= StatementExpressionList
63 BreakStatement ::= break [Identifier] ;
64 ContinueStatement ::= continue [Identifier] ;
65 ReturnStatement ::= return [Expression] ;
66 SynchronizedStatement ::= synchronized (Expression) Block
67 TryStatement ::= try Block { catch (FormalParameter

) Block }* [finally Block]
68 Integer literal ::= Decimal literal [l | L] | Hex literal [

l | L] | Octal literal [l | L]
69 Decimal literal ::= { 1 | ... | 9 } { 0 | ... | 9 }*

A.2. Modified Java grammar (based on Java 1.4 grammar) 114

70 Hex literal ::= 0 { x | X } { 0 | ... | 9 | a | ... | f |
A | ... | F }+

71 Octal literal ::= 0 { 0 | ... | 7 }*
72 Floating point literal ::= { 0 | ... | 9 }+ . { 0 | ... | 9 }* [

Exponent] [f | F | d | D] | . { 0 | ...
| 9 }+ [Exponent] [f | F | d | D] |
{ 0 | ... | 9 }+ Exponent [f | F | d |
D] | { 0 | ... | 9 }+ [Exponent] { f
| F | d | D }

73 Exponent ::= { e | E } [+ | -] { 0 | ... | 9 }+
74 Character literal ::= ’ { { ˜{ ’ | \\ | \n | \r } } | { \\ {

n | t | b | r | f | \\ | ’ | \” | 0 | ... |
7 [0 | ... | 7] | { 0 | ... | 3 } { 0 | ...
| 7 } { 0 | ... | 7 } } } } ’

75 String literal ::= \” { { ˜{ \” | \\ | \n | \r } } | { \\
{ n | t | b | r | f | \\ | ’ | \” | 0 | ...
| 7 [0 | ... | 7] | { 0 | ... | 3 } { 0 |
... | 7 } { 0 | ... | 7 } } } }* \”

76 Identifier ::= Letter { Letter | Digit }*
77 Letter ::= { $ | A | ... | Z | | a | ... | z }
78 Digit ::= { 0 | ... | 9 }

APPENDIX B

LiteMorph — JavaCC source code

The following source code presents a JavaCC implementation of the LiteMorph lan-

guage, based on the EBNF grammar from Appendix A. The JavaCC source code for

the modified Java 1.4 is not included since easily reproducible from Sriram Sankar

JavaCC source code used in JTB [21] and from the modified Java 1.4 grammar from

Appendix A.

B.1 JavaCC source code for LiteMorph

/∗∗
∗ A grammar fo r LiteMorph . Support to inc lude a var ian t o f Java 1 . 4 inc luded .
∗ Author : Mikaë l ROUSSILLON
∗ Date : 3 0 august 2004
∗
∗ Copyright Un ive r s i t y o f New Brunswick
∗/

options {

JAVA_UNICODE_ESCAPE = true;

STATIC = false ; // needed to add some methods
}

PARSER_BEGIN(LiteMorphParser)

package litemorphparser;

public class LiteMorphParser {

int java_begin_line = -1;

StringBuffer java_code = new StringBuffer("");

115

B.1. JavaCC source code for LiteMorph 116

public String getJavaCode () {

return java_code.toString ();

}

public int getJavaLineCode () {

return java_begin_line;

}

}

PARSER_END(LiteMorphParser)

SKIP : /∗ WHITE SPACE ∗/
{

" "

| "\t"

| "\n"

| "\r"

| "\f"

}

SPECIAL_TOKEN : /∗ COMMENTS ∗/
{

<SINGLE_LINE_COMMENT : "//" (~["\n","\r"])* ("\n"|"\r"|"\r\n")>

| < FORMAL_COMMENT : "/**" (~["*"])* "*" ("*" | (~["*","/"] (~["*"])* "*"))* "/">

| < MULTI_LINE_COMMENT : "/*" (~["*"])* "*" ("*" | (~["*","/"] (~["*"])* "*"))* "/">

}

TOKEN : /∗ SEPARATORS AND SOME OPERATORS ∗/
{

< PLUS: "+ ">

| < MINUS: " - " >

| < ARROW: "->" >

| < LPAREN : "(" >

| < RPAREN : ")" >

| < MORPH : "!" >

| < UNDERSCORE : "_" >

| < COMMA: "," >

| < HASH: "#" >

| < LT: "<" >

| < GT: ">" >

| < VAR: "$" >

| < SLASH: "/" >

| < DQUOTE : "\"" >

| < DOUBLE : "&" >

| < STAR: "*" >

| < COLON: ":" >

| < LBRACE : "{" >

| < RBRACE : "}" >

| < ASSIGN : "=" >

| < SEMICOLON : ";" >

}

TOKEN : /∗ RESERVED WORDS AND LITERALS ∗/
{

< TRY: "TRY" >

| < LANG: "LANG" >

| < DEBUG : "DEBUG" >

| < TRACE : "TRACE" >

| < RULESET : "RULESET" >

| < JAVARULESET : " JAVARULESET " > : IN_JAVA_CODE

| < DEF: "DEFAULT" >

B.1. JavaCC source code for LiteMorph 117

| < ENDING : "ENDING" >

| < EXCEPTIONS : " EXCEPTIONS " >

| < TABLE: "TABLE" >

| < LIST: "LIST" >

}

<IN_JAVA_CODE > TOKEN :

{

< ENDJAVARULESET : " ENDJAVARULESET " > : DEFAULT

}

TOKEN : /∗ PREFIXES ∗/
{

< OROP: "|" >

| < NOTOP: "~" >

| < ANYWHEREOP : "." >

| < REGEXPOP1 : "+" >

| < REGEXPOP2 : "?" >

}

TOKEN : /∗ ESCAPE PREFIXES, to f o r ce the prev ious p r e f i x e s to be r e a l p r e f i x
operators , wi thout space inbetween . They are not used . ∗/

{

< ESC_OROP : "| " >

| < ESC_NOTOP : "~ " >

| < ESC_ANYWHEREOP : ". " >

| < ESC_REGEXPOP2 : "? " >

}

TOKEN : /∗ LETTERS, LITERALS ∗/
{

< DASH : "-" >

| < ORUNORDEREDLIST : <LETTER > ("|" (<LETTER > | <DIGIT >))+ >

| < LETTERVARIABLE : <VAR > <LETTER > (<LETTER > | <DIGIT > | "-"| "_")* >

| < LETTERS1: <LETTER > (<LETTER > | <DIGIT >)* >

| < LETTERS2: <LETTER > (<LETTER > | <DIGIT > | "-")* >

| < #LETTER:

[

//”\u0024” , =”$”
"\u0041"-"\u005a",

//”\u005f ” , =” ”
"\u0061"-"\u007a",

"\u00c0"-"\u00d6",

"\u00d8"-"\u00f6",

"\u00f8"-"\u00ff",

"\u0100"-"\u1fff",

"\u3040"-"\u318f",

"\u3300"-"\u337f",

"\u3400"-"\u3d2d",

"\u4e00"-"\u9fff",

"\uf900"-"\ufaff"

]

>

|

< #DIGIT:

[

"\u0030"-"\u0039",

"\u0660"-"\u0669",

"\u06f0"-"\u06f9",

"\u0966"-"\u096f",

"\u09e6"-"\u09ef",

"\u0a66"-"\u0a6f",

B.1. JavaCC source code for LiteMorph 118

"\u0ae6"-"\u0aef",

"\u0b66"-"\u0b6f",

"\u0be7"-"\u0bef",

"\u0c66"-"\u0c6f",

"\u0ce6"-"\u0cef",

"\u0d66"-"\u0d6f",

"\u0e50"-"\u0e59",

"\u0ed0"-"\u0ed9",

"\u1040"-"\u1049"

]

>

}

<IN_JAVA_CODE > TOKEN :

{

< MODIFIEDJAVACODE : ~[] >

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ THE LITEMORPH GRAMMAR STARTS HERE ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

void LiteMorphLanguage () : {}

{

Language ()

(Options ())*

(DefLetterVariable ())*

[Exceptions ()]

[JavaPart ()]

(LOOKAHEAD (3) (LOOKAHEAD (3) RuleSetEnding () | RuleSetNormal ()))*

RuleSetDefault ()

(LOOKAHEAD (3) (LOOKAHEAD (3) RuleSetEnding () | RuleSetNormal ()))*

<EOF >

}

void Language () : {}

{

"LANG" "=" Id() ";"

}

void Options () : {}

{

(

"DEBUG" ";"

|

"TRACE" ";"

)

}

void DefLetterVariable () : {}

{

LetterVariable () "=" UnOrderedList () ";"

}

void Exceptions () : {}

{

" EXCEPTIONS " "{" (ExceptionsList ())+ "}"

}

void ExceptionsList () : {}

{

Word() ("," Word())* ";"

}

B.1. JavaCC source code for LiteMorph 119

void RuleSetNormal () : {}

{

"RULESET" Id() "{" (Rule())+ "}"

}

void RuleSetEnding () : {}

{

"RULESET" Id() "ENDING" Id() "{" (Rule())+ "}"

}

void RuleSetDefault () : {}

{

"RULESET" "DEFAULT" Id() "{" (Rule())+ "}"

}

void Rule() : {}

{

PatternElements () "->" ModificationPatterns () ";"

}

void PatternElements () : {}

{

[LOOKAHEAD(FirstPattern ()) FirstPattern ()]

(LOOKAHEAD(LeftPatternEnd ()) LeftPatternEnd ())*

[LOOKAHEAD(LeftPatternInside ()) LeftPatternInside ()]

(LOOKAHEAD(LeftPatternEnd ()) LeftPatternEnd ())*

[LastPattern ()]

}

void FirstPattern () : {}

{

LOOKAHEAD ([BeginWord ()] (LeftAnchoredPattern ())* BeginDelimiter ())

[BeginWord ()] (LeftAnchoredPattern ())* BeginDelimiter ()

|

BeginWord ()

}

void BeginDelimiter () : {}

{

" - "

}

void BeginWord () : {}

{

"#"

}

void LeftPatternEnd () : {}

{

[<ANYWHEREOP >] LeftAnchoredPattern ()

}

void LeftPatternInside () : {}

{

"<" (LeftAnchoredPattern ())* ">"

}

void LeftAnchoredPattern () : {}

{

(

OpSet () Letters ()

B.1. JavaCC source code for LiteMorph 120

|

"&"

)

}

void OpSet () : {}

{

["|"] ["~"] ["*" | "+" | "?"]

}

void Letters () : {}

{

(

UnOrderedList ()

|

OrUnorderedList ()

|

LetterVariable ()

)

}

void LastPattern () : {}

{

(

EndDelimiter () (LeftAnchoredPattern ())* [EndWord ()]

|

EndWord ()

)

}

void EndDelimiter () : {}

{

"+ "

}

void EndWord () : {}

{

"#"

}

void ModificationPatterns () : {}

{

RightPattern () ("," RightPattern ())*

}

void RightPattern () : {}

{

LOOKAHEAD (ReapplyPattern () ["&"] [EndSubstitution ()|InsideSubstitution ()])

ReapplyPattern () ["&"] [EndSubstitution () | InsideSubstitution ()]

|

LOOKAHEAD (4)

">" Mode() UnOrderedList () ">" UnOrderedList () "/" "_" [UnOrderedList ()]

|

"&" [EndSubstitution () | InsideSubstitution ()]

|

"*" [EndSubstitution () | InsideSubstitution ()]

|

(EndSubstitution () | InsideSubstitution ())

}

void ReapplyPattern () : {}

{

B.1. JavaCC source code for LiteMorph 121

["TRY"] "(" [Id()] ")"

}

void EndSubstitution () : {}

{

(

LOOKAHEAD(UnOrderedList () "_" ["-"] UnOrderedList ())

UnOrderedList () "_" ["-"] UnOrderedList ()

|

LOOKAHEAD(UnOrderedList () "_")

UnOrderedList () "_"

|

LOOKAHEAD("_" ["-"] UnOrderedList ())

"_" ["-"] UnOrderedList ()

|

["-"] UnOrderedList ()

|

"_"

)

}

void InsideSubstitution () : {}

{

"<" [UnOrderedList ()] ">" [ContextPattern ()]

}

void ContextPattern () : {}

{

"/" [EndSubstitution ()]

}

void Mode() : {}

{

(

"*"

|

"<"

|

">"

)

}

void Id() : {}

{

<LETTERS1 >

|

<LETTERS2 >

}

void UnOrderedList () : {}

{

<LETTERS1 >

}

void OrUnorderedList () : {}

{

<ORUNORDEREDLIST >

}

void LetterVariable () : {}

{

<LETTERVARIABLE >

}

B.1. JavaCC source code for LiteMorph 122

void Word() : {}

{

(

<LETTERS1 >

|

<LETTERS2 >

)

}

/∗ ∗∗∗
∗ THE JAVA PART LANGUAGE GRAMMAR STARTS HERE ∗
∗∗∗ ∗/

/∗
∗ Program s t r u c t u r i n g syntax f o l l ow s .
∗/

void JavaPart () : {}

{

(TableDef () | LOOKAHEAD (3) ListDef () | ListConcat ())* JavaRuleSet ()

}

void TableDef () : {}

{

"TABLE" Id() "{" ["[" Id() ("," Id())* "]"] (Word() ("," Word())* ";")+ "}

"

}

void ListDef () : {}

{

"LIST" Id() "{" (Word() ";")+ "}"

}

void ListConcat () : {}

{

"LIST" Id() "=" Id() (("+" | "+ ") Id())* ";"

}

void JavaRuleSet () : {}

{

<JAVARULESET > { java_begin_line = n1.beginLine ; } // JTB complains about
t ha t but i t i s normal

(<MODIFIEDJAVACODE > { java_code.append(n4.image); }) *

<ENDJAVARULESET >

}

APPENDIX C

LiteMorph LangLM source code

The following sections present different LiteMorph LangLM source code. The French

LangLM was originally written with LiteMorph. The other LangLMs were written

in Java (by William Woods, helped by Ellen Hays for English and Ann Houston for

Spanish and German) and translated afterwards in LiteMorph. Due to the length of

each LangLM, only selected samples are included, trying to present as many features

of LiteMorph as possible.

C.1 French LangLM

The overall French LangLM is 1,705 lines of code. It contains 16,842 words in the ex-

ception table, spread across 561 entries. The 526 rules composing the French LangLM

are divided among 41 rule sets.

The following code presents samples from the complete French LangLM in Lite-

morph language: 4 entries from the exception table, and 2 rule sets, one being the

default rule set (91 rules) and the second being the rule set creating infinitive forms

123

C.1. French LangLM 124

for 1st group verbs (16 rules).

C.1.1 Head of French LangLM with samples of the excep-
tion table

/∗∗
∗ Author : Mikaë l ROUSSILLON
∗ Copyright (C) 2004 Unive r s i t y o f New Brunswick
∗/

LANG = fr;

DEBUG;

TRACE;

$Consonant = bcçdfghjklmnpqrstvwxyz;

$Vowel = aà á âeè é ê ëi ı̂ ı̈oôuù û üy ;

$Letter = aà á âbcçdeè é ê ëfghiı̂ ı̈jklmnoôpqrstuù û üvwxyz;

EXCEPTIONS {

// A

à;

abattre , abats , abat , abattons , abattez , abattent , abattais , abattait , abattions ,

abattiez , abattaient , abattis , abattit , abattı̂mes , abattı̂tes , abattirent ,

abattrai , abattras , abattra , abattrons , abattrez , abattront , abattrais , abattrait

, abattrions , abattriez , abattraient , abatte , abattes , abattisse , abattisses ,

abattı̂t , abattissions , abattissiez , abattissent , abattant , abattante , abattants ,

abattantes , abattu , abattue , abattus , abattues , abattage , abattages , abatteur ,

abatteurs , abattement , abattements ; // 60
absoudre , absous , absout , absolvons , absolvez , absolvent , absolvais , absolvait ,

absolvions , absolviez , absolvaient , absoudrai , absoudras , absoudra , absoudrons ,

absoudrez , absoudront , absoudrais , absoudrait , absoudrions , absoudriez ,

absoudraient , absolve , absolves , absolvant , absous , absout , absoute , absouts ,

absoutes , absolution , absolutions ; // 78 + r e c t i f . or th . déc 90
abstenir , abstiens , abstient , abstenons , abstenez , abstiennent , abstenais , abstenait

, abstenions , absteniez , abstenaient , abstins , abstint , abstı̂nmes , abstı̂ntes ,

abstinrent , abstiendrai , abstiendras , abstiendras , abstiendrons , abstiendrez ,

abstiendront , abstiendrais , abstiendrait , abstiendrions , abstiendriez ,

abstiendraient , abstienne , abstiennes , abstenions , absteniez , abstiennent ,

abstinsse , abstinsses , abstı̂nt , abstinssions , abstinssiez , abstinssent , abstenant

, abstenante , abstenants , abstenantes , abstenu , abstenue , abstenus , abstenues ,

abstention , abstentions , abstinence , abstinences ; //24
...

C.1.2 Default rule set for French LangLM

RULESET DEFAULT root {

// t e s t input as INFINITIF

.$Letter + e r -> (RegErParadigm)_, // (verbes 1 er groupe ,
chanter)

C.1. French LangLM 125

(NomAdjSingMasc)er; // (boucher)
// . $Let t e r + i r e −> (RegIrParadigm) , // (verbes 2 e groupe maudire)
// (RegErParadigm) ir , // (verber en − i r e r , admire)
// (NomAdjSingMasc) i r e ; // (acc e s so i r e)
.$Letter o i r # -> (NomAdjSingMasc)_; // (i s o l o i r)
|apst + i r -> (RegIrParadigm)_,

(RegIrParadigm)ir , // (é c l a i r , soupir , d é s i r ,
t i r)

(NomAdjSingMasc)ir;

.$Letter + i r -> (RegIrParadigm)_, // (verbes 2 e groupe , f i n i r)
(NomAdjSingMasc)ir;

// t e s t input as −é , − i , −u, − s , − t PARTICIPE PASSÉ (+ ADJECTIF form)
// − i ending i s processed at the end

.$Vowel + é ?s -> (RegErParadigm)_, // (aimé)
(NomAdjSingMasc)é , // (abandonné)
(NomAdjSingFem)é; // (ab su rd i t é)
.$Vowel + é e ?s -> (RegErParadigm)_, // (aimée)
(NomAdjSingMasc)ée , // (apogée)
(NomAdjSingFem) ée; // (a l l é e)

.$Vowel + i e ?s -> (RegIrParadigm)_, // (f i n i e)
(RegErParadigm)i, // (verbes en − i e r)
(NomAdjSingMasc)ie , // (b r i e)
(NomAdjSingFem)ie; // (j o l i e)

// t e s t input as −ant PARTICIPE PRÉSENT

.$Letter + i s s a n t ?s -> (RegIrParadigm)_, // (f i n i s s a n t)
(NomAdjSingMasc)issant ; // (é p a i s s i s s a n t)
.$Letter + i s s a n t e ?s -> (RegIrParadigm)_, // (f i n i s s a n t)
(NomAdjSingFem)issante ; // (é p a i s s i s s a n t)
.$Letter + a n t ?s -> (RegErParadigm)_,

(NomAdjSingMasc)ant; // (chantant , adjudant)
.$Letter + a n t e ?s -> (RegErParadigm)_,

(NomAdjSingFem)ante; // (chantant , adjudant)

// t e s t input as − ion to crea t e corresponding verb −− OPTIONAL (comment i f not
needed)

.$Letter s|t i o n # -> (IonNounToVerb)_,

(NomAdjSingMasc)_; // (camion)
.$Letter s|t + i o n s # -> (RegErParadigm)_, // (mangions)
(IonNounToVerb)ion ,

(NomAdjSingMasc)ion; // (camion)
.$Letter a i s o n # -> (IonNounToVerb)_,

(NomAdjSingMasc)_;

.$Letter a i s + o n s # -> (RegErParadigm)_, // (apaisons)
(IonNounToVerb)on , // (combinaison)
(NomAdjSingMasc)on;

// t e s t input as −eur/ euse/ r i c e / re s s e to crea t e corresponding verb −− OPTIONAL (
comment i f not needed)

.$Letter + e u r ?s # -> (EurNounToVerb)eur ,

(NomAdjSingMasc)eur;

.$Letter + e u s e ?s # -> (EurNounToVerb)euse ,

(NomAdjSingFem)euse;

.$Letter + r i c e ?s # -> (EurNounToVerb)rice ,

(NomAdjSingFem)rice;

.$Letter e|o + r e s s e ?s # -> (EurNounToVerb)resse ,

(NomAdjSingFem)resse;

C.1. French LangLM 126

// t e s t input as −ab l e to c rea t e corresponding verb −− OPTIONAL (comment i f not
needed)

.$Letter + a b l e ?s -> (AbleAdjToVerb)able ,

(NomAdjSingMasc)able;

// t e s t input as −age to crea t e corresponding verb −− OPTIONAL (comment i f not
needed)

.$Letter + a g e ?s -> (AgeNounToVerb)age , // (abordage)
(RegErParadigm)ag , // (amménager)
(NomAdjSingMasc)age; // (abordage)

// t e s t input as −ance to crea t e corresponding verb −− OPTIONAL (comment i f not
needed)

.$Letter + a n c e ?s -> (AnceNounToVerb)ance , // (assurance)
(RegErParadigm)anc , // (ba lancer)
(NomAdjSingMasc)ance; // (assurance)

// t e s t FUTURE −er ,− i r , o ther forms

?r e n v e r + r a i -> (RegErParadigm)er; // (enverra i)
?r e n v e r + r a ?s -> (RegErParadigm)er;

?r e n v e r + r o n s|t -> (RegErParadigm)er;

?r e n v e r + r e z -> (RegErParadigm)er;

.$Letter + e r a i -> (RegErParadigm)_,

(NomAdjSingMasc)erai; // (minerai)
.$Letter + e r a ?s -> (RegErParadigm)_,

(NomAdjSingMasc)era; // (c h i s t e r a s)
.$Letter + e r o n s -> (RegErParadigm)_,

(NomAdjPlurMasc)erons ; // (bucherons)
.$Letter + e r e z -> (RegErParadigm)_; // (j e r e z ???)
.$Letter + e r o n t -> (RegErParadigm)_;

.$Letter + i r a i -> (RegIrParadigm)_;

.$Letter + i r a ?s -> (RegIrParadigm)_;

.$Letter + i r o n s -> (RegIrParadigm)_,

(RegErParadigm)ir , // (admirons)
(NomAdjPlurMasc)irons ; // (av i rons)
.$Letter + i r e z -> (RegIrParadigm)_,

(RegErParadigm)ir; // (admirez)
.$Letter + i r o n t -> (RegIrParadigm)_;

// t e s t CONDITIONNEL −er ,− i r , o ther forms

?r e n v e r + r a i s|t -> (RegErParadigm)_; // (enver ra i s)
?r e n v e r + r i o n s -> (RegErParadigm)_;

?r e n v e r + r i e z -> (RegErParadigm)_;

?r e n v e r + r a i e n t -> (RegErParadigm)_;

.$Letter + e r a i s -> (RegErParadigm)_

,(NomAdjPlurMasc)erais ; // (minerais)
.$Letter + e r a i t -> (RegErParadigm)_;

.$Letter + e r i o n s -> (RegErParadigm)_;

.$Letter + e r i e z -> (RegErParadigm)_;

.$Letter + e r a i e n t -> (RegErParadigm)_;

.$Letter + i r a i s|t -> (RegIrParadigm)_,

C.1. French LangLM 127

(RegErParadigm)ir; // (admirais)
.$Letter + i r i o n s -> (RegIrParadigm)_,

(RegErParadigm)ir;

.$Letter + i r i e z -> (RegIrParadigm)_,

(RegErParadigm)ir;

.$Letter + i r a i e n t -> (RegIrParadigm)_,

(RegErParadigm)ir;

// t e s t INDICATIF PRÉSENT et IMPARFAIT, PASSÉ SIMPLE, SUBJONCTIF PRÉSENT et
IMPARFAIT −er ,− i r , o ther forms

.$Letter + i s s a i s|t -> (RegIrParadigm)_,

(RegErParadigm)iss; // (h i s s e r , verbes en − i s s e r)
.$Letter + a i s -> (RegErParadigm)_, // (aimais)
(NomAdjPlurMasc)ais; // (ba i s)
.$Letter + a i t -> (RegErParadigm)_,

(NomAdjSingMasc)ait; // (a b s t r a i t)
.$Letter + o i s -> (NomAdjSingMasc)ois , // (anchois , bourgeo i s)
(NomAdjPlurMasc)ois; // (tourno i s)
.$Letter + i s -> (RegIrParadigm)_, // (f i n i s)
(NomAdjPlurMasc)is , // (a b r i s)
(NomAdjSingMasc)is;

.$Letter + i s s e ?s -> (RegIrParadigm)_, // (f i n i s s e)
(RegErParadigm)iss; // (h i s s e r , verbes en − i s s e r)
.$Letter + i t -> (RegIrParadigm)_, // (f i n i t)
(NomAdjSingMasc)it , // (d é f i c i t)
(NomAdjSingFem)it; // (nu i t)
.$Letter + ı̂ t -> (RegIrParadigm)_; // (f i n ı̂ t)
.$Letter + i s s i o n s -> (RegIrParadigm)_, // (f i n i s s i o n s)
(RegErParadigm)iss , // (h i s s e r , verbes en − i s s e r)
(NomAdjPlurFem)issions ; // (admissions)
.$Letter + i s s o n s -> (RegIrParadigm)_, // (f i n i s s o n s)
(RegErParadigm)iss , // (h i s s e r , verbes en − i s s e r)
(NomAdjPlurMasc)issons , // (bu i s sons)
(NomAdjPlurFem)issons ; // (bo i s sons)
.$Letter + i s s ?i e z -> (RegIrParadigm)_,

(RegErParadigm)iss; // (h i s s e r , verbes en − i s s e r)
.$Letter + i s s e n t -> (RegIrParadigm)_,

(RegErParadigm)iss; // (h i s s e r , verbes en − i s s e r)
.$Letter + ı̂ m e s -> (RegIrParadigm)_,

(NomAdjPlurMasc) ı̂mes , // (abı̂mes)
(NomAdjPlurFem) ı̂mes; // (dı̂mes)
.$Letter + ı̂ t e s -> (RegIrParadigm)_,

(NomAdjPlurMasc) ı̂tes , // (g ı̂ t e s)
(NomAdjPlurFem) ı̂tes; // (f a ı̂ t e s)
.$Letter + i r e n t -> (RegIrParadigm)_,

(RegErParadigm)ir; // (admirent)
.$Letter + a s s e s -> (RegErParadigm)_, // (aimasses)
(NomAdjPlurFem)asses ; // (b l ondas se s −> b londe)
.$Letter + a s s e -> (RegErParadigm)_, // (aimasse)
(NomAdjSingFem)asse; // (b londasse −> b londe)
.$Letter + â t -> (RegErParadigm)_,

(NomAdjSingMasc) ât; // (mât)
.$Letter + a s s i o n s -> (RegErParadigm)_, // (aimasse)
(NomAdjPlurFem)assions ; // (pass ions)
.$Letter + i o n s -> (RegErParadigm)_,

(NomAdjSingMasc)ion , // (camions)
(NomAdjSingFem)ion; // (ac t ion)
.$Letter + o n s -> (RegErParadigm)_,

(NomAdjPlurMasc)ons , // (abandons)
(NomAdjPlurFem)ons; // (fa çon)
.$Letter + â m e s -> (RegErParadigm)_, // (aimâmes)

C.1. French LangLM 128

(NomAdjSingMasc) âme; // (âme)
.$Letter + a s s i e z -> (RegErParadigm)_; // (aimasse)
.$Letter + i e z -> (RegErParadigm)_;

.$Letter + e z -> (RegErParadigm)_,

(NomAdjSingMasc)ez;

.$Letter + â t e s -> (RegErParadigm)_, // (aimâtes)
(NomAdjPlurMasc) âtes; // (p â te)
.$Letter + a s s e n t -> (RegErParadigm)_; // (aimasse)
.$Letter + a i e n t -> (RegErParadigm)_, // (amaient)
(RegErParadigm)ai; // (verbes en −ayer)
.$Letter + è r e n t -> (RegErParadigm)_, // (aimèrent)
(RegErParadigm) èr; // (adhèrent)
.$Letter + i s s e m e n t ?s -> (RegIrParadigm)_, // (assa in i s sement)
(RegErParadigm)iss , // (c r i s s e r , verbes en − i s s e r

)
(NomAdjSingMasc)ement ; // (agissement)
.$Letter + e m e n t ?s -> (RegErParadigm)_, // (d épou i l l ement)
(NomAdjSingMasc)ement;

.$Letter + é m e n t ?s -> (RegErParadigm)_, // (aveugl ément)
(RegErParadigm)é , // (suppl ément)
(NomAdjSingMasc) ément;

.$Letter + e n t -> (RegErParadigm)_,

(NomAdjSingMasc)ent; // (vent)
.$Letter + a i -> (RegErParadigm)_, // (aimai)
(NomAdjSingMasc)ai,

(NomAdjSingFem)ai;

.$Letter + a s -> (RegErParadigm)_, // (aimas)
(NomAdjSingMasc)as,

(NomAdjPlurMasc)as,

(NomAdjPlurFem)as;

.$Letter + a -> (RegErParadigm)_, // (aima)
(NomAdjSingMasc)a,

(NomAdjSingFem)a;

.$Letter + e s -> (RegErParadigm)_, // (aimes)
(NomAdjSingMasc)es,

(NomAdjPlurMasc)es,

(NomAdjPlurFem)es;

.$Letter + e -> (RegErParadigm)_, // (aime)
(NomAdjSingMasc)e,

(NomAdjSingFem)e;

//
.$Letter o i # -> (NomAdjSingMasc)_; // (tournoi)
.$Consonant + i -> (RegIrParadigm)_, // (f i n i)
(NomAdjSingMasc)i, // (ab r i)
(NomAdjSingFem)i; // (fourmi)

// t e s t input as − in to crea t e corresponding verb −− OPTIONAL (comment i f not
needed)

.$Consonant i n ?s # -> (RegErParadigm)_, // (as sas in)
(NomAdjSingMasc)_;

.$Letter # -> (NomAdjSingMasc)_,(NomAdjSingFem)_,(NomAdjPlurMasc)_,(NomAdjPlurFem)

_;

}

C.1.3 Sample rule set for French LangLM

RULESET ErInfin {

C.2. Spanish LangLM 129

// generate i n f i n i t i f forms fo r −er verbs , from verb stem
//Assume input has s t r i p p ed i n f i n i t i v e −er

.$Letter v + e r -> oyer; // (envoyer , renvoyer from fu tu r s imple)

.$Letter <è > ? $Consonant + c|ç -> <é >/_cer ,<e>/_cer; // (rap i é cer , d épecer)

.$Letter <é > ? $Consonant + c|ç -> <é >/ _cer; // (rap i é c e r)

.$Letter <e> ? $Consonant + c|ç -> <e>/_cer; // (d épecer)

.$Letter + e t ?t -> etter , eter; // (j e t t e r , acheter , + r e c t i f i c a t i o n s
or thograph ique 6 déc . 1990)

.$Letter + è t ?t -> etter , eter , éter; // (j e t t e r , acheter , r e f l é t e r +
r e c t i f i c a t i o n s or thograph ique 6 déc . 1990)

.$Letter + e l ?l -> eller ,eler; // (appe ler , modeler + r e c t i f i c a t i o n s
or thograph ique 6 déc . 1990)

.$Letter + è l ?l -> eller ,eler , éler; // (appe ler , modeler , c o r r é l e r +
r e c t i f i c a t i o n s or thograph ique 6 déc . 1990)

.$Letter <é|è > g + ?e -> <é >/_er; // (a s s i é g e r)

.$Letter <è > $Consonant ? $Consonant # -> <é >/_er ,<e>/_er; // (céder , peser , verbes
− é (.) er e t −e (.) er . . .)

.$Letter <é > $Consonant ? $Consonant # -> <é >/_er; // (céder , verbes − é (.) er)

.$Letter <e> $Consonant ? $Consonant # -> <e>/_er; // (peser , verbes −e (.) er)

.$Letter a|o|u + i|y -> yer; // (payer , broyer)

.$Letter + c|ç -> cer; // (p l ace r)

.$Letter g + ?e -> er; // (manger)

.$Letter # -> er; // (aimer , appr éc ier , cr éer , d e f a u l t form)
}

C.2 Spanish LangLM

The Spanish LangLM is 1,608 lines long and consists of an exception table of 127

entries containing a total of 377 words. Sixty-one rules are split among 59 rule sets.

A Java rule set is also used, which is presented in the following sample code. A sample

code presenting the call to this Java rule set from the default rule set, made with the

TRY operator to handle future forms of irregular verbs is also included.

C.2.1 Java rule set for Spanish LangLM

/∗∗
∗ Authors : W. A. Woods and Ann Houston
∗ Copyright (C) 1995−2004 Sun Microsystems , Inc .
∗
∗ Trans la t ion to LiteMorph : Mikaë l ROUSSILLON
∗ Copyright (C) 2004 Unive r s i t y o f New Brunswick
∗/

LIST prefixes {

C.2. Spanish LangLM 130

ad; ab; ante; a; circun ; com; contra ; con; des; de; dis; entre; en; extra ; ex

; im; inter ; intra; in; menos; minus ; ob; o; pre; pro; post; pos; re;

super ; sub; su; sobre; trans ; tras;

}

TABLE paradigms {

[infin , prog , part , pres , pret]

abrir , abriendo , abierto , abro , abrı́;

andar , andando , andado , ando , anduve;

almorzar , almorzando , almorzado , almuerzo , almorcé ;

argüir , arguyendo , argüido , arguyo , argüi;

asir , asiendo , asido , asgo , ası́;

avergonzar , avergonzando , avergonzado , avergüenzo , avergoncé ;

bendecir , bendeciendo , bendecido , bendigo , bendije;

buscar , buscando , buscado , busco , busqué ;

caber , cabiendo , cabido , quepo , cupe;

caer , cayendo , caı́do , caigo , caı́;

cocer , cociendo , cocido , cuezo , cocı́;

coger , cogiendo , cogido , cojo , cogı́;

conducir , conduciendo , conducido , conduzco , conduje;

conocer , conociendo , conocido , conozco , conocı́ ;

contar , contando , contado , cuento , conté ;

creer , creyendo , creı́do , creo , creı́;

cubrir , cubriendo , cubierto , cubro , cubrı́ ;

decir , diciendo , dicho , digo , dije;

distinguir , distinguiendo , distinguido , distingo , distinguı́ ;

dormir , durmiendo , dormido , duermo , dormı́ ;

empezar , empezando , empezado , empiezo , empecé ;

errar , errando , errado , yerro , erré;

esparcir , esparciendo , esparcido , esparzo , esparcı́ ;

estar , estando , estado , estoy , estuve;

freir , friendo , frito , frı́o , freı́;

haber , habiendo , habido , he , hube;

hacer , haciendo , hecho , hago , hice;

huir , huyendo , huido , huyo , huı́;

jugar , jugando , jugado , juego , jugué ;

leer , leyendo , leı́do , leo , leı́;

llover , lloviendo , llovido , llueve , llovı́ ; // shou ld probab ly use 3 rd person
fo r weather verbs

maldecir , maldeciendo , maldecido , maldigo , maldije;

morir , muriendo , muerto , muero , morı́;

nevar , nevando , nevado , nievo , nevı́;

oı́r , oyendo , oı́do , oigo , oı́;

oler , oliendo , olido , huelo , olı́;

pensar , pensando , pensado , pienso , pensé ;

pedir , pidiendo , pedido , pido , pedı́;

poder , pudiendo , podido , puedo , pude;

poner , poniendo , puesto , pongo , puse;

proveer , proveyendo , provisto , proveo , proveı́ ;

querer , queriendo , querido , quiero , quise;

reı́r , riendo , reı́do , rı́o , reı́;

solver , solviendo , suelto , suelvo , solvı́ ; // a root f o r r e so l v e r , abso l ver ,
d i s o l v e r

romper , rompiendo , roto , rompo , rompı́ ;

saber , sabiendo , sabido , sé , supe;

salir , saliendo , salido , salgo , salı́;

seguir , siguiendo , seguido , sigo , seguı́ ;

sentir , sintiendo , sentido , siento , sentı́ ;

tener , teniendo , tenido , tengo , tuve;

traer , trayendo , traı́do , traigo , traje;

valer , valiendo , valido , valgo , valı́;

C.2. Spanish LangLM 131

venir , veniendo , venido , vengo , vine;

ver , viendo , visto , veo , vı́;

vestir , vistiendo , vestido , visto , vestı́ ;

volver , volviendo , vuelto , vuelvo , volvı́ ;

}

JAVARULESET

String paradigm = (String)paradigms.get(input);

// i n f i n i t i v e , p rogre s s i v e , p a r t i c i p l e , present , p r e t e r i t e , stem = (i n f − ending)

String infin , prog , part , pres , pret , stem;

infin = prog = part = pres = pret = stem = ""; // make sure a l l are
i n i t i a l i z e d

int length = input.length ();

// i f (authorFlag) t race (”Paradigm i s cu r r en t l y : ” + paradigm) ;

CONDITION (paradigm == null) {

trace ("Did NOT find "+ input +" in Verb Lookup Table");

String tempPrefix , wordform;

String [] tempVal = null;

// c o l l e c t p r e f i x e s − see i f one matches input

StringTokenizer tokens = new StringTokenizer(prefixes , " ");

while (tokens.hasMoreTokens () && paradigm == null) {

tempPrefix = tokens.nextToken ();

if (input.startsWith(tempPrefix) && (input.length () > 3) && (

prefix.equals (""))) {

wordform = input.substring(tempPrefix.length ()); //
s t r i p p r e f i x from input

trace ("In computeMorph ("+ arg +") : "+ input +" is "+

tempPrefix +" + "+ wordform);

trace (" Testing Prefixes : "+ tempPrefix);

if ((wordform.length () > 1) && (paradigms.get(

wordform)!=null)) {

trace (" Trying computeMorph ("+ arg +") on "+

wordform +" with prefix : "+ tempPrefix

+", at depth "+ (1 + depth));

tempVal = computeMorph(wordform , arg , depth

+1, tempPrefix , suffix);

} else {

trace ("Did NOT find " + wordform + " (prefix

stripped) in Verb Lookup Table ");

}

if (tempVal != null) {

trace (" returning " + tempVal.length + "

computed values " + " at depth " + (1 +

depth));

return tempVal;

}

}

}

return null; // i f p r e f i x e s has no token or tempVal == nu l l
}

RULE (irrVerb) {

Vector variants = new Vector ();

trace (" Inside Spanish IrrVerb ");

LiteMorphRule [] useRules;

StringTokenizer tokens = new StringTokenizer(paradigm , " ");

infin = tokens.nextToken ();

prog = tokens.nextToken ();

C.2. Spanish LangLM 132

part = tokens.nextToken ();

pres = tokens.nextToken ();

pret = tokens.nextToken ();

if (infin.length () < 4) { // (ver , ser , i r)
stem = infin.substring(0,infin.length () -1);

} else {

stem = infin.substring(0,infin.length () -2);

}

trace (" Found paradigm in Verb Lookup Table : "+ infin +" "+ prog

+" "+ part +" "+ pres +" "+ pret);

// genera te s forms whether or not p r e f i x = nu l l , i f p r e f i x not nu l l ,
inc luded i t .

trace (" Using paradigm from Verb Lookup Table : "+ infin +" "+ prog

+" "+ part +" "+ pres +" "+ pret);

if (infin.endsWith ("ar")) {

applyrule(prefix+infin , Literal , variants);

applyrule(prefix+prog , IrregProgPart , variants);

applyrule(prefix+part , IrregProgPart , variants);

applyrule(prefix+pres , ArIrregPres , variants); //
generate i r r e g presen t

applyrule(prefix+stem , ArImperf , variants); //
generate imper fec t f o r −ar

applyrule(prefix+pret , ArIrregPret , variants); //
generate i r r e g p r e t e r i t e

applyrule(prefix+pres , ArIrregPresSubj , variants); //
generate presen t su b j unc t i v e

applyrule(prefix+pret , ArIrregImpSubj , variants); //
generate imper fec t s u b j unc t i v e

applyrule(prefix+stem , ArFutSubj , variants); //
generate f u tu r e su b j unc t i v e

applyrule(prefix+stem , ArIrregImperative , variants); //
generate imperat i ve −ar

applyrule(prefix+infin , AllCond , variants);

applyrule(prefix+infin , AllFuture , variants);

}

if (infin.endsWith ("er")) {

applyrule(prefix+infin , Literal , variants);

applyrule(prefix+prog , IrregProgPart , variants);

applyrule(prefix+part , IrregProgPart , variants);

applyrule(prefix+pres , ErIrregPres , variants); //
generate i r r e g −er presen t

applyrule(prefix+stem , ErIrImperf , variants); //
geneate imper f ec t f o r −er

applyrule(prefix+pret , ErIrregPret , variants); //
generate i r r e g −er p r e t e r i t e

applyrule(prefix+pres , ErIrregPresSubj , variants); //
generate presen t su b j unc t i v e

applyrule(prefix+pret , ErIrregImpSubj , variants); //
generate imper fec t s u b j unc t i v e

applyrule(prefix+stem , ErFutSubj , variants); //
generate f u tu r e su b j unc t i v e

applyrule(prefix+pres , ErIrregImperative , variants); //
generate imperat i ve −er

applyrule(prefix+infin , AllCond , variants);

applyrule(prefix+infin , AllFuture , variants);

}

if (infin.endsWith ("ir") || infin.endsWith (" ı́r")) { //
need ı́ r f o r o ı́ r

applyrule(prefix+infin , Literal , variants);

C.2. Spanish LangLM 133

applyrule(prefix+prog , IrregProgPart , variants);

applyrule(prefix+part , IrregProgPart , variants);

applyrule(prefix+pres , IrIrregPres , variants); //
generate i r r e g − i r presen t

applyrule(prefix+stem , ErIrImperf , variants); //
geneate imper f ec t f o r − i r

applyrule(prefix+pret , IrIrregPret , variants); //
generate i r r e g − i r p r e t e r i t e

applyrule(prefix+pres , IrIrregPresSubj , variants); //
generate presen t su b j unc t i v e

applyrule(prefix+pret , IrIrregImpSubj , variants); //
generate imper fec t s u b j unc t i v e

applyrule(prefix+stem , IrFutSubj , variants); //
generate f u tu r e su b j unc t i v e

applyrule(prefix+pres , IrIrregImperative , variants); //
generate imperat i ve − i r

applyrule(prefix+infin , AllCond , variants);

applyrule(prefix+infin , AllFuture , variants);

}

String [] result = new String[variants.size()];

variants.copyInto(result);

return result;

}

ENDJAVARULESET

C.2.2 Sample rules set for Spanish LangLM

DEFAULT RULESET {

[...]

// t e s t FUTURE −ar ,−er ,− i r forms

.$Vowel . $Consonant + ?d r é -> TRY(irrVerb)ir ,TRY(irrVerb)er; // (
sabré , s a l d r é)

.$Vowel . $Consonant + ?d r á ?s|n -> TRY(irrVerb)ir ,TRY(irrVerb)er; // (
sabr ás , sa ldr án)

.$Vowel . $Consonant + ?d r é i s -> TRY(irrVerb)ir ,TRY(irrVerb)er; // (
sabr é i s , s a l d r é i s)

.$Vowel . $Consonant + ?d r e m o s -> TRY(irrVerb)ir ,TRY(irrVerb)er; // (
sabremos , saldremos)

.$Vowel . $Consonant a|e|i r + é -> TRY(irrVerb)_; // (romperé , r e i r é) Note
− need to handle i n f i n i t i v e r e ı́ r

.$Vowel . $Consonant a|e|i r + é -> (RegParadigm)_; // (hab lar é , comeré , v i v i r é
)

.$Vowel . $Consonant a|e|i r + á ?s|n -> TRY(irrVerb)_; // (darás , romperán
, dormirá)

.$Vowel . $Consonant a|e|i r + á ?s|n -> (RegParadigm)_; // (hablar á , comerán
, v i v i r á s)

.$Vowel . $Consonant a|e|i r + é i s -> TRY(irrVerb)_; // (e r ra r é i s ,
romeréis , dormir é i s)

.$Vowel . $Consonant a|e|i r + é i s -> (RegParadigm)_; // (hab l a r é i s ,
comeréis , v i v i r é i s)

.$Vowel . $Consonant a|e|i r + e m o s -> TRY(irrVerb)_; // (daremos ,
romperemos , dormiremos)

C.3. English LangLM 134

.$Vowel . $Consonant a|e|i r + e m o s -> (RegParadigm)_; // (hablaremos ,
comeremos , v iv i remos)

[...]

}

C.3 English LangLM

The English LangLM is 1,237 lines long, and contains 2,589 words for the 581 entries

of the exception tables. Only 123 pattern-matching rules and 17 rule sets are used.

The rule sets are all ending rule sets except for the default rule set. The following

sample code is one of this ending rule set that process input words that end with

-ment.

C.3.1 Sample ending rule set for English LangLM

/∗∗
∗ Authors : W. A. Woods and El l en Hays
∗ Copyright (C) 1995−2004 Sun Microsystems , Inc .
∗
∗ Trans la t ion to LiteMorph : Mikaë l ROUSSILLON
∗ Copyright (C) 2004 Unive r s i t y o f New Brunswick
∗/

// For words ending in −ment (ment−r u l e s) :

RULESET mentRules ENDING ment {

s e g m e n t + -> s,ed ,ing ,ings ,er,ers ,ly ,ness ,nesses ,less ,ful;

// (e . g . , segment , bisegment , cosegment)

p i g m e n t + -> s,ed ,ing ,ings ,er,ers ,ly ,ness ,nesses ,less ,ful;

// (e . g . , pigment , depigment , repigment)

.aeiouy d g + m e n t -> *e;

// (e . g . , judgment , abridgment)

.aeiouy | bcdfghjklmnpqrstvwxyz + i m e n t -> *y;

// (e . g . , merriment , embodiment)

.aeiouy + m e n t -> _,*_;

// (e . g . , atonement , entrapment)
}

APPENDIX D

Comparison of Lightweight Morphology,
stemming and wildcard variants

Each of the following sections present sample words selected from a Ispell dictionary

(randomly selected words) or from the Hansard collection (freqency selected words)

for both French and English and their respective variants produced by Lightweight

Morphology (LM), stemming (S) and wildcard (W). By variants we mean the words

that were retrieved from the collection (the Hansard described in Chapter 6) by

applying one of the three previously mentioned technique.

Each sample contains 15 words for each test case over a pool of 100 words. The

variants are classified in either relevant or irrelevant. The relevance criterion is the

correctness of the variants regarding to the input word, not the correctness of the

context. From tear, we consider that torn is relevant, but tearmann is irrelevant.

Tear will be classified as relevant either in the context of a teardrop or of something

that is torn. The classification is not perfect for some words since ‘relevance’ is

subjective. Changing the classification for such debatable word will however provide

little consequences on the differential recall results.

135

D.1. Sample from English randomly selected words with variants
created and relevance/irrelevance judgements 136

D.1 Sample from English randomly selected words

with variants created and relevance/irrelevance

judgements

Word: acidly Stem: acidli Wildcard: acid*
LM Relevant acid, acids

Irrelevant
S Relevant

Irrelevant
W Relevant acid, acidic, acidification, acidity, acids

Irrelevant
Word: awarder Stem: award Wildcard: award*
LM Relevant award, awarded, awarding, awards

Irrelevant
S Relevant award, awarded, awarding, awards

Irrelevant
W Relevant award, awarded, awarding, awards

Irrelevant
Word: celebrated Stem: celebr Wildcard: celebrat*
LM Relevant celebrate, celebrated, celebrates, celebrating

Irrelevant
S Relevant celebrate, celebrated, celebrates, celebrating, celebration, celebrations

Irrelevant celebrities, celebrity
W Relevant celebrate, celebrated, celebrates, celebrating, celebration, celebrations, celebratory

Irrelevant
Word: continue Stem: continu Wildcard: continu*
LM Relevant continue, continued, continuer, continues, continuing

Irrelevant
S Relevant continual, continually, continuance, continuation, continue, continued, continuer, continues,

continuing, continuity, continuous, continuously
Irrelevant

W Relevant continual, continually, continuance, continuation, continue, continued, continuer, continues,
continuing, continuity, continuous, continuously

Irrelevant continuatinuation, continuum
Word: dreamer Stem: dreamer Wildcard: dream*
LM Relevant dream, dreamed, dreamer, dreamers, dreaming, dreams

Irrelevant
S Relevant dreamer, dreamers

Irrelevant
W Relevant dream, dreamed, dreamer, dreamers, dreaming, dreams, dreamt

Irrelevant dreamland
Word: fastened Stem: fasten Wildcard: fast*
LM Relevant fasten, fastened

Irrelevant
S Relevant fasten, fastened

Irrelevant
W Relevant fast, fasten, fastened, faster, fastest, fasting

Irrelevant fastidious
Word: hum Stem: hum Wildcard: hum*
LM Relevant hum, humming

Irrelevant
S Relevant hum, humming

Irrelevant
W Relevant hum, humming

D.1. Sample from English randomly selected words with variants
created and relevance/irrelevance judgements 137

Irrelevant humaine, human, humane, humanely, humanism, humanist, humanistic, humanitarian, hu-
manitarianism, humanitarians, humanities, humanity, humanization, humanize, humanized,
humanizing, humankind, humanly, humans, humanum, humber, humberside, humble, hum-
bled, humbleness, humblest, humbling, humbly, humboldt, humbug, humdinger, hume, hu-
midity, humiliate, humiliated, humiliating, humiliation, humiliations, humility, hummell,
hummingbird, humongous, humorist, humorous, humorously, humour, humoured, humour-
ing, humourous, humours, hump, humpback, humped, humphrey, humphreys, humpty, hu-
mungous, humus

Word: lameness Stem: lame Wildcard: lame*
LM Relevant lame, lamely, lameness, lamer

Irrelevant
S Relevant lame, lamely, lameness

Irrelevant
W Relevant lame, lamely, lameness, lamer

Irrelevant lamebrained, lament, lamentable, lamentably, lamented, lamenting, laments
Word: mendacious Stem: mendaci Wildcard: mendac*
LM Relevant mendacious

Irrelevant
S Relevant mendacious

Irrelevant
W Relevant mendacious, mendacity

Irrelevant
Word: parsing Stem: pars Wildcard: pars*
LM Relevant

Irrelevant parsement
S Relevant parse

Irrelevant
W Relevant parse

Irrelevant parsement, parsimonious, parsis, parson, parsons
Word: progression Stem: progress Wildcard: progress*
LM Relevant progression

Irrelevant
S Relevant progress, progressed, progresses, progressing, progression, progressive, progressively, progres-

siveness, progressives, progressivity
Irrelevant

W Relevant progress, progressed, progresses, progressing, progression, progressive, progressively, progres-
siveness, progressives, progressivity

Irrelevant progressisve
Word: reflectivity Stem: reflect Wildcard: reflect*
LM Relevant

Irrelevant
S Relevant reflect, reflected, reflecting, reflection, reflections, reflective, reflectively, reflects

Irrelevant
W Relevant reflect, reflected, reflecting, reflection, reflections, reflective, reflectively, reflects

Irrelevant
Word: shroud Stem: shroud Wildcard: shroud*
LM Relevant shroud, shrouded, shrouds

Irrelevant
S Relevant shroud, shrouded, shrouds

Irrelevant
W Relevant shroud, shrouded, shrouds

Irrelevant
Word: spoilage Stem: spoilag Wildcard: spoil*
LM Relevant

Irrelevant
S Relevant

Irrelevant
W Relevant spoil, spoiled, spoiler, spoiling, spoils

Irrelevant spoilsport
Word: turtles Stem: turtl Wildcard: turtle*
LM Relevant turtle, turtles

Irrelevant
S Relevant turtle, turtles

D.2. Sample from English frequency selected words with variants
created and relevance/irrelevance judgements 138

Irrelevant
W Relevant turtle, turtles

Irrelevant turtleford, turtleneck, turtlenecks

D.2 Sample from English frequency selected words

with variants created and relevance/irrelevance

judgements

Word: acting Stem: act Wildcard: act*
LM Relevant act, acted, acting, actor, actors, acts

Irrelevant
S Relevant act, acte, acted, actes, acting, acts

Irrelevant
W Relevant act, acte, acted, actes, acting, actor, actors, actress, actresses, acts

Irrelevant acta, acteal, actew, acti, actifs, action, actionable, actions, activate, activated, activates, ac-
tivating, activation, activator, active, actively, activi, activism, activist, activists, activites,
activities, activity, activités, acton, actuaire, actual, actuality, actualité, actualization, actu-
alize, actualized, actualizing, actually, actuarial, actuarially, actuarials, actuaries, actuarily,
actuary, actuated, actuel, actuels, actus

Word: business Stem: busi Wildcard: business*
LM Relevant busier, busiest, busily, business, businesses, busy

Irrelevant
S Relevant business, businesses, busy

Irrelevant
W Relevant business, businesses, businessman, businessmen, businesspeople, businessperson, business-

woman, businesswomen
Irrelevant businesslike, businesslinc

Word: country Stem: countri Wildcard: countr*
LM Relevant countries, country

Irrelevant
S Relevant countries, country

Irrelevant
W Relevant countries, country

Irrelevant countradict, countryman, countrymen, countryside, countrywide
Word: deputy Stem: deputi Wildcard: deput*
LM Relevant deputies, deputy

Irrelevant
S Relevant deputies, deputy

Irrelevant
W Relevant deputation, deputations, deputies, deputy

Irrelevant deputized
Word: finance Stem: financ Wildcard: financ*
LM Relevant finance, financed, financement, finances, financing

Irrelevant
S Relevant finance, financed, financement, finances, financing

Irrelevant
W Relevant finance, financed, financement, finances, financial, financially, financier, financiers, financing,

financière, financières, financiére
Irrelevant

Word: income Stem: incom Wildcard: incom*
LM Relevant income, incomes, incoming

Irrelevant
S Relevant income, incomes, incoming

Irrelevant
W Relevant income, incomes, incoming

D.2. Sample from English frequency selected words with variants
created and relevance/irrelevance judgements 139

Irrelevant incommensurable, incommensurate, incomparable, incompatibility, incompatible, incompe-
tence, incompetency, incompetent, incompetently, incompetents, incomplete, incompletely,
incomprehensibility, incomprehensible, incompétence

Word: justice Stem: justic Wildcard: justice*
LM Relevant justice, justices

Irrelevant
S Relevant justice, justices

Irrelevant
W Relevant justice, justices

Irrelevant justicegerard, justiceship, justiceships
Word: money Stem: monei Wildcard: money*
LM Relevant money, moneyed, moneys

Irrelevant
S Relevant money, moneyed, moneys

Irrelevant
W Relevant money, moneyed, moneys

Irrelevant
Word: parliamentary Stem: parliamentari Wildcard: parliament*
LM Relevant parliament, parliamentary, parliaments

Irrelevant
S Relevant parliamentary

Irrelevant
W Relevant parliament, parliamentarian, parliamentarianism, parliamentarians, parliamentarily, parlia-

mentarism, parliamentary, parliamentry, parliaments
Irrelevant parliamentand, parliamentarianto, parliamented, parliamenti

Word: prime Stem: prime Wildcard: prime*
LM Relevant prime, primed, primer, primes

Irrelevant
S Relevant prime, primed, primes

Irrelevant
W Relevant prime, primed, primer, primes

Irrelevant primeau, primem
Word: provinces Stem: provinc Wildcard: provinc*
LM Relevant province, provinces

Irrelevant
S Relevant province, provinces

Irrelevant
W Relevant province, provinces, provincial, provinciale, provincialism, provincially, provincials

Irrelevant provincehood
Word: resources Stem: resourc Wildcard: resource*
LM Relevant resource, resources

Irrelevant resourced, resourceful, resourcing
S Relevant resource, resources

Irrelevant resourced, resourceful, resourcefulness, resourcing
W Relevant resource, resources

Irrelevant resourced, resourceful, resourcefulness
Word: services Stem: servic Wildcard: servic*
LM Relevant service, serviced, services, servicing

Irrelevant servicer
S Relevant service, serviceability, serviceable, serviced, services, servicing

Irrelevant servicer
W Relevant service, serviceability, serviceable, serviced, serviceman, servicemen, services, servicing

Irrelevant servicer
Word: system Stem: system Wildcard: system*
LM Relevant system, systems

Irrelevant
S Relevant system, systems

Irrelevant systemic, systemically
W Relevant system, systems

Irrelevant systematic, systematically, systemhouse, systemic, systemically
Word: world Stem: world Wildcard: world*
LM Relevant world, worldly, worlds

Irrelevant

D.3. Sample from French randomly selected words with variants created
and relevance/irrelevance judgements 140

S Relevant world, worlds
Irrelevant

W Relevant world, worldly, worlds, worldwide
Irrelevant worldclass, worldiwide

D.3 Sample from French randomly selected words

with variants created and relevance/irrelevance

judgements

Word: aboutissement Stem: about Wildcard: abouti*
LM Relevant abouti, aboutir, aboutira, aboutiraient, aboutirait, aboutirez, aboutirions, aboutirons,

aboutiront, aboutissaient, aboutissais, aboutissait, aboutissant, aboutissants, aboutisse,
aboutissement, aboutissent, aboutissions, aboutissons, aboutit

Irrelevant
S Relevant abouti, aboutir, aboutira, aboutiraient, aboutirait, aboutirez, aboutirions, aboutirons,

aboutiront, aboutissaient, aboutissais, aboutissait, aboutissant, aboutissants, aboutisse,
aboutissement, aboutissent, aboutissions, aboutissons, aboutit

Irrelevant
W Relevant abouti, aboutir, aboutira, aboutiraient, aboutirait, aboutirez, aboutirions, aboutirons,

aboutiront, aboutissaient, aboutissais, aboutissait, aboutissant, aboutissants, aboutisse,
aboutissement, aboutissent, aboutissions, aboutissons, aboutit

Irrelevant
Word: amaigrissait Stem: amaigr Wildcard: amaigri*
LM Relevant amaigri, amaigris, amaigrissant, amaigrissement

Irrelevant
S Relevant amaigri, amaigris, amaigrissant, amaigrissement

Irrelevant
W Relevant amaigri, amaigris, amaigrissant, amaigrissement

Irrelevant
Word: brasserai Stem: brass Wildcard: brass*
LM Relevant brassage, brassaient, brassait, brasse, brassent, brasser, brassera, brassez, brassé, brassée

Irrelevant
S Relevant brassaient, brassait, brasse, brasser, brassera, brassez, brassé, brassée

Irrelevant brass
W Relevant brassage, brassaient, brassait, brasse, brassent, brasser, brassera, brasserie, brasseries,

brasseur, brasseurs, brassez, brassé, brassée
Irrelevant brass, brassard, brassicole

Word: conduite Stem: conduit Wildcard: condui*
LM Relevant conducteur, conducteurs, conduira, conduiraient, conduirait, conduire, conduiront, conduis,

conduisaient, conduisais, conduisait, conduisant, conduise, conduisent, conduisez, condui-
sions, conduisit, conduisons, conduit, conduite, conduites, conduits

Irrelevant
S Relevant conduit, conduite, conduites, conduits

Irrelevant
W Relevant conduira, conduiraient, conduirait, conduire, conduiront, conduis, conduisaient, conduisais,

conduisait, conduisant, conduise, conduisent, conduisez, conduisions, conduisit, conduisons,
conduit, conduite, conduites, conduits

Irrelevant
Word: crampe Stem: cramp Wildcard: cramp*
LM Relevant crampes

Irrelevant crampons
S Relevant crampes

Irrelevant
W Relevant crampes

Irrelevant crampon, cramponnant, cramponne, cramponner, cramponnés, crampons

D.3. Sample from French randomly selected words with variants created
and relevance/irrelevance judgements 141

Word: déportais Stem: déport Wildcard: déport*
LM Relevant déportation, déportations, déporte, déporter, déporterions, déportons, déporté, déportée,

déportées, déportés
Irrelevant

S Relevant déportation, déportations, déporte, déporter, déporterions, déporté, déportée, déportées,
déportés

Irrelevant
W Relevant déportation, déportations, déporte, déporter, déporterions, déportons, déporté, déportée,

déportées, déportés
Irrelevant

Word: enlacerais Stem: enlac Wildcard: enlac*
LM Relevant enlacer

Irrelevant
S Relevant enlacer

Irrelevant
W Relevant enlacer

Irrelevant
Word: germe Stem: germ Wildcard: germ*
LM Relevant germe, germer, germera, germes, germs, germé, germées

Irrelevant
S Relevant germe, germer, germera, germes, germs, germé, germées

Irrelevant
W Relevant germe, germer, germera, germes, germinal, germinale, germinales, germination, germs, germé,

germées
Irrelevant germain, germaine, germains, germano, germen

Word: incompétente Stem: incompétent Wildcard: incompét*
LM Relevant incompétent, incompétente, incompétentes, incompétents

Irrelevant
S Relevant incompétence, incompétences, incompétent, incompétente, incompétentes, incompétents

Irrelevant
W Relevant incompétence, incompétences, incompétent, incompétente, incompétentes, incompétents

Irrelevant
Word: jargonnais Stem: jargon Wildcard: jargon*
LM Relevant jargon

Irrelevant
S Relevant jargon

Irrelevant
W Relevant jargon

Irrelevant
Word: orange Stem: orang Wildcard: orang*
LM Relevant orange, oranges, orangée

Irrelevant
S Relevant orange, oranges, orangée

Irrelevant orangiste, orangistes
W Relevant orange, oranges, orangée

Irrelevant orangeville, orangiste, orangistes
Word: plombai Stem: plomb Wildcard: plomb*
LM Relevant plombage, plombée, plombées, plombés

Irrelevant
S Relevant plomb, plombs, plombée, plombées, plombés

Irrelevant
W Relevant plomb, plombage, plombs, plombée, plombées, plombés

Irrelevant plomberie, plombier, plombiers
Word: rédigeais Stem: rédig Wildcard: rédig*
LM Relevant rédige, rédigea, rédigeaient, rédigeais, rédigeait, rédigeant, rédigent, rédigeons, rédiger,

rédigera, rédigerait, rédigeront, rédigez, rédigions, rédigé, rédigée, rédigées, rédigés
Irrelevant

S Relevant rédige, rédigea, rédigeaient, rédigeais, rédigeait, rédigeant, rédiger, rédigera, rédigerait,
rédigeront, rédigez, rédigions, rédigé, rédigée, rédigées, rédigés

Irrelevant
W Relevant rédige, rédigea, rédigeaient, rédigeais, rédigeait, rédigeant, rédigent, rédigeons, rédiger,

rédigera, rédigerait, rédigeront, rédigez, rédigions, rédigé, rédigée, rédigées, rédigés

D.4. Sample from French frequency selected words with variants created
and relevance/irrelevance judgements 142

Irrelevant
Word: villégiaturer Stem: villégiatur Wildcard: villégiatur*
LM Relevant villégiature

Irrelevant
S Relevant villégiature

Irrelevant
W Relevant villégiature

Irrelevant
Word: étalagerais Stem: étalag Wildcard: étalag*
LM Relevant étalage, étalages

Irrelevant
S Relevant étalage, étalages

Irrelevant
W Relevant étalage, étalages

Irrelevant

D.4 Sample from French frequency selected words

with variants created and relevance/irrelevance

judgements

Word: accord Stem: accord Wildcard: accord*
LM Relevant accord, accorde, accords

Irrelevant
S Relevant accord, accorda, accordaient, accordais, accordait, accordance, accordant, accorde, accorder,

accordera, accorderai, accorderaient, accorderais, accorderait, accorderez, accorderiez, ac-
corderions, accorderons, accorderont, accordez, accordiez, accordions, accords, accordé, ac-
cordée, accordées, accordés

Irrelevant
W Relevant accord, accorda, accordaient, accordais, accordait, accordance, accordant, accorde, accor-

dent, accorder, accordera, accorderai, accorderaient, accorderais, accorderait, accorderez, ac-
corderiez, accorderions, accorderons, accorderont, accordeur, accordez, accordiez, according,
accordions, accordons, accords, accordé, accordée, accordées, accordés

Irrelevant accordéoniste
Word: autochtones Stem: autochton Wildcard: autochtone*
LM Relevant autochtone, autochtones

Irrelevant
S Relevant autochtone, autochtones

Irrelevant
W Relevant autochtone, autochtones

Irrelevant
Word: comité Stem: comit Wildcard: comité*
LM Relevant comité, comités

Irrelevant comite
S Relevant comité, comités

Irrelevant comite
W Relevant comité, comités

Irrelevant comitédu, comitéle, comitésénatorial, comitéà
Word: dollars Stem: dollar Wildcard: dollar*
LM Relevant dollar, dollars

Irrelevant
S Relevant dollar, dollars

Irrelevant
W Relevant dollar, dollarisation, dollars

Irrelevant dollarama, dollard, dollards
Word: enfants Stem: enfant Wildcard: enfant*

D.4. Sample from French frequency selected words with variants created
and relevance/irrelevance judgements 143

LM Relevant enfance, enfant, enfants
Irrelevant enfer

S Relevant enfant, enfants
Irrelevant

W Relevant enfant, enfantillage, enfantillages, enfantin, enfantine, enfants
Irrelevant

Word: honorable Stem: honor Wildcard: honorabl*
LM Relevant honorable, honorables, honorait, honorant, honore, honorent, honorer, honorera, honorerai,

honorerait, honoreras, honorerions, honorerons, honoreront, honorez, honorions, honorons,
honoré, honorée, honorées, honorés

Irrelevant
S Relevant honorable, honorablement, honorables, honorait, honorant, honore, honorer, honorera, honor-

erai, honorerait, honoreras, honorerions, honorerons, honoreront, honorez, honorions, honoré,
honorée, honorées, honorés

Irrelevant honoris
W Relevant honorable, honorablement, honorables

Irrelevant honorableandré, honorableb, honorablebarney, honorablebrenda, honorablecharles, honor-
ableconsiglio, honorabledavid, honorabledonald, honorabledouglas, honorableedmund, hon-
orableeric, honorableerik, honorableerminie, honorableeymard, honorablefernand, hon-
orablegérald, honorablehedy, honorableherbert, honorablej, honorablejames, honorable-
jean, honorablejerahmiel, honorablejoe, honorablejohn, honorableleonard, honorablelow-
ell, honorablem, honorablemabel, honorablemarcel, honorablemarjorie, honorablemarjory,
honorablemichael, honorablenorman, honorablenoël, honorableorville, honorablepat, hon-
orablepeter, honorablepierre, honorableralph, honorablerichard, honorablerobert, honor-
ableroméo, honorablesduncan, honorablesheila, honorablesnoël, honorablesénateur, honor-
ableterry, honorabletony, honorableénateur

Word: libéral Stem: libéral Wildcard: libéra*
LM Relevant libéral, libérale, libérales, libéraux

Irrelevant
S Relevant libéral, libérale, libéralement, libérales, libéralisme, libéralistes, libéraux

Irrelevant
W Relevant libéral, libérale, libéralement, libérales, libéralisait, libéralisant, libéralisation, libéralisatrice,

libéralise, libéralisent, libéraliser, libéralisme, libéralistes, libéralisé, libéralisées, libéralisés,
libéraux

Irrelevant libérables, libéraient, libérait, libéralmobile, libérant, libérateurs, libération, libérations,
libératoire, libératrice

Word: ministère Stem: minister Wildcard: ministère*
LM Relevant minister, ministers, ministère, ministères

Irrelevant
S Relevant ministers, ministère, ministères

Irrelevant
W Relevant ministère, ministères

Irrelevant ministèresle
Word: parlementaire Stem: parlementair Wildcard: parlement*
LM Relevant parlementaire, parlementairement, parlementaires

Irrelevant
S Relevant parlementaire, parlementairement, parlementaires

Irrelevant
W Relevant parlement, parlementaire, parlementairement, parlementaires, parlementarisme, parlementer,

parlements, parlementé
Irrelevant parlementairede, parlementaireno, parlementairno

Word: problèmes Stem: problem Wildcard: problème*
LM Relevant problème, problèmes

Irrelevant
S Relevant problème, problèmes

Irrelevant
W Relevant problème, problèmes

Irrelevant problèmens
Word: président Stem: président Wildcard: présid*
LM Relevant présida, présidaient, présidais, présidait, présidant, préside, président, présidente, présidentes,

présidents, présider, présidera, présiderai, présideraient, présiderait, présiderez, présideront,
présidez, présidiez, présidons, présidé, présidée, présidées, présidés

D.4. Sample from French frequency selected words with variants created
and relevance/irrelevance judgements 144

Irrelevant
S Relevant présidence, présidences, président, présidente, présidentes, présidents

Irrelevant
W Relevant présida, présidaient, présidais, présidait, présidant, préside, présidence, présidences,

président, présidente, présidentes, présidentialisation, présidentiel, présidentielle,
présidentielles, présidentiels, présidents, présider, présidera, présiderai, présideraient,
présiderait, présiderez, présideront, présidez, présidiez, présidons, présidé, présidée,
présidées, présidés

Irrelevant présidentselon
Word: ressources Stem: ressourc Wildcard: ressource*
LM Relevant ressource, ressourcement, ressourcer, ressources

Irrelevant
S Relevant ressource, ressourcement, ressourcer, ressources

Irrelevant
W Relevant ressource, ressourcement, ressourcer, ressources

Irrelevant
Word: secrétaire Stem: secrétair Wildcard: secrétaire*
LM Relevant secrétaire, secrétaires

Irrelevant
S Relevant secrétaire, secrétaires

Irrelevant
W Relevant secrétaire, secrétaires

Irrelevant
Word: sénat Stem: sénat Wildcard: sénat*
LM Relevant sénat, sénats

Irrelevant
S Relevant sénat, sénats

Irrelevant
W Relevant sénat, sénateur, sénatorial, sénatoriale, sénatoriales, sénatorialle, sénatoriaux, sénatrice,

sénatrices, sénats
Irrelevant sénatdu, sénaten, sénateuralan, sénateurbrenda, sénateurdi, sénateurdoris, sénateurearl,

sénateurfrank, sénateurguy, sénateurjean, sénateurjohn, sénateurjoyal, sénateurmarian,
sénateurmuriel, sénateurmurray, sénateurnick, sénateurpeter, sénateurpietro, sénateurprud,
sénateurrichard, sénateurroch, sénateurs, sénateursdavid, sénateurst, sénateurwilliam,
sénatle, sénatroial

Word: égard Stem: égard Wildcard: égard
LM Relevant égard, égards

Irrelevant
S Relevant égard, égards

Irrelevant
W Relevant égard

Irrelevant

APPENDIX E

Differential Recall results

The differential recall results are computed using the relevance/irrelevance classifi-

cation in Appendix D with the Hansard collection (see Chapter 6). As mentioned

before, LM, S, W and EQ stands respectively for Lightweight Morphology, Stemming,

Wildcard and Exact Query. The following scores are computed when comparing two

systems A and B:

∩A
B = Number of relevant documents returned by both A and B

∆A
B = Number of relevant documents returned by A but not B

∆B
A = Number of relevant documents returned by B but not A

As described in Chapter 6, for each set of words, two differential recall scores

are computed. The first one, as we just defined, uses a relevance criterion where

we count the number of documents containing relevant terms, therefore the number

of relevant document. On the second differential recall score, we use an irrelevance

criterion where we count the number of documents containing irrelevant terms and

145

E.1. Differential recall results for English randomly selected words 146

no relevant terms, therefore the number of irrelevant documents.

For the irrelevance criterion, the words that had all their differential recall mea-

sures for the different comparison equal to zero were not printed.

E.1 Differential recall results for English randomly

selected words

E.1.1 Relevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

acidly 37 0 0 0 37 1 37 0 0 0 0 0

alight 0 2 0 0 2 0 1 1 0 1 1 0

allowance 0 204 321 0 204 321 53 151 0 374 151 0

among 4 500 0 0 504 0 4 500 0 0 500 0

amputates 0 6 4 0 6 4 6 0 0 10 0 0

articulates 0 202 7 0 202 7 190 12 0 197 12 0

artist 0 153 16 0 153 19 109 44 0 125 44 0

awarder 0 388 0 0 388 0 388 0 0 388 0 0

belongs 0 388 0 0 388 0 152 236 0 152 236 0

bitingly 23 0 0 11 12 0 23 0 0 0 0 0

boarders 493 5 0 0 498 0 497 1 0 4 1 0

brazen 4 6 0 0 10 0 4 6 0 0 6 0

bumping 8 33 0 0 41 3 39 2 0 31 2 0

canceling 0 3 253 0 3 253 1 2 0 254 2 0

celebrated 0 397 24 0 397 24 257 140 0 281 140 0

chokes 0 54 0 0 54 0 51 3 0 51 3 0

classified 0 71 0 0 71 46 23 48 0 23 48 0

clawed 0 55 0 0 55 0 26 29 0 26 29 0

clever 12 40 0 0 52 0 13 39 0 1 39 0

commit 0 514 0 0 514 10 177 337 0 177 337 0

compiled 0 48 9 0 48 9 12 36 0 21 36 0

continue 0 522 2 0 522 2 4 518 0 6 518 0

coordinations 0 35 56 0 35 56 35 0 0 91 0 0

crumb 0 24 0 0 24 32 23 1 0 23 1 0

cursors 0 0 0 0 0 0 0 0 0 0 0 0

descriptively 0 12 170 0 12 171 12 0 0 182 0 0

dirtiness 3 107 0 0 110 20 110 0 0 107 0 0

donkey 0 6 0 0 6 0 1 5 0 1 5 0

dreamer 280 7 0 0 287 5 284 3 0 4 3 0

E.1. Differential recall results for English randomly selected words 147

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

driveway 0 17 0 0 17 0 4 13 0 4 13 0

education 0 483 7 0 483 7 0 483 0 7 483 0

encircle 0 4 0 0 4 0 2 2 0 2 2 0

engages 0 463 0 0 463 0 423 40 0 423 40 0

estimation 0 49 381 0 49 381 0 49 0 381 49 0

expounds 0 20 0 0 20 0 17 3 0 17 3 0

fastened 0 4 0 0 4 357 3 1 0 3 1 0

fierce 0 60 0 0 60 0 21 39 0 21 39 0

foulness 0 44 0 0 44 0 44 0 0 44 0 0

frisks 0 3 0 0 3 0 3 0 0 3 0 0

hatching 1 11 0 0 12 13 12 0 0 11 0 0

houses 0 529 0 0 529 0 243 286 0 243 286 0

huge 0 434 0 0 434 0 1 433 0 1 433 0

hum 0 2 0 0 2 0 1 1 0 1 1 0

hundred 0 263 181 0 263 183 0 263 0 181 263 0

incurred 0 205 0 0 205 0 53 152 0 53 152 0

indignity 0 21 46 0 21 0 5 16 0 51 16 0

indivisible 0 42 6 0 42 0 0 42 0 6 42 0

journeyed 0 108 0 0 108 7 103 5 0 103 5 0

kitchens 0 191 0 0 191 0 165 26 0 165 26 0

lameness 32 28 0 0 60 0 58 2 0 26 2 0

landlord 0 32 0 0 32 0 13 19 0 13 19 0

leaf 223 110 0 223 110 0 234 99 0 11 99 0

less 18 500 0 14 504 0 18 500 0 0 500 0

looter 29 5 0 0 34 0 32 2 0 3 2 0

mailable 0 0 0 0 0 358 0 0 0 0 0 0

marketed 0 465 0 0 465 0 435 30 0 435 30 0

mendacious 0 1 0 0 1 1 0 1 0 0 1 0

obscured 0 72 6 0 72 6 68 4 0 74 4 0

occupier 0 214 0 0 214 87 212 2 0 212 2 0

openers 2 510 0 0 512 0 512 0 0 510 0 0

outdoors 0 34 0 0 34 0 20 14 0 20 14 0

paddle 0 18 0 0 18 0 5 13 0 5 13 0

palace 0 14 0 0 14 0 2 12 0 2 12 0

parsing 0 0 4 0 0 4 0 0 0 4 0 0

pastime 0 9 0 0 9 0 2 7 0 2 7 0

perplexed 0 35 1 0 35 1 15 20 0 16 20 0

pitier 81 0 0 0 81 1 81 0 0 0 0 0

poetical 0 12 0 0 12 61 12 0 0 12 0 0

presumptions 0 59 6 0 59 23 50 9 0 56 9 0

prime 0 512 0 0 512 0 0 512 0 0 512 0

progression 0 25 469 0 25 469 0 25 0 469 25 0

prowlers 2 0 0 0 2 0 2 0 0 0 0 0

pumpkin 0 2 0 0 2 0 0 2 0 0 2 0

punctuation 0 1 2 0 1 2 0 1 0 2 1 0

quadrupled 0 13 0 0 13 1 5 8 0 5 8 0

raise 0 518 0 0 518 0 54 464 0 54 464 0

rave 0 24 0 0 24 0 16 8 0 16 8 0

reflectivity 0 0 503 0 0 503 0 0 0 503 0 0

reinserted 0 2 0 0 2 0 2 0 0 2 0 0

E.1. Differential recall results for English randomly selected words 148

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

renumbering 0 28 0 0 28 0 1 27 0 1 27 0

rhythms 0 0 0 0 0 1 0 0 0 0 0 0

roarer 27 0 0 0 27 0 27 0 0 0 0 0

salesmen 12 4 0 12 4 0 12 4 0 0 4 0

showered 0 26 0 0 26 0 22 4 0 22 4 0

shroud 0 16 0 0 16 0 7 9 0 7 9 0

singers 163 39 0 17 185 0 193 9 0 30 9 0

slaying 24 8 0 23 9 0 28 4 0 4 4 0

slicer 27 0 0 0 27 0 27 0 0 0 0 0

sovereignty 0 291 0 0 291 94 0 291 0 0 291 0

special 0 510 1 0 510 3 0 510 0 1 510 0

speculation 0 100 81 0 100 81 6 94 0 87 94 0

spoilage 0 0 0 0 0 27 0 0 0 0 0 0

statistical 0 390 0 0 390 0 316 74 0 316 74 0

subverter 0 24 0 0 24 9 24 0 0 24 0 0

swims 10 62 0 5 67 2 70 2 0 60 2 0

tablet 0 9 0 0 9 514 8 1 0 8 1 0

tear 55 182 1 55 182 1 152 85 0 98 85 0

tonnage 0 10 0 0 10 122 0 10 0 0 10 0

turtles 0 4 0 0 4 0 3 1 0 3 1 0

wrenches 0 47 0 0 47 0 42 5 0 42 5 0

E.1.2 Irrelevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

among 0 0 1 0 0 1 0 0 0 1 0 0

boarders 0 0 0 0 0 21 0 0 0 0 0 0

brazen 0 0 0 0 0 69 0 0 0 0 0 0

celebrated 0 0 5 0 0 0 0 0 0 5 0 0

clawed 0 0 0 0 0 45 0 0 0 0 0 0

commit 0 0 0 0 0 13 0 0 0 0 0 0

continue 0 0 0 0 0 21 0 0 0 0 0 0

cursors 0 0 0 0 0 22 0 0 0 0 0 0

dreamer 0 0 0 0 0 2 0 0 0 0 0 0

fastened 0 0 0 0 0 2 0 0 0 0 0 0

frisks 0 0 0 0 0 1 0 0 0 0 0 0

hatching 0 0 0 0 0 6 0 0 0 0 0 0

houses 0 0 0 0 0 213 0 0 0 0 0 0

huge 0 0 0 0 0 1 0 0 0 0 0 0

hum 0 0 0 0 0 521 0 0 0 0 0 0

hundred 0 0 0 0 0 1 0 0 0 0 0 0

incurred 0 0 12 0 0 28 0 0 0 12 0 0

lameness 0 0 0 0 0 62 0 0 0 0 0 0

leaf 0 0 0 0 0 8 0 0 0 0 0 0

less 0 0 0 0 0 283 0 0 0 0 0 0

E.2. Differential recall results for English frequency selected words 149

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

mailable 0 0 0 0 0 8 0 0 0 0 0 0

marketed 0 0 0 0 0 198 0 0 0 0 0 0

occupier 0 0 0 0 0 1 0 0 0 0 0 0

openers 0 0 0 0 0 13 0 0 0 0 0 0

paddle 0 0 0 0 0 1 0 0 0 0 0 0

parsing 1 0 0 0 1 11 1 0 0 0 0 0

pitier 0 0 0 0 0 207 0 0 0 0 0 0

prime 0 0 0 0 0 4 0 0 0 0 0 0

progression 0 0 0 0 0 1 0 0 0 0 0 0

pumpkin 0 0 0 0 0 1 0 0 0 0 0 0

raise 0 0 0 0 0 40 0 0 0 0 0 0

rave 0 0 0 0 0 41 0 0 0 0 0 0

singers 0 0 0 0 0 473 0 0 0 0 0 0

slicer 0 0 0 0 0 10 0 0 0 0 0 0

sovereignty 0 0 0 0 0 1 0 0 0 0 0 0

spoilage 0 0 0 0 0 1 0 0 0 0 0 0

statistical 0 0 1 0 0 0 0 0 0 1 0 0

tablet 0 0 0 0 0 489 0 0 0 0 0 0

tear 0 0 0 0 0 1 0 0 0 0 0 0

tonnage 0 0 0 0 0 3 0 0 0 0 0 0

turtles 0 0 0 0 0 3 0 0 0 0 0 0

E.2 Differential recall results for English frequency

selected words

E.2.1 Relevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

acting 0 531 0 0 531 0 48 483 0 48 483 0

affairs 0 518 0 0 518 0 1 517 0 1 517 0

agreement 12 516 0 0 528 0 13 515 0 1 515 0

amendment 0 523 0 10 513 0 30 493 0 30 493 0

amendments 0 523 0 10 513 0 43 480 0 43 480 0

bill 0 528 0 0 528 0 0 528 0 0 528 0

budget 0 492 0 0 492 1 9 483 0 9 483 0

business 0 522 0 1 521 1 4 518 0 4 518 0

canadian 0 526 0 0 526 5 1 525 0 1 525 0

children 3 508 0 0 511 1 3 508 0 0 508 0

colleague 0 521 0 0 521 0 20 501 0 20 501 0

committee 0 524 0 0 524 0 1 523 0 1 523 0

commons 0 528 0 0 528 0 2 526 0 2 526 0

E.2. Differential recall results for English frequency selected words 150

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

community 0 517 0 0 517 0 9 508 0 9 508 0

country 0 519 0 0 519 0 0 519 0 0 519 0

court 0 496 0 0 496 0 11 485 0 11 485 0

criminal 0 464 0 0 464 0 10 454 0 10 454 0

deal 2 519 0 0 521 0 4 517 0 2 517 0

debate 0 527 0 0 527 0 4 523 0 4 523 0

decision 0 515 0 0 515 0 5 510 0 5 510 0

department 0 510 0 510 0 0 7 503 0 7 503 0

deputy 0 523 0 0 523 0 0 523 0 0 523 0

development 0 522 0 0 522 0 11 511 0 11 511 0

division 0 422 6 0 422 0 6 416 0 12 416 0

economic 0 503 0 0 503 0 4 499 0 4 499 0

education 0 483 7 0 483 7 0 483 0 7 483 0

farmers 35 376 0 0 411 2 47 364 0 12 364 0

federal 0 517 1 0 517 1 0 517 0 1 517 0

finance 0 498 0 0 498 21 10 488 0 10 488 0

foreign 0 494 0 0 494 0 1 493 0 1 493 0

future 0 517 0 0 517 0 1 516 0 1 516 0

government 0 530 0 0 530 3 0 530 0 0 530 0

health 0 514 0 0 514 2 0 514 0 0 514 0

honourable 0 407 124 0 407 124 4 403 0 128 403 0

human 0 515 1 0 515 2 0 515 0 1 515 0

income 0 478 0 0 478 0 6 472 0 6 472 0

industry 0 496 8 0 496 8 4 492 0 12 492 0

information 0 514 14 0 514 0 0 514 0 14 514 0

interest 0 518 0 0 518 0 8 510 0 8 510 0

international 0 515 0 0 515 0 0 515 0 0 515 0

issue 0 526 0 0 526 0 0 526 0 0 526 0

issues 0 526 0 0 526 0 10 516 0 10 516 0

justice 0 500 0 0 500 0 0 500 0 0 500 0

law 0 510 0 0 510 4 0 510 0 0 510 0

leader 0 526 0 0 526 0 2 524 0 2 524 0

legislation 0 515 3 0 515 3 0 515 0 3 515 0

liberal 0 494 1 0 494 1 4 490 0 5 490 0

members 0 526 0 0 526 0 3 523 0 3 523 0

minister 0 523 0 0 523 0 0 523 0 0 523 0

money 0 504 0 0 504 0 0 504 0 0 504 0

motion 0 527 0 0 527 0 0 527 0 0 527 0

national 0 523 2 0 523 1 0 523 0 2 523 0

opportunity 0 517 0 0 517 0 1 516 0 1 516 0

opposition 0 519 0 0 519 0 0 519 0 0 519 0

order 0 531 0 0 531 0 0 531 0 0 531 0

parliament 1 530 0 0 531 0 1 530 0 0 530 0

parliamentary 35 496 0 0 531 0 35 496 0 0 496 0

party 0 517 1 19 498 0 19 498 0 20 498 0

pay 13 507 0 3 517 0 18 502 0 5 502 0

people 1 523 0 1 523 0 1 523 0 0 523 0

policy 0 513 0 0 513 0 6 507 0 6 507 0

political 0 516 0 0 516 1 4 512 0 4 512 0

position 0 518 0 0 518 0 1 517 0 1 517 0

E.2. Differential recall results for English frequency selected words 151

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

prime 0 512 0 0 512 0 0 512 0 0 512 0

private 0 498 5 0 498 5 5 493 0 10 493 0

problem 0 521 0 0 521 0 5 516 0 5 516 0

process 0 516 0 0 516 1 2 514 0 2 514 0

program 0 514 0 0 514 0 5 509 0 5 509 0

provide 0 523 0 0 523 0 6 517 0 6 517 0

province 0 516 0 0 516 2 10 506 0 10 506 0

provinces 0 516 0 0 516 2 14 502 0 14 502 0

provincial 0 509 0 0 509 9 0 509 0 0 509 0

public 0 522 0 0 522 0 0 522 0 0 522 0

question 0 522 0 0 522 0 0 522 0 0 522 0

questions 0 522 0 0 522 0 4 518 0 4 518 0

reform 0 484 1 0 484 1 14 470 0 15 470 0

report 0 523 0 0 523 0 0 523 0 0 523 0

resources 0 504 0 0 504 0 2 502 0 2 502 0

respect 0 530 0 0 530 0 5 525 0 5 525 0

rights 0 526 0 0 526 0 14 512 0 14 512 0

secretary 0 455 1 0 455 10 1 454 0 2 454 0

senate 0 480 13 0 480 13 0 480 0 13 480 0

senator 0 407 86 0 407 0 55 352 0 141 352 0

senators 0 407 86 0 407 86 45 362 0 131 362 0

services 0 522 0 0 522 0 11 511 0 11 511 0

situation 0 518 0 0 518 0 2 516 0 2 516 0

social 0 508 0 0 508 1 0 508 0 0 508 0

society 0 499 0 0 499 1 2 497 0 2 497 0

speaker 0 533 0 0 533 0 0 533 0 0 533 0

states 1 525 0 0 526 0 10 516 0 9 516 0

support 0 520 0 0 520 0 1 519 0 1 519 0

system 0 518 0 0 518 0 1 517 0 1 517 0

tax 0 499 0 0 499 12 4 495 0 4 495 0

taxes 0 499 0 0 499 12 70 429 0 70 429 0

trade 0 500 0 0 500 1 9 491 0 9 491 0

united 0 516 0 0 516 2 2 514 0 2 514 0

vote 1 500 0 1 500 0 14 487 0 13 487 0

women 9 485 0 9 485 0 9 485 0 0 485 0

world 0 518 0 0 518 1 0 518 0 0 518 0

years 0 528 0 0 528 0 6 522 0 6 522 0

E.2.2 Irrelevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

acting 0 0 0 0 0 523 0 0 0 0 0 0

amendment 0 0 1 0 0 1 0 0 0 1 0 0

amendments 0 0 1 0 0 1 0 0 0 1 0 0

bill 12 0 0 0 12 479 12 0 0 0 0 0

E.2. Differential recall results for English frequency selected words 152

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

budget 0 0 0 0 0 1 0 0 0 0 0 0

business 0 0 0 0 0 11 0 0 0 0 0 0

canadian 0 0 0 0 0 37 0 0 0 0 0 0

children 0 0 0 0 0 24 0 0 0 0 0 0

committee 0 0 0 0 0 9 0 0 0 0 0 0

commons 0 0 17 0 0 156 0 0 0 17 0 0

community 0 0 448 0 0 0 0 0 0 448 0 0

country 0 0 0 0 0 41 0 0 0 0 0 0

court 0 0 0 0 0 199 0 0 0 0 0 0

deal 0 0 0 0 0 16 0 0 0 0 0 0

decision 0 0 0 0 0 1 0 0 0 0 0 0

department 0 78 0 78 0 0 78 0 0 78 0 0

deputy 0 0 0 0 0 1 0 0 0 0 0 0

development 0 0 0 0 0 49 0 0 0 0 0 0

farmers 0 0 0 0 0 11 0 0 0 0 0 0

government 0 0 0 0 0 6 0 0 0 0 0 0

health 0 0 0 0 0 1 0 0 0 0 0 0

honourable 0 0 0 0 0 7 0 0 0 0 0 0

human 0 0 93 0 0 94 0 0 0 93 0 0

income 0 0 0 0 0 233 0 0 0 0 0 0

industry 0 0 0 0 0 1 0 0 0 0 0 0

information 0 0 39 0 0 0 0 0 0 39 0 0

international 0 0 364 0 0 20 0 0 0 364 0 0

issue 0 0 0 0 0 48 0 0 0 0 0 0

justice 0 0 0 0 0 3 0 0 0 0 0 0

law 0 0 0 0 0 306 0 0 0 0 0 0

leader 0 0 0 0 0 1 0 0 0 0 0 0

liberal 0 0 83 0 0 3 0 0 0 83 0 0

members 1 0 0 1 0 4 1 0 0 0 0 0

motion 1 0 0 0 1 1 1 0 0 0 0 0

national 0 0 0 0 0 1 0 0 0 0 0 0

opportunity 0 0 30 0 0 0 0 0 0 30 0 0

order 0 0 0 0 0 8 0 0 0 0 0 0

parliament 0 0 1 0 0 6 0 0 0 1 0 0

parliamentary 0 0 0 0 0 6 0 0 0 0 0 0

party 0 1 2 1 0 0 1 0 0 3 0 0

pay 0 0 0 0 0 302 0 0 0 0 0 0

people 0 0 326 0 0 326 0 0 0 326 0 0

policy 0 4 0 0 4 417 4 0 0 4 0 0

political 0 0 73 0 0 22 0 0 0 73 0 0

position 0 0 457 0 0 0 0 0 0 457 0 0

prime 0 0 0 0 0 4 0 0 0 0 0 0

private 0 0 6 0 0 6 0 0 0 6 0 0

process 0 0 4 0 0 4 0 0 0 4 0 0

provide 0 0 21 0 0 22 0 0 0 21 0 0

province 0 0 0 0 0 2 0 0 0 0 0 0

provinces 0 0 0 0 0 2 0 0 0 0 0 0

provincial 0 0 0 0 0 2 0 0 0 0 0 0

public 0 0 284 0 0 284 0 0 0 284 0 0

reform 0 0 0 0 0 11 0 0 0 0 0 0

E.3. Differential recall results for French randomly selected words 153

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

resources 0 25 7 3 22 7 25 0 0 32 0 0

respect 0 0 254 0 0 254 0 0 0 254 0 0

rights 245 12 0 0 257 1 257 0 0 12 0 0

senate 0 0 0 0 0 4 0 0 0 0 0 0

senator 0 0 0 0 0 2 0 0 0 0 0 0

senators 0 0 0 0 0 4 0 0 0 0 0 0

services 0 1 0 0 1 0 1 0 0 1 0 0

speaker 0 0 0 0 0 16 0 0 0 0 0 0

states 0 0 0 0 0 19 0 0 0 0 0 0

system 0 0 97 0 0 240 0 0 0 97 0 0

tax 0 0 0 0 0 38 0 0 0 0 0 0

taxes 0 0 0 0 0 39 0 0 0 0 0 0

trade 0 0 0 0 0 475 0 0 0 0 0 0

united 0 0 0 0 0 3 0 0 0 0 0 0

world 0 0 0 0 0 7 0 0 0 0 0 0

years 0 0 0 0 0 14 0 0 0 0 0 0

E.3 Differential recall results for French randomly

selected words

E.3.1 Relevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

aboutissement 0 344 0 0 344 0 257 87 0 257 87 0

abstentionnisme 0 0 0 0 0 191 0 0 0 0 0 0

adonneriez 31 73 0 0 104 0 104 0 0 73 0 0

adressait 4 514 0 0 518 0 455 63 0 451 63 0

aguichée 0 3 0 0 3 0 3 0 0 3 0 0

aliénerait 0 120 0 1 119 0 120 0 0 120 0 0

allume 18 45 0 0 63 3 53 10 0 35 10 0

amaigrissait 0 8 0 0 8 0 8 0 0 8 0 0

amollissant 0 1 0 0 1 0 1 0 0 1 0 0

amoncellerait 1 3 0 1 3 0 4 0 0 3 0 0

approuverai 2 484 0 0 486 0 485 1 0 483 1 0

automatisasse 0 43 0 0 43 11 43 0 0 43 0 0

avertissement 0 251 0 0 251 0 145 106 0 145 106 0

ballaste 0 5 0 0 5 0 5 0 0 5 0 0

brasserai 7 33 0 0 40 14 40 0 0 33 0 0

carburerai 0 167 0 0 167 0 167 0 0 167 0 0

clamer 5 47 0 0 52 6 32 20 0 27 20 0

cloisonnement 0 10 0 0 10 0 8 2 0 8 2 0

E.3. Differential recall results for French randomly selected words 154

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

comestible 0 8 0 0 8 0 6 2 0 6 2 0

comparâıtrais 168 239 0 103 304 0 407 0 0 239 0 0

compromettrai 210 164 0 0 374 0 373 1 0 163 1 0

conduite 26 451 0 2 475 0 84 393 0 58 393 0

congratule 1 13 0 0 14 0 11 3 0 10 3 0

contravention 264 59 0 264 59 0 285 38 0 21 38 0

contribué 0 520 0 0 520 0 110 410 0 110 410 0

convoitais 1 25 0 0 26 6 26 0 0 25 0 0

copropriétaire 0 6 0 0 6 0 2 4 0 2 4 0

couteau 0 54 0 0 54 0 14 40 0 14 40 0

crampe 0 2 0 0 2 0 2 0 0 2 0 0

dilatante 0 2 0 0 2 70 2 0 0 2 0 0

discorderai 0 61 0 0 61 0 61 0 0 61 0 0

décontractais 0 5 0 0 5 0 5 0 0 5 0 0

défrayerai 4 43 0 6 41 0 47 0 0 43 0 0

dégouliné 0 1 0 0 1 0 1 0 0 1 0 0

déjeuner 10 92 0 0 102 0 17 85 0 7 85 0

déportais 0 52 0 0 52 0 52 0 0 52 0 0

désacraliserai 0 1 0 0 1 0 1 0 0 1 0 0

détroit 0 34 0 0 34 0 0 34 0 0 34 0

détromperai 0 4 0 0 4 0 4 0 0 4 0 0

embourberaient 1 25 0 0 26 0 26 0 0 25 0 0

employer 0 501 17 0 501 19 269 232 0 286 232 0

enclencheront 1 44 0 0 45 0 45 0 0 44 0 0

enlacerais 0 1 0 0 1 0 1 0 0 1 0 0

escrimions 0 1 0 0 1 0 1 0 0 1 0 0

excisai 0 4 0 0 4 0 4 0 0 4 0 0

explicitement 2 225 0 0 227 0 117 110 0 115 110 0

exécuteur 371 7 0 0 378 70 372 6 0 1 6 0

frapper 6 409 0 0 415 0 315 100 0 309 100 0

frapperai 6 409 0 0 415 0 415 0 0 409 0 0

germe 0 27 0 0 27 5 22 5 0 22 5 0

grondement 0 6 0 0 6 0 6 0 0 6 0 0

habilla 2 57 0 0 59 0 59 0 0 57 0 0

hardie 0 8 2 0 8 2 4 4 0 6 4 0

homologuer 8 343 0 0 351 0 347 4 0 339 4 0

imperfectif 0 0 55 0 0 55 0 0 0 55 0 0

impromptue 0 6 0 0 6 0 5 1 0 5 1 0

incompétente 0 51 80 0 51 80 40 11 0 120 11 0

incurvât 0 1 0 0 1 0 1 0 0 1 0 0

inscrivant 424 88 0 0 512 0 474 38 0 50 38 0

introspectif 0 4 6 0 4 6 1 3 0 7 3 0

inventeraient 3 203 10 0 206 12 206 0 0 213 0 0

irritabilité 0 2 94 0 2 4 0 2 0 94 2 0

itérée 0 0 1 0 0 0 0 0 0 1 0 0

jargonnais 0 56 0 0 56 0 56 0 0 56 0 0

jutais 0 1 0 0 1 9 1 0 0 1 0 0

lapider 1 5 0 0 6 6 5 1 0 4 1 0

mannequinerai 0 0 5 0 0 5 0 0 0 5 0 0

mesurais 0 523 0 0 523 0 523 0 0 523 0 0

E.3. Differential recall results for French randomly selected words 155

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

mobilisai 7 139 2 0 146 2 146 0 0 141 0 0

näıve 49 33 0 0 82 14 64 18 0 15 18 0

orange 0 37 0 0 37 0 20 17 0 20 17 0

orbiter 0 12 0 0 12 1 11 1 0 11 1 0

otage 0 92 0 0 92 0 32 60 0 32 60 0

particularisation 0 1 0 0 1 519 0 1 0 0 1 0

pauvresse 358 0 0 0 358 76 358 0 0 0 0 0

pavement 5 43 0 29 19 0 48 0 0 43 0 0

pendulions 0 34 0 0 34 0 34 0 0 34 0 0

plombai 1 3 28 0 4 28 4 0 0 31 0 0

préexisterai 0 2 0 0 2 2 2 0 0 2 0 0

quotidienne 0 391 0 0 391 0 234 157 0 234 157 0

raisiné 0 0 9 0 0 9 0 0 0 9 0 0

recommandais 0 512 0 0 512 0 510 2 0 510 2 0

refoulions 0 27 0 0 27 0 27 0 0 27 0 0

remilitarisation 0 1 0 0 1 0 0 1 0 0 1 0

rédigeais 4 420 0 0 424 0 422 2 0 418 2 0

révère 0 2 0 0 2 10 2 0 0 2 0 0

signal 0 416 97 0 416 98 312 104 0 409 104 0

sonnerai 0 529 0 317 212 0 529 0 0 529 0 0

splendeur 0 19 0 0 19 0 5 14 0 5 14 0

surencombrée 0 1 0 0 1 0 1 0 0 1 0 0

surtaxe 0 117 0 18 99 0 32 85 0 32 85 0

villégiaturer 0 16 0 0 16 0 16 0 0 16 0 0

ébattissent 2 0 0 2 0 0 2 0 0 0 0 0

écopée 8 55 0 0 63 0 63 0 0 55 0 0

écraserais 6 224 0 84 146 0 230 0 0 224 0 0

écrirai 286 200 0 0 486 4 483 3 0 197 3 0

éditorial 0 120 41 0 120 41 30 90 0 71 90 0

éperdez 0 0 0 0 0 22 0 0 0 0 0 0

étalagerais 0 22 0 0 22 0 22 0 0 22 0 0

évapora 2 13 1 0 15 1 15 0 0 14 0 0

E.3.2 Irrelevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

adressait 0 0 0 0 0 1 0 0 0 0 0 0

aliénerait 0 0 1 0 0 0 0 0 0 1 0 0

brasserai 0 0 1 0 0 35 0 0 0 1 0 0

carburerai 0 0 0 0 0 1 0 0 0 0 0 0

clamer 0 0 0 0 0 1 0 0 0 0 0 0

comparâıtrais 0 0 0 0 0 377 0 0 0 0 0 0

contribué 0 0 1 0 0 1 0 0 0 1 0 0

crampe 2 0 0 0 2 8 2 0 0 0 0 0

exécuteur 0 0 0 0 0 2 0 0 0 0 0 0

E.4. Differential recall results for French frequency selected words 156

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

frapper 0 0 0 0 0 2 0 0 0 0 0 0

frapperai 0 0 0 0 0 2 0 0 0 0 0 0

germe 0 0 0 0 0 75 0 0 0 0 0 0

hardie 0 0 18 0 0 3 0 0 0 18 0 0

inventeraient 0 0 0 0 0 45 0 0 0 0 0 0

jutais 0 0 0 0 0 3 0 0 0 0 0 0

orange 0 0 5 0 0 6 0 0 0 5 0 0

otage 1 0 0 1 0 0 1 0 0 0 0 0

particularisation 0 0 0 0 0 23 0 0 0 0 0 0

pavement 0 0 0 0 0 4 0 0 0 0 0 0

plombai 0 0 0 0 0 26 0 0 0 0 0 0

quotidienne 0 0 0 0 0 1 0 0 0 0 0 0

raisiné 0 0 0 0 0 2 0 0 0 0 0 0

révère 0 0 0 0 0 51 0 0 0 0 0 0

signal 0 0 0 0 0 412 0 0 0 0 0 0

sonnerai 0 0 0 0 0 4 0 0 0 0 0 0

écraserais 0 0 0 0 0 1 0 0 0 0 0 0

écrirai 0 0 0 0 0 13 0 0 0 0 0 0

E.4 Differential recall results for French frequency

selected words

E.4.1 Relevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

accord 0 526 4 0 526 4 0 526 0 4 526 0

affaires 0 526 0 0 526 0 0 526 0 0 526 0

années 0 523 0 0 523 0 3 520 0 3 520 0

argent 0 492 0 0 492 0 0 492 0 0 492 0

article 0 518 0 0 518 0 1 517 0 1 517 0

assurance 0 526 0 24 502 0 27 499 0 27 499 0

assurer 0 526 0 8 518 0 10 516 0 10 516 0

autochtones 0 451 0 0 451 0 6 445 0 6 445 0

avis 0 520 7 0 520 7 0 520 0 7 520 0

budget 0 499 0 0 499 0 12 487 0 12 487 0

canadienne 0 528 0 0 528 3 6 522 0 6 522 0

canadiens 0 528 0 0 528 3 6 522 0 6 522 0

chambre 0 530 0 0 530 0 0 530 0 0 530 0

collègue 0 521 0 0 521 0 13 508 0 13 508 0

comité 0 524 0 0 524 0 0 524 0 0 524 0

commission 1 483 0 484 0 0 1 483 0 0 483 0

E.4. Differential recall results for French frequency selected words 157

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

communes 0 528 0 1 527 0 1 527 0 1 527 0

compte 0 522 0 0 522 0 1 521 0 1 521 0

concernant 0 526 0 0 526 0 1 525 0 1 525 0

conseil 0 516 1 5 511 0 5 511 0 6 511 0

demande 0 525 0 0 525 0 5 520 0 5 520 0

dollars 0 514 0 0 514 0 0 514 0 0 514 0

débat 0 527 0 0 527 0 3 524 0 3 524 0

décision 3 517 0 0 520 0 9 511 0 6 511 0

député 0 511 0 0 511 0 45 466 0 45 466 0

députés 0 511 0 0 511 0 11 500 0 11 500 0

développement 0 513 0 3 510 0 7 506 0 7 506 0

emploi 2 504 14 0 506 1 17 489 0 29 489 0

enfants 1 511 0 1 511 0 1 511 0 0 511 0

entreprises 14 503 0 14 503 0 31 486 0 17 486 0

finances 0 515 0 1 514 0 26 489 0 26 489 0

fonds 1 518 0 0 519 0 11 508 0 10 508 0

fédéral 0 518 0 0 518 0 5 513 0 5 513 0

gens 0 520 0 0 520 0 0 520 0 0 520 0

gouvernement 0 528 0 0 528 5 0 528 0 0 528 0

honorable 0 529 0 3 526 0 3 526 0 3 526 0

honorables 0 529 0 3 526 0 250 279 0 250 279 0

impôts 0 471 0 0 471 0 42 429 0 42 429 0

industrie 0 491 0 0 491 6 8 483 0 8 483 0

jeunes 3 497 0 0 500 0 15 485 0 12 485 0

justice 0 500 0 0 500 0 0 500 0 0 500 0

leader 2 519 0 0 521 3 2 519 0 0 519 0

libéral 0 496 0 0 496 1 22 474 0 22 474 0

libéraux 0 496 0 0 496 1 54 442 0 54 442 0

matière 0 531 0 0 531 0 11 520 0 11 520 0

membres 0 520 0 0 520 0 0 520 0 0 520 0

mesure 0 523 0 0 523 0 5 518 0 5 518 0

mesures 0 523 0 0 523 0 4 519 0 4 519 0

ministre 0 523 0 0 523 0 0 523 0 0 523 0

ministère 0 510 0 0 510 0 7 503 0 7 503 0

monde 0 519 0 0 519 0 0 519 0 0 519 0

monsieur 1 436 0 1 436 0 1 436 0 0 436 0

motion 0 527 0 0 527 0 0 527 0 0 527 0

nationale 0 523 0 0 523 0 10 513 0 10 513 0

opposition 1 519 0 1 519 0 1 519 0 0 519 0

parlement 0 526 0 4 522 0 7 519 0 7 519 0

parlementaire 0 519 0 0 519 6 22 497 0 22 497 0

parti 0 527 0 3 524 0 32 495 0 32 495 0

pays 0 520 0 0 520 0 0 520 0 0 520 0

personnes 0 525 0 0 525 0 3 522 0 3 522 0

politique 0 523 0 0 523 0 4 519 0 4 519 0

population 0 509 0 0 509 0 0 509 0 0 509 0

problème 0 521 0 0 521 0 3 518 0 3 518 0

problèmes 0 521 0 0 521 0 11 510 0 11 510 0

processus 0 512 0 0 512 0 0 512 0 0 512 0

programme 0 518 0 0 518 0 5 513 0 5 513 0

E.4. Differential recall results for French frequency selected words 158

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

programmes 0 518 0 0 518 0 26 492 0 26 492 0

projet 0 529 0 0 529 0 0 529 0 0 529 0

protection 15 501 0 15 501 0 16 500 0 1 500 0

provinces 0 517 0 0 517 0 8 509 0 8 509 0

président 0 533 0 0 533 0 0 533 0 0 533 0

présidente 0 533 0 0 533 0 125 408 0 125 408 0

question 0 526 0 0 526 0 6 520 0 6 520 0

questions 0 526 0 0 526 0 0 526 0 0 526 0

québécois 0 440 0 2 438 62 8 432 0 8 432 0

raison 0 521 0 0 521 0 3 518 0 3 518 0

rapport 0 523 1 0 523 1 0 523 0 1 523 0

ressources 0 505 0 0 505 0 1 504 0 1 504 0

revenu 7 497 0 0 504 0 9 495 0 2 495 0

règlement 0 528 0 86 442 0 3 525 0 3 525 0

réformiste 0 398 91 0 398 0 12 386 0 103 386 0

régime 0 500 0 0 500 0 4 496 0 4 496 0

réponse 0 520 0 0 520 0 2 518 0 2 518 0

santé 0 513 0 0 513 0 0 513 0 0 513 0

secrétaire 0 460 0 0 460 0 2 458 0 2 458 0

secteur 3 509 0 3 509 0 10 502 0 7 502 0

services 2 522 0 2 522 0 9 515 0 7 515 0

situation 0 522 0 0 522 0 0 522 0 0 522 0

société 0 518 0 0 518 0 3 515 0 3 515 0

système 0 515 0 0 515 0 2 513 0 2 513 0

sécurité 0 512 0 0 512 0 0 512 0 0 512 0

sénat 0 472 0 0 472 14 1 471 0 1 471 0

sénateur 4 424 0 4 424 0 79 349 0 75 349 0

sénateurs 4 424 0 4 424 0 41 387 0 37 387 0

temps 0 521 0 0 521 0 0 521 0 0 521 0

travail 5 520 0 0 525 1 5 520 0 0 520 0

voix 0 521 0 0 521 0 0 521 0 0 521 0

vote 2 499 0 2 499 0 26 475 0 24 475 0

égard 0 520 0 0 520 0 0 520 0 0 520 0

étude 0 521 1 0 521 0 1 520 0 2 520 0

E.4.2 Irrelevance criterion

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

accord 0 0 0 0 0 1 0 0 0 0 0 0

années 278 0 0 277 1 0 278 0 0 0 0 0

argent 0 0 0 0 0 141 0 0 0 0 0 0

assurer 0 0 0 0 0 1 0 0 0 0 0 0

avis 0 0 0 0 0 44 0 0 0 0 0 0

canadienne 0 0 0 0 0 80 0 0 0 0 0 0

canadiens 0 0 0 0 0 80 0 0 0 0 0 0

E.4. Differential recall results for French frequency selected words 159

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

chambre 0 0 0 0 0 1 0 0 0 0 0 0

collègue 0 0 0 0 0 2 0 0 0 0 0 0

comité 0 1 0 1 0 6 1 0 0 1 0 0

commission 0 0 0 0 0 1 0 0 0 0 0 0

communes 1 10 429 11 0 2 11 0 0 439 0 0

compte 0 0 0 0 0 2 0 0 0 0 0 0

dollars 0 0 0 0 0 88 0 0 0 0 0 0

débat 0 0 0 0 0 1 0 0 0 0 0 0

décision 0 0 0 0 0 79 0 0 0 0 0 0

député 0 0 2 0 0 0 0 0 0 2 0 0

députés 0 0 2 0 0 0 0 0 0 2 0 0

enfants 43 0 0 43 0 0 43 0 0 0 0 0

finances 110 0 0 110 0 0 110 0 0 0 0 0

fonds 0 0 499 0 0 518 0 0 0 499 0 0

fédéral 0 0 0 0 0 1 0 0 0 0 0 0

gens 0 0 190 0 0 0 0 0 0 190 0 0

gouvernement 0 0 0 0 0 3 0 0 0 0 0 0

honorable 0 0 5 0 0 62 0 0 0 5 0 0

honorables 0 0 5 0 0 62 0 0 0 5 0 0

impôts 0 0 0 0 0 4 0 0 0 0 0 0

industrie 0 0 1 0 0 0 0 0 0 1 0 0

jeunes 0 1 0 1 0 1 1 0 0 1 0 0

libéral 0 0 0 0 0 227 0 0 0 0 0 0

libéraux 0 0 0 0 0 227 0 0 0 0 0 0

ministre 0 0 1 0 0 8 0 0 0 1 0 0

ministère 0 0 0 0 0 1 0 0 0 0 0 0

motion 0 0 0 0 0 1 0 0 0 0 0 0

nationale 0 0 0 0 0 3 0 0 0 0 0 0

parlement 0 0 9 0 0 503 0 0 0 9 0 0

parlementaire 0 0 0 0 0 3 0 0 0 0 0 0

parti 0 0 120 0 0 523 0 0 0 120 0 0

pays 0 121 0 121 0 0 121 0 0 121 0 0

personnes 0 0 1 0 0 514 0 0 0 1 0 0

politique 0 0 2 0 0 1 0 0 0 2 0 0

population 0 0 24 0 0 0 0 0 0 24 0 0

problème 0 0 0 0 0 1 0 0 0 0 0 0

problèmes 0 0 0 0 0 1 0 0 0 0 0 0

projet 0 49 99 0 49 148 49 0 0 148 0 0

provinces 0 0 0 0 0 1 0 0 0 0 0 0

président 0 0 0 0 0 1 0 0 0 0 0 0

présidente 0 0 0 0 0 1 0 0 0 0 0 0

question 0 0 0 0 0 1 0 0 0 0 0 0

questions 0 0 0 0 0 1 0 0 0 0 0 0

raison 0 0 0 0 0 2 0 0 0 0 0 0

rapport 0 0 0 0 0 4 0 0 0 0 0 0

réformiste 0 0 0 0 0 2 0 0 0 0 0 0

régime 71 0 0 0 71 1 71 0 0 0 0 0

réponse 0 0 0 0 0 1 0 0 0 0 0 0

santé 0 8 2 8 0 0 8 0 0 10 0 0

services 0 0 0 0 0 1 0 0 0 0 0 0

E.4. Differential recall results for French frequency selected words 160

LM vs. S LM vs. W LM vs. EQ S vs. EQ

∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A ∆A
B ∩A

B ∆B
A ∆A

B ∩A
B ∆B

A

société 0 0 1 0 0 0 0 0 0 1 0 0

système 0 0 72 0 0 2 0 0 0 72 0 0

sécurité 0 0 1 0 0 0 0 0 0 1 0 0

sénat 0 0 0 0 0 387 0 0 0 0 0 0

sénateur 0 0 0 0 0 21 0 0 0 0 0 0

sénateurs 0 0 0 0 0 21 0 0 0 0 0 0

temps 0 0 7 0 0 0 0 0 0 7 0 0

travail 0 0 0 0 0 3 0 0 0 0 0 0

vote 6 0 0 6 0 3 6 0 0 0 0 0

APPENDIX F

TREC queries and results

Precision and recall measures for different query pre-processing techniques are ob-

tained using TREC document collection and relevance judgements to topics. The

collection used is TIPSTER Volume 1 & 2 [35], the queries are topics 51 to 200 [19].

The following sections present sample queries used to retrieve relevant documents

and aggregate relevance and precision results along with a presentation of how the

measures are computed (see Chapter 6). We use the following abbreviation: LM

(Lightweight Morphology), S (Stemming) and EQ (Exact Query).

F.1 Set 1 queries

The first set of queries was obtained by straightforwardly selecting the ‘title’ of each

topic to be a query. We manually preprocessed the queries to remove all articles and

meaningless words and included expanded acronyms (e.g. U.S. into United States).

161

F.1. Set 1 queries 162

F.1.1 Sample of queries

51 Airbus Subsidies

52 South African Sanctions

53 Leveraged Buyouts

54 Satellite Launch Contracts

55 Insider Trading

F.1.2 Results

Table F.1: TREC average interpolated precision-recall PI(r) for topics 51 to 200 on
set 1 queries. Results for L, S and EQ.

Recall level r LM S EQ

0.00 0.3047 0.3067 0.3132
0.10 0.1732 0.1802 0.1832
0.20 0.1401 0.1491 0.1493
0.30 0.1088 0.1192 0.1143
0.40 0.0824 0.0920 0.0867
0.50 0.0641 0.0652 0.0624
0.60 0.0435 0.0419 0.0403
0.70 0.0256 0.0237 0.0207
0.80 0.0162 0.0159 0.0131
0.90 0.0064 0.0064 0.0050
1.00 0.0005 0.0005 0.0007

F.2. Set 2 queries 163

Table F.2: TREC average precision after d documents retrieved P (d) for topics 51 to
200 on set 1 queries. Results for L, S and EQ.

Documents d LM S EQ

5 0.1373 0.1387 0.1573
10 0.1573 0.1633 0.1580
15 0.1653 0.1627 0.1573
20 0.1673 0.1667 0.1620
30 0.1656 0.1673 0.1609
100 0.1430 0.1475 0.1448
200 0.1216 0.1270 0.1236
500 0.0933 0.0956 0.0890
1000 0.0682 0.0694 0.0627

F.2 Set 2 queries

The second set of queries by selecting for each topic the following entries: ‘domain’,

‘title’, ‘description’, ‘summary’ and ‘concepts’. We processed the text to remove com-

mon words with a stop list [34] and to remove punctuation symbols. Each resulting

query is a list of unique and meaningful words.

F.2.1 Sample of queries

51 international economics airbus subsidies document discuss

government assistance industrie mention trade dispute u.s.

aircraft producer issue relevant cite french german british

spanish european governments boeing co. mcdonnell douglas corp.

federal consortium messerschmitt boelkow blohm gmbh aerospace plc

aerospatiale construcciones aeronauticas s.a. aid loan financing

controversy tension general agreement tariffs gatt code policy

F.2. Set 2 queries 164

review group tprg complaint objection retaliation anti dumping

duty petition countervailing sanctions

52 international economics south african sanctions document discusses

africa relevant discuss aspect declared proposed country

government response apartheid policy pressure individual

organization pretoria imposed united nations effects opposition

compliance company identify instituted considered corporate

disinvestment trade ban academic boycott arms embargo economic

exodus stock divestiture investment import diamonds u.n.

curtailment defense contracts cutoff nonmilitary goods reduction

cultural ties white domination racism antiapartheid black majority

rule

F.2.2 Results

Table F.3: TREC average interpolated precision-recall PI(r) for topics 51 to 200 on
set 2 queries. Results for L, S and EQ.

Recall level r LM S EQ

0.00 0.3546 0.3784 0.4209
0.10 0.2001 0.1946 0.2193
0.20 0.1544 0.1460 0.1680
0.30 0.1184 0.1107 0.1297
0.40 0.0870 0.0823 0.0998
0.50 0.0669 0.0586 0.0649
0.60 0.0370 0.0338 0.0440
0.70 0.0210 0.0157 0.0263
0.80 0.0087 0.0093 0.0129
0.90 0.0018 0.0000 0.0019
1.00 0.0000 0.0000 0.0000

F.3. TREC recall and precision measures 165

Table F.4: TREC average precision after d documents retrieved P (d) for topics 51 to
200 on set 2 queries. Results for L, S and EQ.

Documents d LM S EQ

5 0.1947 0.1933 0.2333
10 0.2067 0.2060 0.2407
15 0.2040 0.2031 0.2356
20 0.2073 0.2030 0.2330
30 0.2004 0.1938 0.2271
100 0.1705 0.1655 0.1843
200 0.1455 0.1418 0.1550
500 0.1071 0.1060 0.1111
1000 0.0776 0.0766 0.0805

F.3 TREC recall and precision measures

TREC defines implicit and explicit cutoffs to compute recall and precision. We assume

the following notation for a query: Rel is a partial ranked list of documents documents

retrieved by the IR system, stored in an array and Rel[i] is 1 if the ith document is

judged as relevant, 0 if not. M is the number of elements of Rel, and can be lower

than the number of documents retrieved by the IR system. L is the number of relevant

document for the query (as judged by the TREC organizers), and NQ is the total

number of queries. The trec eval program computes the following measures for each

query:

PI(r) — Interpolated recall-precision at level r The precision defined as PI(r) =

maxR(x)≥r(P (x)). x is the number of relevant documents returned by the IR

system.

P — Average precision The precision is calculated after each relevant document

is retrieved and averaged over the number of relevant documents retrieved.

F.3. TREC recall and precision measures 166

P (d) — Precision after d documents have been retrieved The precision with

a cutoff at d documents.

PR(d) — R-precision The precision with a cutoff at d documents, d ≤ min(L, M).

F.3.1 Algorithm for determining PI(r)

Input: Rel, r, L, M

P ← 0 /* P is the precision calculated with the first i documents */

R← 0 /* R is the recall calculated with the first i documents */

Rcount← 0 /* Number of relevant documents found so far */

maxP ← 0 /* Contains current maxR(x)≤r(P (x)) */

for i = 0 to M do

if Rel[i] = 1 then

Rcount← Rcount + 1

end if

P ← Rcount
i + 1

R← Rcount
L

if P > maxP and R ≤ r then

maxP ← P

end if

end for

Return: maxP /* PI(r) */

F.3. TREC recall and precision measures 167

PI(r) is calculated as

NQ∑
j=1

P j
I (r)

NQ , where P j
I (r) is the interpolated recall-precision

at level r calculated for the jth query.

F.3.2 Algorithm for determining P

Input: Rel, M

P ← 0 /* P is the sum of precision calculated each time a new relevant document

is found in Rel */

Rcount← 0 /* Number of relevant documents found so far */

for i = 0 to M do

if Rel[i] = 1 then

Rcount← Rcount + 1

P ← P + Rcount
i + 1

end if

end for

Return: P
Rcount /* P */

P is calculated as

NQ∑
j=1

P j

NQ where P j is the average precision calculated for the jth

query.

F.3.3 Algorithm for determining P (d) and PR(d)

Input: Rel, M , d

F.3. TREC recall and precision measures 168

P ← 0 /* P is the precision calculated at a document cutoff d */

Rcount← 0 /* Number of relevant documents found so far */

for i = 0 to min(d,M) do

if Rel[i] = 1 then

Rcount← Rcount + 1

end if

end for

P ← Rcount
min(M, d)

Return: P /* P (d) */

P (d) is calculated as

NQ∑
j=1

P j(d)

NQ , where P j(d) is the precision after d documents

have been retrieved, calculated for the jth query. PR(d) is a special case of P (d) for

d = min(L, M).

VITA

Candidate’s full name: Mikaël Pierre Arthur Roussillon

Place and date of birth: Paris XXe, France
August 16, 1981

Permanent address: 21, rue Chanzy
45000 Orléans
France

Universities: 2001 - 2005
École nationale supérieure des Mines
Saint-Étienne, France

2003 - 2005
University of New Brunswick
Fredericton, Canada

Publications: M. Roussillon, B. G. Nickerson, and A. E. Maclachlan.
Lightweight natural language morphology representation
with Xerox finite state morphology. Technical Report
TR04-166, University of New Brunswick, 2004.

M. Roussillon, B. G. Nickerson, S. Green and W. A.
Woods. Lightweight Morphology: A Methodology
for Improving Text Search, In Proceedings of the
Third Annual Canadian Symposium on Text Analy-
sis (CaSTA), McMaster University, Hamilton, Ontario,
Canada, November 19-21, 2004, pp. 99–105.

