
Approximate Orthogonal Range Search using

Patricia Tries

by

Qingxiu Shi and Bradford G.Nickerson

TR05-172, April 30, 2005

Faculty of Computer Science

University of New Brunswick

Fredericton, N.B. E3B 5A3

Canada

Phone: (506) 453-4566

Fax: (506) 453-3566

Email: fcs@unb.ca

www: http://www.cs.unb.ca

Abstract

We use Patricia tries to answer ε-approximate orthogonal range
search on a set of n random points and rectangles in k-dimensional
space. Given n k-dimensional random points or rectangles and
a k-dimensional query rectangle, ε-approximate orthogonal range
query counts (or reports) the points in the query rectangle or the
rectangles intersecting the query rectangle, allowing errors near
the boundary of the query rectangle. Points within a distance
of a function of ε the boundary of the query rectangle might be
misclassified. The approximate orthogonal range search time us-
ing Patricia tries is determined theoretically to be O(k log n/εk−1)
for cubical range queries. Patricia tries are evaluated experimen-
tally for ε-approximate orthogonal range counting and reporting
queries (for 2 ≤ k ≤ 10 and n up to 1,000,000) using uniformly
distributed random points and rectangles, and we compared the
performance of the Patricia trie for k-d points with the k-d tree
and the adaptive k-d tree. The experimental results show that
allowing small errors can significantly improve the query execu-
tion time of the approximate range counting. For epsilon = 0.05,
an average of 50% fewer nodes are visited for the Patricia trie
(compared to the exace range search).

ii

Contents

Abstract ii

1 Introduction 1

2 Approximate Orthogonal Range Search 4

3 Approximate Range Searching Cost 7

4 Experiments 11
4.1 Approximate Range Counting Queries 12

4.1.1 k-dimensional points 12
4.1.2 k-dimensional rectangles 15

4.2 Approximate Range Reporting Queries 17
4.2.1 k-dimensional points 18
4.2.2 k-dimensional rectangles 19

5 Conclusions and Future Works 23

References 24

List of Tables

1 The average number of points in range (n=1,000,000). 20
2 The average number of rectangles in range (n = 1, 000, 000

and maxsize = 0.001). 21
3 The average number of rectangles in range when ε = 0 and

maxsize = 0.01 (n=1,000,000). 22

List of Figures

1 2-d tree by inserting the points in the order of P1,P2,· · · ,P8. . 2
2 An adaptive 2-d tree for the same set of data points in Figure 1. 2
3 The 2-d trie for the same set of data points in Figure 2. 3
4 The Patricia trie for the same set of data points in Figure 2. . 3
5 Approximate orthogonal range search queries. 5
6 A 2-d space with three points and their corresponding tries. . 6

iii

7 Pseudo-code for the approximate range reporting algorithm in
the Patricia trie. T.SKIPSTR is the skipped bit string stored
in T and T.SKIPSTR.length() is the length of T.SKIPSTR.
T.SKIPSTR[i] is the ith bit of T.SKIPSTR. ε is a small
value to guarantee T ’s left and right children’s cover spaces
don’t share any point. 8

8 Pseudo-code for the approximate range counting algorithm in
the Patricia trie. T.WEIGHT is the number of points in the
subtree attached to T . 9

9 An illustration of a node in T with cover space NC intersecting
both the 1-facet of W− and the 1-facet of W+; ε = 0.1. 10

10 Number of nodes visited versus ε using equations (a) k log n/εk−1,
(b) 2k log n + (3

√
k/ε)k, (c) 2k log n + k2(3

√
k/ε)k−1 and (d)

log n + 1/εk−1 (n = 1, 000, 000). 11
11 The theoretical (TN) and experimental (EN) number of nodes

visited in Patricia trie for k-d points with k-d query square
volume vol = 0.001 for different k (k = 2, k = 10 and n =
1, 000, 000). 12

12 Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square volume of (a) 0.0001, (b) 0.001
and (c) 0.01 (n = 1, 000, 000). 13

13 Fraction of points miscounted δε=x versus ε in Patricia trie for
2-dimensional points with 2-d query square’s volume ranging
from 0.0001 to 0.01 (n = 1, 000, 000). 13

14 Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length from 0.003125 to 0.4
(n = 1, 000, 000). 14

15 Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length w = 0.025 (n =
1, 000, 000). 14

16 Fraction of points miscounted δε=x versus ε in Patricia trie for
2-dimensional points with 2-d query square’s side length from
0.003125 to 0.4 (n = 1, 000, 000). 15

17 The fraction of the tree visited for the k-d tree, Patricia trie,
and the adaptive k-d tree with the k-d query square volume
(left)vol=0.01 and (right) vol=0.0001 (n = 100, 000 and k = 2). 16

18 The fraction of the tree visited for the k-d tree, Patricia trie,
and the adaptive k-d tree with the k-d query square volume
(left) vol=0.01 and (right)vol=0.0001 (n = 100, 000 and k = 4). 16

iv

19 The fraction of the tree visited for the k-d tree, Patricia trie,
and the adaptive k-d tree with the k-d query square’s side
length (left) w = 0.2 and (right) w = 0.025 (n = 100, 000 and
k = 2). 16

20 The fraction of the tree visited for the k-d tree, Patricia trie,
and the adaptive k-d tree with the k-d query square’s side
length (left) w = 0.2 and (right) w = 0.025 (n = 100, 000 and
k = 4). 17

21 Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with 2-d query square’s side length from 0.003125
to 0.4 (n = 1, 000, 000 and maxsize = 0.001). 18

22 Number of nodes visited versus ε in Patricia trie for 4-dimensional
rectangles with k-d query square’s side length from 0.003125
to 0.4 (n = 1, 000, 000 and maxsize = 0.01). 18

23 Fraction of points miscounted δε=x versus ε using Patricia trie
for 2-dimensional rectangles for 2-d query square’s side length
from 0.003125 to 0.4 (n = 1, 000, 000 and maxsize = 0.001). . 19

24 Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles for k-d query square’s side length w = 0.025 (n =
1, 000, 000 and maxsize = 0.001). 19

25 Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square volume (a) vol=0.0001, (b) vol=0.001
and (c) vol=0.01 (n = 1, 000, 000). 20

26 Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length from 0.003125 to 0.4
(n = 1, 000, 000). 21

27 Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with k-d query square’s side length from 0.003125
to 0.4 (n = 1, 000, 000 and maxsize = 0.001). 22

28 Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with k-d query square’s side length from 0.003125
to 0.4 (n = 1, 000, 000 and maxsize = 0.01). 22

29 The fraction f of nodes visited when ε = 0.05 for query squares
with fixed side length w for different k (n = 1, 000, 000). . . . 23

30 The fraction f of nodes visited when ε = 0.05 for query squares
with fixed volume vol for different k (n = 1, 000, 000). 24

v

1 Introduction

Range search is among the fundamental problems in computational geome-
try, geographical information systems, computer graphics and applications of
databases. Given a collection of keys (each containing multidimensional at-
tributes) and a multidimensional query rectangle, an orthogonal range search
asks for all keys in the collection with attribute values each inside the given
rectangle. Over the past 30 years, more than 60 data structures for range
search have been presented [1][5][11][13][17]. The motivation of our work is
to improve the speed of range search while allowing for small counting (or
reporting) errors.

The k-d tree was proposed by Bentley [3] as a generalization of the bi-
nary search tree in k-dimensional space. At each intermediate node, the k-d
tree divides the k-dimensional space in two parts by a (k-1)-dimensional hy-
perplane parallel to the coordinate axes. The direction of the hyperplane
alternates between the k possibilities from one tree level to the next. Each
splitting hyperplane has to contain at least one data point (see Figure 1).
There are several disadvantages of the k-d tree: deleting a data point from
the tree is complicated and may cause a reorganization of the subtree below
this point; k-d tree is sensitive to the order in which the points are inserted,
and data points are scattered all over the tree. An improved version proposed
in [10] is the adaptive k-d tree. When splitting, the adaptive k-d tree chooses
a hyperplane orthogonal to one of the coordinate axes that divides the space
in two subspaces with equal number of data points. All data points are stored
in the leaves. Splitting is continued recursively until each subspace contain
only a certain number of points (see Figure 2). However, the adaptive k-d
tree is a static structure, and it is difficult to keep the tree balanced in the
presence of frequent updates.

It is instructive to associate with each node of the k-d tree an unique
k-dimensional rectangle and the subset of data points that lie within this
rectangle. The root node is associated with the bounding rectangle, which
encloses all the data points. Bentley’s range search algorithm simply visits
recursively all nodes whose rectangle has a nonempty intersection with the
query rectangle. Analysis of k-d trees for range searching has been considered
by several researchers. The work required to construct a k-d tree and its
storage requirements are O(n log n) and O(kn) [4]. The search cost depends
on the nature of the query. Lee and Wong [14] have shown that the search
takes O(n1−1/k + F) worst-case time , where F is the number of data points
in range.

Instead of partitioning the search space using the data, the k-d trie [16]
splits the search space based on the digits. Each partition splits a region

1

P4

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

P6

P5

P2

P8

P7

P4P1

P3

P1

P5 P2

P3

P6

P8

P7

����

Figure 1: 2-d tree by inserting the points in the order of P1,P2,· · · ,P8.

y1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

P1

P3

P4

P6
P7

P8

P5 P6 P1 P2

x1

y1 y2

x2 x5

P7 P8 P3 P4

x3 x4

x2 x1 x5

y2

x4x3

P5

P2

����

Figure 2: An adaptive 2-d tree for the same set of data points in Figure 1.

of the search space into two sub-regions of equal size. All nodes on level i
split the ((i mod k)+1)th attribute (we assume the root is at level 0). The
branching policy on level i is based on the bi/kcth bit of the ((i mod k)+1)th
attribute of the given key represented in binary: go to left if it is 0 and
go to right if it is 1. The splitting is not continued further when a sub-
region contains one or no data points (see Figure 3). The k-d trie has an
annoying flaw: there is one-way branching that leads to the creation of extra
node in the tree. The Patricia trie was discovered by D.R. Morrison [15]
to avoid this problem. A Patricia trie removes all one-child internal nodes
from the k-d trie and stores the eliminated information in the nodes (see
Figure 4). Patricia tries are well-balanced trees [19] in the sense that a
random shape of Patricia tries resembles the shape of complete balanced
trees. The Patricia trie has many applications, including lexicographical
sorting, dynamic hashing algorithms, string matching, file systems, and most
recently conflict resolution algorithms for broadcast communications [13].
Patricia tries can be preprocessed in O(kn log n) time and O(kn) space, and
fewer internal nodes are visited for a partial match search of a Patricia trie
compared to a k-d trie [12].

2

x1

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

P1 P4

P8

P5

x1 x4

y2

y1

x3

y1

P7

P3

P6

y3

y4

P2

x2

x5

y1

x2

y2

P5P6

x3

P1 y4

x5

P3 P2

P7 P8

x4 P4

y3
����

Figure 3: The 2-d trie for the same set of data points in Figure 2.

{0}

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

P1 P4

P8

x1

P5

x1 x4

y2

y1

x3

y1

P7

P3

P6

y3

y4 y3y1

y2 x4 P4x3

P3 P2

P1 x5 P7 P8P6 P5

P2

x2

x5
{0}

����

Figure 4: The Patricia trie for the same set of data points in Figure 2.

Lower bounds for range search were studied by Chazelle [9][8], who showed
that a sequence of n operations for insertion, deletion, and reporting points in
a given range costs Ω(n(log n)k). Chazelle [7] gives a comprehensive overview
of data structures for k-dimensional searching, including the description of
a k-dimensional rectangle reporting algorithm (supporting dynamic opera-
tions) with O(F (log(2n

F
)2)+logk−1 n) time, which is close to the lower bound.

To obtain better performance, several researchers turned to an approximate
version of the range searching problem: instead of counting the points in the
exact specified ranges, the data point whose distance to the boundary of the
range is within ε times the range’s diameter may or may not be included in the
count. For fixed dimension k, the approximate range searching problem was
solved optimally by Arya and Mount [2]. With an O(kn)-space structure
called the balanced box-decomposition tree (BBD-tree) which can be con-
structed in O(kn log n) time, ε-approximate range queries can be answered
in O(2k log n + (3

√
k/ε)k) time. If the ranges are convex, the approximate

range query time can be strengthened to O(2k log n + k2(3
√

k/ε)k−1). They

3

also presented a lower bound of Ω(log n + 1/εk−1), for the complexity of an-
swering ε-approximate range queries assuming a partition tree approach for
cubical range in fixed dimension.

In [18], we used Patricia tries to represent k-dimensional points, rectan-
gles and combined textual and spatial data, and presented a range search
algorithm for reporting all k-dimensional keys intersecting a query rectangle.
We also showed that the Patricia trie can be preprocessed in O(kn log n)
time and O(kn) space. In this paper we study the performance of Patri-
cia trie for ε-approximate range searching with a slightly different definition
of approximation from that in [2]. In Section 2, we state the problem of
ε-approximate orthogonal range search, and propose two algorithms for ap-
proximate orthogonal range reporting and counting queries, respectively. We
theoretically analyze the cost of the approximate orthogonal range search in
Section 3. In Section 4 we present an extensive experimental study of the
practical performance of the Patricia trie using uniform randomly generated
points and rectangles in k-dimensional space and compare it against the k-d
tree and the adaptive k-d tree. The experimental results show that allowing
small errors can significantly improve the query execution time of the ap-
proximate range counting, with a less dramatic effect on the complexity of
approximate range reporting.

2 Approximate Orthogonal Range Search

Given a k-dimensional query rectangle W = [L1, H1]×[L2, H2]×· · ·×[Lk, Hk],
Li ≤ Hi with center Z = (L1+H1

2
, L2+H2

2
, · · · , Lk+Hk

2
). The edges of W have

given lengths ∆1, ∆2, · · · , ∆k, where ∆i = Hi − Li, ∀ i ∈ {1 , 2 , · · · , k}. We
define [MINi,MAXi], ∀ i ∈ {1 , 2 , · · · , k}, as the minimum and maximum
possible data coordinate values for dimension i. Given 0 ≤ ε ≤ 0.5, let
W− = [L1 +∆1ε,H1−∆1ε]× [L2 +∆2ε,H2−∆2ε]×· · ·× [Lk +∆kε,Hk−∆kε]
be the k-dimensional inner query rectangle with center at Z, and let W+ =
[L1 − ∆1ε, H1 + ∆1ε] × [L2 − ∆2ε,H2 + ∆2ε] × · · · × [Lk − ∆kε,Hk + ∆kε]
be the k-dimensional outer query rectangle with center at Z. (We assume
MINi ≤ Li −∆iε and Hi + ∆iε ≤ MAXi, ∀ i ∈ {1 , 2 , · · · , k}).

For a set D of n k-dimensional data points, define a legal answer to an
ε-approximate range query for any subset D′ such that

D ∩W− ⊆ D′ ⊆ D ∩W+.

This definition allows for two-sided errors, by failing to count (or report)
points that are barely inside W , and counting (or reporting) points barely
outside W (see Figure 5).

4

W

��
��
��
��

��
��
��
�� �

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

����

��
��
��
��

��
��
��
��

����
��
��
��
��

��
��
��
��

��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

Must not be included

May be included

Must be included

W −

+

W

Figure 5: Approximate orthogonal range search queries.

We denote by T the Patricia trie constructed by inserting a set D of n k-
dimensional data points into an initially empty trie (the insertion algorithm
is in [18]). There are altogether n− 1 internal nodes and n leaves in T . The
skipped bits are stored in an array SKIPSTR, and every leaf is associated
with one point.

Each node in k-d tries covers part of the k-d space, that is, every node
has a cover space defined as NC = [L1,U1]× [L2,U2]× · · ·× [Lk,Uk]. Arrays
L and U store the lower and upper bounds of a node’s cover space. In Figure
6(b) and (c), the list of tuples is the cover space NC of each internal node.
The root of k-d tries covers the whole space and child nodes cover half of
the search space volume of their parent. For the root, NC has Li = MINi

and Ui = MAXi, ∀i ∈ {1, · · · , k}. The nodes on level ` split attribute
p = (` mod k) + 1 (at the root, ` = 0). If a node on level ` has cover space
[L1,U1] × · · · × [Lp ,Up] × · · · × [Lk,Uk], then its left child’s cover space is
[L1,U1] × · · · × [Lp , (Lp + Up)/2] × · · · × [Lk,Uk], and its right child’s cover
space is [L1,U1]×· · ·×((Lp+Up)/2,Up]×· · ·× [Lk,Uk]. For the Patricia tries,
` is not the level of the trie, but the length of the path from root to the node
plus the length of the skipped bits in the internal nodes along the path. The
node cover space must take the skipped bit string stored in the nodes into
consideration. For example, in Figure 6(c), the node cover space of the root
of 2-d Patricia trie is [0, 7] × [0, 7] (` = 0), the node cover space of its right
child (denoted by NCr) is computed as follows: first, p = ` mod 2 + 1 = 1,
NCr = [4, 7]× [0, 7] and ` = 1; then, the first bit of the skipped bits string is
’0’, which means a left child node has been removed from the corresponding
k-d trie (Figure 6(b)), p = ` mod 2 + 1 = 2, NCr = [4, 7]× [0, 3] and ` = 2;
the second and last bit of the skipped bit string is ’1’, which means a right
child node has been removed, p = ` mod 2+1 = 1, NCr = [6, 7]× [0, 3] and
` = 3. So the node cover space of the root’s right child is [6, 7] × [0, 3], as
shown in Figure 6(c).

The ARR algorithm (see Figure 7) is used to perform an approximate

5

2

4

0 1 2 3 4 5 6 7

0

1

2

3

5

6

7

P

(a) A 2−d space

P
P1

P2

3

P P3

[0,7]x[0,7]

[4,7]x[0,7]

[4,7]x[0,3]

[6,7]x[0,3]

{01}
P1

P2 P3

(c) Patricia trie

[6,7]x[0,3]

[0,7]x[0,7]

(b) k−d trie

1

Figure 6: A 2-d space with three points and their corresponding tries.

range reporting on the Patricia trie T . The search proceeds from the root
(` = 0) to the leaves, accounting for possible skipped bits stored at internal
nodes (T.SKIPSTR). Arrays L and U are the lower and upper limits of the
node’s cover space, and are initialized to be MINi and MAXi, respectively,
∀i ∈ {1, · · · , k}. If the node cover space falls within W+ at some node T ,
then all the points in the subtree attached to T are legal answers of the
approximate range search and are collected by the Collect function into
a List for reporting. If the node cover space falls outside of W− at some
node T , the range search stops. If the node cover space overlaps both W−

and W+, then we recursively visit its children. When we reach a leaf node,
we determine whether it is in W using the CheckNode function; if so,
it is added to List. The ARR algorithm can be easily modified for the
approximate range counting: we denote by T.WEIGHT the number of data
points stored in the subtree attached to T . When we arrive at some node T
whose node cover space falling within W+, we just add T.WEIGHT to the
count instead of using the Collect function to traverse all the nodes in the
subtree attached to T (see the ARC algorithm in Figure 8).

Lemma 1 The List in the ARR algorithm includes all the points lying inside
the inner range W− and excludes all the points lying outside the outer range
W+.

Proof. Let p be some point lying inside the inner range W− and let T be
the node containing p where we stop traversing down or we start to collect
all the points in the subtree attached to T into the List. If T is a leaf node,
by the CheckNode function, p would be added to the List since it lies
within W . Otherwise if T is an internal node, since node T does not result
in a recursive ARR call, then the node cover space of T must lie completely
inside W+. Therefore the point p would be collected into the List by the
Collect function. In the similar way, let q be some point lying outside the

6

outer range W+ and let T be the node containing it where the range search
stops. If T is a leaf node, q would not be added to the List because it lies
outside W . If T is an internal node, then, since node T does not result in a
recursive ARR call, the node cover space of T must lie completely outside
W−, which leads to the stopping of traversing down of T ’s subtree and adds
nothing to the List. ¤

The correctness of the ARR algorithm follows immediately from Lemma 1
and the fact that no point is added to the List twice.

3 Approximate Range Searching Cost

Without loss of generality, the following discussions are all based on unit
space [0, 1]k. We assume the input data and the query rectangle W are
drawn from a uniform random distribution.

Theorem 2 Given a Patricia trie T built from n random k-dimensional
data points and a query rectangle W of dimensions ∆1×∆2× · · · ×∆k, and
0 < ε ≤ 0.5, ε-approximate range counting queries visit

O(log nΣk
p=1(

k∏

i=1,i6=p

(2 +
∆i

∆p

(
1

ε
− 2)))

nodes in T .

Proof. A node is said to be expanded if the algorithm visits the children of
this node. For a node to be expanded, its node cover space must intersect
with both the inner query rectangle W− and the outer query rectangle W+.
We call the facet of the query rectangle perpendicular to the pth orthogonal
axis the p-facet. According to the definition of W− and W+, the p-facets of
W− and W+ are separated from each other at least by a distance of 2∆pε,
∀p ∈ {1, · · · , k}. So a node in T with |NC(p)| < 2∆pε, ∀p ∈ {1, · · · , k} is
never expanded in the algorithm ARC, where |NC(p)| is the length of the
p-th side of node cover space NC.

Each partition of T splits a region of the search space into two equal
sub-regions. Each coordinate axis gets cut in turn, in a cyclical fashion
of 1, 2, · · · , k, 1, 2, · · · , which results in regions such that the length of the
longest side is equal to or twice that of the smallest side, and |NC(1)| ≤
|NC(2)| ≤ · · · ≤ |NC(k)|. Assume a node in T intersects both the p-
facet of W− and the p-facet of W+, 1 ≤ p ≤ k, then |NC(p)| ≥ 2∆pε, and

7

ARR(T, `,L,U ,W−,W,W+, List)
1 if T is a leaf node
2 then CheckNode(T, W,List)
3 else i ← 0
4 while i < T.SKIPSTR.length()
5 do p ← (` mod k) + 1
6 if T.SKIPSTR[i] = 0
7 then U [p] ← (L[p] + U [p])/2
8 else L[p] ← (L[p] + U [p])/2 + ε
9 i ← i + 1

10 ` ← ` + 1
11 black = 0
12 for (i = 1; i <= k; i ← i + 1)
13 do if (W+.L[i] ≤ L[i]) and (U [i] ≤ W+.H[i])
14 then black ← black + 1
15 else break
16 if black = k
17 then Collect(T, List)
18 return
19 for (i = 1; i <= k; i ← i + 1)
20 do if (L[i] > W−.H[i]) or (U [i] < W−.L[i])
21 then return
22 p ← (` mod k) + 1
23 if left[T] 6= nil
24 then U [p] ← (L[p] + U [p])/2
25 ARR(left[T], ` + 1,L,U ,W−,W,W+, List)
26 if right[T] 6= nil
27 then L[p] ← (L[p] + U [p])/2 + ε
28 ARR(right[T], ` + 1,L,U ,W−,W,W+, List)

Figure 7: Pseudo-code for the approximate range reporting algorithm in
the Patricia trie. T.SKIPSTR is the skipped bit string stored in T and
T.SKIPSTR.length() is the length of T.SKIPSTR. T.SKIPSTR[i] is the
ith bit of T.SKIPSTR. ε is a small value to guarantee T ’s left and right
children’s cover spaces don’t share any point.

8

ARC(T, `,L,U ,W−, W,W+, Count)
1 if T is a leaf node
2 then if T ∈ W
3 then Count ← Count + 1
4 else i ← 0
5 while i < T.SKIPSTR.length()
6 do p ← (` mod k) + 1
7 if T.SKIPSTR[i] = 0
8 then U [p] ← (L[p] + U [p])/2
9 else L[p] ← (L[p] + U [p])/2 + ε

10 i ← i + 1
11 ` ← ` + 1
12 black = 0
13 for (i = 1; i <= k; i ← i + 1)
14 do if (W+.L[i] ≤ L[i]) and (U [i] ≤ W+.H[i])
15 then black ← black + 1
16 else break
17 if black = k
18 then Count ← Count + T.WEIGHT
19 return
20 for (i = 1; i <= k; i ← i + 1)
21 do if (L[i] > W−.H[i]) or (U [i] < W−.L[i])
22 then return
23 p ← (` mod k) + 1
24 if left[T] 6= nil
25 then U [p] ← (L[p] + U [p])/2
26 ARC(left[T], ` + 1,L,U , W−,W,W+, Count)
27 if right[T] 6= nil
28 then L[p] ← (L[p] + U [p])/2 + ε
29 ARC(right[T], ` + 1,L,U ,W−,W,W+, Count)

Figure 8: Pseudo-code for the approximate range counting algorithm in the
Patricia trie. T.WEIGHT is the number of points in the subtree attached
to T .

9

+

2−
2

2W

NC

W −

1

2 2

1

W

Figure 9: An illustration of a node in T with cover space NC intersecting
both the 1-facet of W− and the 1-facet of W+; ε = 0.1.

|NC(i)| ≥ ∆pε, ∀i ∈ {1, · · · , p−1}, and |NC(j)| ≥ 2∆pε, ∀j ∈ {p+1, · · · , k}
(see Figure 9). So there are at most

(

p−1∏
i=1

(1 + d∆i − 2∆iε

∆pε
e))(

k∏
j=p+1

(1 + d∆j − 2∆jε

2∆pε
e))

regions intersecting with both the p-facet of W− and the p-facet of W+. Each
k-d rectangle has 2k facets, so altogether there are at most

2Σk
p=1(

p−1∏
i=1

(1 + d∆i − 2∆iε

∆pε
e))(

k∏
j=p+1

(1 + d∆j − 2∆jε

2∆pε
e))

≤ 2Σk
p=1(

p−1∏
i=1

(2 +
∆i − 2∆iε

∆pε
))(

k∏
j=p+1

(2 +
∆j − 2∆jε

2∆pε
))

≤ 2Σk
p=1(

k∏

i=1,i6=p

(2 +
∆i − 2∆iε

∆pε
))

regions overlapping both W− and W+. The depth of the Patricia trie built
from random data points is O(log n) [13], so we reach the desired result.

¤

The special case. When the query rectangle W is a square, i.e. ∆1 =
∆2 = · · · = ∆k, then the number of nodes visited in the worst case is
O(k log n/εk−1). Figure 10 shows the comparison between our result and
Arya and Mount’s results.

Based on the algorithms in Section 2, besides the number of nodes visited
for the range counting in the ARC algorithm (Figure 8), up to 2F additional

10

 10

 100

 1000

 10000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
od

es
 v

is
ite

d

Epsilon

a
b
c
d

 10

 100

 1000

 10000

 100000

 1e+006

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
od

es
 v

is
ite

d

Epsilon

a
b
c
d

(a) k = 2 (b) k = 3

Figure 10: Number of nodes visited versus ε using equations (a) k log n/εk−1,
(b) 2k log n + (3

√
k/ε)k, (c) 2k log n + k2(3

√
k/ε)k−1 and (d) log n + 1/εk−1

(n = 1, 000, 000).

nodes are visited in the Collect function in ARR algorithm (Figure 7) for
reporting, where F is the number of points in range, so we have the following
conclusion:

Corollary 3 Given a Patricia trie T built from n random k-dimensional
data points and a query rectangle W of dimensions ∆1×∆2× · · · ×∆k, and
0 < ε ≤ 0.5, ε-approximate range reporting queries visit

O(log nΣk
p=1(

k∏

i=1,i6=p

(2 +
∆i

∆p

(
1

ε
− 2)) + F)

nodes in T , where F is the number of points reported.

4 Experiments

We have conducted a series of experiments to validate the theoretical analysis
of the previous section, and to show the possible savings when we settle for
approximate range search instead of exact range search. Our experiments
of approximate range counting and reporting were performed using uniform
random distributed data from the interval [0,1] for ε ranging from 0 to 0.5, 2 ≤
k ≤ 10, n up to 1,000,000, and the query square’s volume vol ranging from
0.0001 to 0.01, and the query square’s side length w ranging from 0.003125
to 0.4. The programs were run on a Sun Microsystems V880 with four 1.2
GHz UltraSPARC III processors, 16 GB of main memory, running Solaris 8.

11

Each experimental point in the following graphs was done with an average
of 300 test cases.

4.1 Approximate Range Counting Queries

4.1.1 k-dimensional points

The k-dimensional points were uniformly and randomly generated from the
unit space [0, 1]k. We tested two different kinds of query squares for the
same points set: query squares with fixed volume vol and query squares
with fixed side length w for different k. The experimental results with k-
dimensional square window queries with volumes that range from 0.0001 to
0.01 for Patricia tries are shown in Figure 12. The experimental results
are found to be consistent with the theoretical analysis in Figure 11. We
show the results of experiments with k-dimensional query squares with side
length that ranges from 0.003125 to 0.4 for different dimension k in Figure
14. We find that there are significant improvements in running time when
ε grows from 0 to 0.05. As ε increases, the running times tend to converge,
irrespective of k and w. For w < 0.05, the number of nodes visited is very
small for all values of ε tested. For fixed w and k > 4, the number of nodes
visited is almost the same for all values of ε (see Figure 15).

 10

 100

 1000

 10000

 100000

 1e+006

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

TN (k=2)
EN (k=2)

TN (k=10)
EN (k=10)

Figure 11: The theoretical (TN) and experimental (EN) number of nodes
visited in Patricia trie for k-d points with k-d query square volume vol =
0.001 for different k (k = 2, k = 10 and n = 1, 000, 000).

We define Fε=x as the number of points counted as in range for an ε-
approximate range query, and Fε=0 as the number of points in the exact range
query. For fixed w and ε = x, we define the fraction of points miscounted as

δε=x =
|Fε=x − Fε=0|

Fε=0

.

12

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

(a)

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

(b) (c)

Figure 12: Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square volume of (a) 0.0001, (b) 0.001 and (c) 0.01
(n = 1, 000, 000).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 p
oi

nt
s

m
is

co
un

te
d

Epsilon

vol=0.01
vol=0.001

vol=0.0001

Figure 13: Fraction of points miscounted δε=x versus ε in Patricia trie for
2-dimensional points with 2-d query square’s volume ranging from 0.0001 to
0.01 (n = 1, 000, 000).

13

 1

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5

 1e-006

 1e-005

 0.0001

 0.001

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 V
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 V
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01
N

od
es

 v
is

ite
d

F
ra

ct
io

n
of

 th
e

tr
ie

 V
is

ite
d

Epsilon

’patriepointap1000000-8-4.dat’

’patriepointap1000000-8-1.dat’
’patriepointap1000000-8-05.dat’

’patriepointap1000000-8-025.dat’
’patriepointap1000000-8-0125.dat’

’patriepointap1000000-8-00625.dat’
’patriepointap1000000-8-003125.dat’

(b) k = 4 (c) k = 8

Figure 14: Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000).

 0

 100

 200

 300

 400

 500

 0 0.1 0.2 0.3 0.4 0.5
 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

Figure 15: Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length w = 0.025 (n = 1, 000, 000).

14

In Figures 13 and 16, we show the average error for k = 2 and n = 1, 000, 000.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 p
oi

nt
s

m
is

co
un

te
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

Figure 16: Fraction of points miscounted δε=x versus ε in Patricia trie for
2-dimensional points with 2-d query square’s side length from 0.003125 to
0.4 (n = 1, 000, 000).

We compare the approximate range counting performance of the Patricia
trie to the k-d tree and the adaptive k-d tree for different k and query squares.
We show the fraction of the tree visited versus ε for n = 100, 000 in Figures
17 and 18 with fixed query square volume for different k, and in Figures
19 and 20 with fixed query square’s side size w. The performance of the
Patricia trie is at least as good as that of the adaptive k-d tree in all the
cases, and much better than the k-d tree when k = 2. When k = 4, the
performance of the k-d tree is better than that of both the Patricia trie and
the adaptive k-d tree when w = 0.2 (the query square volume vol=0.01) and
ε < 0.2, however when w (the query square volume) decreases, the Patricia
trie and the adaptive k-d tree are getting better than the k-d tree. Because
of the large preprocessing time of the adaptive k-d tree, we use the smaller
n = 100, 000 instead of n = 1, 000, 000.

4.1.2 k-dimensional rectangles

In [6] a binary 2k-d trie data structure for k-d rectangles range search was
investigated. Exploiting the same method, we used the Patricia trie for k-d
rectangles range search in [18]. A k-d rectangle R can be represented as
a 2k-d point (xmin

1 , xmax
1 , xmin

2 , xmax
2 , · · · , xmin

k , xmax
k). Given a k-dimensional

query rectangle W = [L1, H1] × [L2, H2] × · · · × [Lk, Hk], R intersects W iff
xmin

i ∈ [MINi, Hi] and xmax
i ∈ [Li,MAXi], ∀i ∈ {1, · · · , k}. We denote by T

after inserting a set D of n k-dimensional rectangles into an initially empty

15

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

Figure 17: The fraction of the tree visited for the k-d tree, Patricia trie, and
the adaptive k-d tree with the k-d query square volume (left)vol=0.01 and
(right) vol=0.0001 (n = 100, 000 and k = 2).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

Figure 18: The fraction of the tree visited for the k-d tree, Patricia trie, and
the adaptive k-d tree with the k-d query square volume (left) vol=0.01 and
(right)vol=0.0001 (n = 100, 000 and k = 4).

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

Figure 19: The fraction of the tree visited for the k-d tree, Patricia trie, and
the adaptive k-d tree with the k-d query square’s side length (left) w = 0.2
and (right) w = 0.025 (n = 100, 000 and k = 2).

16

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 th
e

tr
ee

 v
is

ite
d

Epsilon

Patricia trie
Adaptive k-d tree

k-d tree

Figure 20: The fraction of the tree visited for the k-d tree, Patricia trie, and
the adaptive k-d tree with the k-d query square’s side length (left) w = 0.2
and (right) w = 0.025 (n = 100, 000 and k = 4).

trie. Each node in T covers part of the 2k-d space, that is, every node has a
cover space defined as NC = [L1,U1]× [L2,U2]× · · · × [L2k,U2k]. We define
the query rectangle W ’s cover space WC = [MIN1, H1] × [L1, MAX1] ×
· · ·× [MINk, Hk]× [Lk,MAXk]. In the similar way, we define the inner query
rectangle W−’s cover space WC− = [MIN1, H1−∆1ε]× [L1 +∆1ε, MAX1]×
· · · × [MINk, Hk −∆kε]× [Lk + ∆kε,MAXk], and the outer query rectangle
W+’s cover space WC+ = [MIN1, H1 + ∆1ε] × [L1 − ∆1ε,MAX1] × · · · ×
[MINk, Hk +∆kε]× [Lk−∆kε,MAXk]. The ARR algorithm (Figure 7) can
be used for k-d rectangles with some modifications: all ks are changed to
2ks, and WC−, WC and WC+ are used instead of W−, W and W+.

The rectangle centers were uniformly distributed and the lengths of their
sides uniformly and independently distributed between 0 and maxsize (0 ≤
maxsize ≤ 0.01). We show the average number of nodes visited versus ε
with k-dimensional query square’s side length w that ranges from 0.003125
to 0.4 for different maxsize in Figures 21 and 22. They have a similar trend
as in Figure 14, except that there are more nodes visited for the same k
for rectangles. Comparing Figures 21 and 22, the improvements for larger
maxsize are more significant. The fraction of points miscounted δε=x for
k = 2 and n = 1, 000, 000 is shown in Figure 23.

4.2 Approximate Range Reporting Queries

From the analysis in Section 3, besides the number of nodes visited for the
range counting, additional nodes are visited in the Collect function in
ARR algorithm (Figure 7) for reporting, that is, O(Fε=0). The following
experimental results are found to be consistent with the theoretical analysis.

17

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2 (b) k = 4

Figure 21: Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with 2-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000 and maxsize = 0.001).

 10

 100

 1000

 10000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2 (b) k = 4

Figure 22: Number of nodes visited versus ε in Patricia trie for 4-dimensional
rectangles with k-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000 and maxsize = 0.01).

4.2.1 k-dimensional points

For the query squares with fixed volume for different k, the number of points
in range F = vol × n. when vol = 0.0001 and n = 1, 000, 000, F = 100; in
the similar way when vol = 0.01, F = 10, 000. Figure 25 shows the aver-
age number of nodes visited during approximate range reporting for query
squares with volume ranging from 0.0001 to 0.01. Comparing Figures 25
and 12, we find that there is only a little improvement when k < 5 for the
different query square volumes, because the average number of nodes visited
is dominated by the number of points in range F , especially when the query
square volume is large.

For the query squares with fixed side size w, we show the average number
of points in range when ε = 0 in Table 1, . We show the average number of
nodes visited during approximate range reporting in Figure 26. Comparing

18

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 0.1 0.2 0.3 0.4 0.5

F
ra

ct
io

n
of

 p
oi

nt
s

m
is

co
un

te
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

Figure 23: Fraction of points mis-
counted δε=x versus ε using Pa-
tricia trie for 2-dimensional rect-
angles for 2-d query square’s side
length from 0.003125 to 0.4 (n =
1, 000, 000 and maxsize = 0.001).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 0.1 0.2 0.3 0.4 0.5
 0

 5e-005

 0.0001

 0.00015

 0.0002

 0.00025

 0.0003

 0.00035

 0.0004

 0.00045

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

Figure 24: Number of nodes visited ver-
sus ε in Patricia trie for k-dimensional
rectangles for k-d query square’s side
length w = 0.025 (n = 1, 000, 000 and
maxsize = 0.001).

Figure 26(a) with 14(a), we find that there is only a little improvement when
k = 2 even ε = 0.5 , because of the large number of nodes in range according
to Table 1 when w > 0.025. When k grows, there are less nodes in range. It
is easy to see that when k = 4 and w ≤ 0.05, the number of nodes visited in
Figure 26(b) is almost the same as that in Figure 14(b), because of zero or a
very small number of nodes in range. And we can conclude that as k grows,
for the same w, the number of nodes visited for the range reporting is close
to that for counting, as shown in Figures 14(c) and 26(c). According to the
definition of the average error, which only depends on the number of legal
answers, ε-approximate range reporting and counting have the same average
error (see Figure 16).

4.2.2 k-dimensional rectangles

We show the average number of rectangles in range when ε = 0 in Tables
2 and 3 for maxsize = 0.001 and maxsize = 0.01, respectively. In Figures
27 and 28, we show the average number of nodes visited versus ε during
approximate range reporting for different k and maxsize. They have the
similar trend as points.

19

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

(a)

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1
N

od
es

 v
is

ite
d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9

k=10

(b) (c)

Figure 25: Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square volume (a) vol=0.0001, (b) vol=0.001 and (c)
vol=0.01 (n = 1, 000, 000).

Table 1: The average number of points in range (n=1,000,000).

Fε=0 w=0.003125 0.00625 0.0125 0.025 0.05 0.1 0.2 0.4
k=2 9.43 38.52 155.71 624.24 2500.81 10005.71 39995.76 159984.70

3 0 0 1.55 15.40 124.65 1000.40 8000.50 63973.70
4 0 0 0 0 5.56 99.17 1600.56 25567.50
5 0 0 0 0 0 9.57 319.76 10237.95
6 0 0 0 0 0 0.52 63.57 4097.71
7 0 0 0 0 0 0 12.33 1636.30
8 0 0 0 0 0 0 2.15 653.90
9 0 0 0 0 0 0 0 260.75

10 0 0 0 0 0 0 0 103.83

20

 10

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 1e-005

 0.0001

 0.001

 0.01
N

od
es

 v
is

ite
d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(b) k = 4 (c) k = 8

Figure 26: Number of nodes visited versus ε in Patricia trie for k-dimensional
points with k-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000).

Table 2: The average number of rectangles in range (n = 1, 000, 000 and
maxsize = 0.001).

Fε=0 w=0.003125 0.00625 0.0125 0.025 0.05 0.1 0.2 0.4
k=2 12.78 45.07 169.14 651.07 2552.36 10104.36 40247.57 160579.43

3 0 0 1.85 16.15 128.54 1017.23 8068.23 64338.78
4 0 0 0 0 6.07 102.21 1616.57 25751.28
5 0 0 0 0 0 9.78 323.64 10327.93
6 0 0 0 0 0 0.5 64.71 4134.36
7 0 0 0 0 0 0 12.92 1658.69
8 0 0 0 0 0 0 1.92 664.58
9 0 0 0 0 0 0 0 266.42

10 0 0 0 0 0 0 0 106.25

21

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2 (b) k = 4

Figure 27: Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with k-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000 and maxsize = 0.001).

Table 3: The average number of rectangles in range when ε = 0 and
maxsize = 0.01 (n=1,000,000).

Fε=0 w=0.003125 0.00625 0.0125 0.025 0.05 0.1 0.2 0.4
k=2 65.69 126.33 305.92 904.83 3055.08 11143.00 42443.50 165617.69

3 0 1.00 4.77 26.46 168.08 1171.23 8745.67 67330.69
4 0 0 0 0.36 9.00 124.36 1802.5 27449.33
5 0 0 0 0 0.08 12.92 371.33 11164.00
6 0 0 0 0 0 1.00 75.62 4536.69
7 0 0 0 0 0 0 15.33 1847.78
8 0 0 0 0 0 0 2.91 752.00
9 0 0 0 0 0 0 0 305.20

10 0 0 0 0 0 0 0 123.90

 100

 1000

 10000

 100000

 1e+006

 0 0.1 0.2 0.3 0.4 0.5

 0.0001

 0.001

 0.01

 0.1

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5

 0.0001

 0.001

 0.01

N
od

es
 v

is
ite

d

F
ra

ct
io

n
of

 th
e

tr
ie

 v
is

ite
d

Epsilon

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) k = 2 (b) k = 4

Figure 28: Number of nodes visited versus ε in Patricia trie for k-dimensional
rectangles with k-d query square’s side length from 0.003125 to 0.4 (n =
1, 000, 000 and maxsize = 0.01).

22

5 Conclusions and Future Works

We use Patricia tries to answer ε-approximate orthogonal range search queries
on a set of n points or rectangles in k-dimensional space, and proposed the
approximate orthogonal range counting algorithm and range reporting algo-
rithm. Patricia tries are theoretically analyzed and evaluated experimentally
for ε-approximate orthogonal range counting and reporting queries using uni-
formly distributed random points and rectangles. The performance of the
Patricia trie for k-d points was compared with the k-d tree and the adaptive
k-d tree. We show that Patricia tries can be used to answer orthogonal range
counting queries visiting O(k log n/εk−1) for cubical range queries. Can the
result be improved closer to the lower bound of Ω(log n + 1/εk−1) in fixed
dimension? Figures 29 and 30 shows f = yε=x

yε=0
, where yε=0 is the number of

nodes visited for an exact range counting query, and yε=x is the number of
nodes visited for an ε-approximate range counting query. Experimental re-
sults show that if we allow small relative errors, the number of nodes visited
for range counting can be reduced at least by 1/4 for query squares with side
length w ≥ 0.2 (see Figure 29(a)) and by more than 1/4 for query squares
with volume vol ranging from 0.0001 to 0.01 (see Figure 30(a)), ε = 0.05 and
2 ≤ k ≤ 10. Range reporting queries have a less dramatic improvement when
k ≤ 5, because of additional O(F) nodes visited, which is the dominating
term in the number of the nodes visited during range reporting (see Figures
29(b) and 30(b)). Another open question is how to perform combined textual
and spatial data approximate range search.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

f

k

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125
 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

f

k

w=0.4
w=0.2
w=0.1

w=0.05
w=0.025

w=0.0125
w=0.00625

w=0.003125

(a) Range counting (b) Range reporting

Figure 29: The fraction f of nodes visited when ε = 0.05 for query squares
with fixed side length w for different k (n = 1, 000, 000).

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

f

k

vol=0.01
vol=0.001

vol=0.0001
 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

f

k

vol=0.01
vol=0.001

vol=0.0001

(a) Range counting (b) Range reporting

Figure 30: The fraction f of nodes visited when ε = 0.05 for query squares
with fixed volume vol for different k (n = 1, 000, 000).

References

[1] P. Agarwal. Handbook of Discrete and Computational Geometry, chapter
Range Searching, pages 575–598. CRC Press LLC, Boca Raton, FL, 1997.

[2] S. Arya and D. Mount. Approximate range searching. Computational Geom-
etry: Theory and Applications, 17:135–163, 2000.

[3] J. Bentley. Multidimensional binary search trees for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[4] J. Bentley. Multidimensional binary search trees in database applications.
IEEE Trans. Softw. Eng., 5(4):333–340, 1979.

[5] J. Bentley and J. Friedman. Data structures for range searching. ACM
Computing Surveys, 11(4):397–409, December 1979.

[6] L. Bu and B. Nickerson. Multidimensional orthogonal range search using
tries. In Canadian Conference on Computational Geometry, pages 161–165,
Halifax, N.S., August 2003.

[7] B. Chazelle. A functional approach for data structure and its use in mul-
tidimensional searching. SIAM Journal of Computing, 17(3):427–462, June
1988.

[8] B. Chazelle. Lower bounds for orthogonal range search: II. the arithmatic
model. Journal of the ACM, 37(3):39–463, July 1990.

[9] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting
case. Journal of the ACM, 37(2):200–212, April 1990.

[10] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226, 1977.

[11] V. Gaede and O. Gunther. Multidimensional access methods. ACM Comput-
ing Surveys, 30:170–231, 1998.

[12] P. Kirschenhofer and H. Prodinger. Multidimensional digital searching-

24

alternative data structures. Random Structures and Algorithms, 5(1):123–134,
1994.

[13] D. Knuth. The art of computer programming: sorting and searching, volume 3,
pages 492–512. Addison-Wesley, Reading, Mass., 2 edition, 1998.

[14] D. Lee and C. Wong. Quintary trees: a file structure for multidimensional
database systems. ACM Transaction on Database Systems, 5:339–353, 1980.

[15] D. Morrison. Patricia - practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 14(4):514–534, October 1968.

[16] J. Orenstein. Multidimensional tries used for associative searching. Informa-
tion Processing Letters, 14(14):150–156, June 1982.

[17] H. Samet. The design and analysis of spatial data strutures. Addison-Wesley,
Reading, MA, 1990.

[18] Q. Shi and B. G. Nickerson. k-d range search with binary patricia tries.
Technical report, TR04-168, Faculty of Computer Science, University of New
Brunswick, December 2004, 35 pages.

[19] W. Szpankowski. Patricia tries again revisited. Journal of the ACM,
37(4):691–711, 1990.

25

