COMPARATIVE Q-GRAM ANALYSIS OF
GENE PROMOTER REGIONS
BY

BLAIR FOSTER JR.

BACHELOR OF COMPUTER SCIENCE
UNIVERSITY OF NEW BRUNSWICK

2002-2003

BLAIR FOSTER JR.

SUPERVISOR:
DR. PATRICIA EVANS

FACULTY OF COMPUTER SCIENCE

UNIVERSITY OF NEW BRUNSWICK

ABSTRACT

COMPARATIVE Q-GRAM ANALYSIS OF
GENE PROMOTOR REGIONS

by Blair Foster Jr.
Supervisor:
Dr. Patricia Evans
Faculty of Computer Science

A current barrier for gene expression experiments is determining why two different genes
often have expression similarities. The expression of a gene is regulated by promoters and
repressors that bind to the DNA sequence directly before the gene. Given a pair genes whose
expression patterns are very similar, the genes may be unrelated; one gene could promote the
other; or both genes could be promoted by the same things. This last case is known as co-
expression. Finding similarities in the genes’ promoter regions is necessary to determining
when co-expression may occur and separating groups of similarly expressed genes. If some
parts of the promoter regions are common only to the genes with similar expression patterns,

then they can be conjectured as promoter or repressor binding sites.

QQ-gram analysis of the gene promoter regions involves taking substrings of a fixed length q
and determining which genes share this substring in their respective promoter region. These q-
grams will form a network, a weighted graph with gene regulatory sequences as vertices. Each
vertex will be connected to all other vertices and the weight of the edge between each pair will
be determined by the number of common g-grams. A pair wise analysis of the g-grams will be

performed to determine the edge weights.

Once the network is formed, further investigation can be used to determine various graph
partitions, and extract the sequences of highest similarity. The end result is to have a better
understanding of why genes have expression similarities, and if promoter regions are the cause

of these similarities.

Table of Contents:

Chapter 1 — INOAUCLIONccouiuiciiiiciiieine ettt st sesae 1
1.1 OVEIVIEW ..ottt bbb bbbt 1
1.2 GENEHC SEQUEIICES ..ecuiiieiiiiriiiiiiti it 2
Chapter 2 — BaCKGround ...t ssssesaes 4
2.1 Promoter Binding Regions and Gene EXPression.........ncicienns 4
2.2 Gene Co-EXPIESSION ... 5
2.3 String Comparison AlOrIthmS ..o 6
24 LS oY @ ey 0 o OO 7

241 Q-grams and String AlOIthMSviiiiiiiii s 7
2.5 Measuring the value of an AlGOIthMmccvviviiiiri e 8
Chapter 3 — Algorithm DesSign ..o 10
3.1 Dealing with the Problem Efficient]y........ccoviiiiiiiiiiiicne, 10
3.2 String Searching AlZOfIthMS.......cccviiiiiiiii s 11

3.2.1 Knuth-Mortis-Pratt (KPM)cccvriiriiiiiciisiiscsicisssssssssssssssssssssssssens 11

322 Boyer-More (BM) ..o ssssaesns 11

3.2.3 Variations on BM and KPM.......cccceiniiiiiiiicisiseiss s sssnens 12
3.3 Q-gram Alignment Based on Suffix Arrays (QUASAR) ..., 12
3.4 Using Q-grams DIfferently........coiirinininininiiiiiiiiiicisssiesisesssssessessessesssens 13
Chapter 4 — Implementation and TeStiNgcccccwrrieieieieinieieeeeeseeseessessessesseseenens 16
4.1 IMPIEMENTALION w.ceiviieiiiiiiiiic e es 16
4.2 TESTIIZ .ot 17
4.3 RESULLS ANALYSIS ecvuvereireriiciireiicineieictreietetseietet ettt seee 23
Chapter 5 — Conclusion and Recommendations ... 27
5.1 CONCIUSION ...ttt bbb 27
5.2 RecOMMENAAONS.....cvuieiriiiiciriitc s sa s 27
Appendix 1 — Implementation Code ... 29
Appendix 2 — SUMMALY SREET..........ccoiiiiiiiic e 36

BibLiOGIAPRYcoviiiiiiiicii e 37

CHAPTER 1

INTRODUCTION

1.1 Overview

The manipulation and matching of string patterns is an intensely studied area in computer
science and has many applications across a broad range of areas of study. Molecular biology is
an excellent example because it focuses on genetic sequences, which are represented by simple
strings [17]. These sequences are continually being compared for matches and manipulation.
Evolutionary changes in a particular species are often times identified in such a manner. While
this may seem like a very simplistic approach, it is a necessary and useful one. It is simplistic
because genetic sequences contain a large amount of structure and should be thought of as
more than just sets of strings. It is necessary because each sequence demands a certain amount
of genetic structure. If two sequences are similar, then it is conjectured that their structures will
also be similar, and from this we can conclude that the function of each respective gene in
these genetic sequences is also very similar. It is useful because we can identify most of the
evolutionary changes in a particular species in this very simplistic and understandable fashion,
which can then be investigated further on a much more detailed level [17]. This is all to say
that there is a great amount of usefulness in comparing a large number of sequences with each

another.

It is important that the distinction between a string and a sequence is identified [17]. A sequence
is defined as a successive listing of symbols from an alphabet; in the case of genetic sequences

the alphabet is the set {A, C, G, T}. A string can be defined as a contiguous sequence. While a

string can be a sequence, not all sequences are strings [17]. That is to say that given a group of
symbols from the genetic alphabet such as ATCGAT, a sequence in itself, we can see that
ACAT is a sub-sequence (ATCGAT), but is not a string. At the same time, TCGA is a sub-
string (ATCGAT) and it is also a sub-sequence. The symbols TAC would not be a sequence as

they are not found in correct, left to right, succession within the given group of symbols.

Given a large set of sequences it becomes necessary to examine sub-sequences and sub-strings
of the sequences to determine commonalities amongst them [17]. These commonalities can be
as simple as having a single common symbol, to having an entire set of sub-strings and sub-
sequences in common, to being completely identical. In the case of Molecular biology, which
this research will focus on, the alphabet on which these sequences are defined is very small.
This creates a problem of too much repetition across very long sequences, and because of this,
it is typically easier to focus on different regions of these genetic sequences, draw some
preliminary conclusions, then eventually work to include the entire genetic sequence. The work
contained herein focuses primarily on two things: the promoter region (the ‘starting’ area) of
genetic sequences; and string comparisons of these promoter regions. The largest problem that
presents itself here is how to efficiently deal with the large number of genes that must be

compared. [17]

1.2 Genetic Sequences

Deoxyribonucleic acid (DNA) is the genetic coding from which organisms are constructed

[17]. DNA consists of a long sequence of four acid base types: adenine; guanine; cytosine; and

thymine. These four base types are often represented by their first letter; A, G, C and T

respectively. The four base types are linked together through a sugar-phosphate backbone
creating a single sequence called a DNA strand. Each DNA strand is attached to its
complementary strand through base pairing. The complement of A is T, while the
complement of G is C. The DNA strands link together to form what is often referred to as the
DNA double helix. Ribonucleic acid (RNA) is closely related to DNA with the exception that

thymine (T) is replaced by uracil (U). [17]

Genes are also comprised of the same four acid bases and are sub-sequences of a DNA strand
[17]. Within each gene itself we find even smaller sub-sequences defined to be different regions
of the gene, each with its own properties. Genes consist of regulatory regions, which regulate
various characteristics of the gene; the protein coding regions, which contain the necessary
code segments, exons, and non-coding segments, introns, for the gene to create proteins.
Regulatory regions further consist of promoter binding regions, and transcription anchor
regions [17]. While the main focus for this research is in one specific area, the promoter

binding regions, it is worthwhile to mention each area because they are all closely related.

I will mention why there is a need to study promoter regions more closely and briefly touch on
existing methods for analyzing the promoter regions for a set of genes within a genome. I will

then present a different approach to the problem of promoter sequence matching,

CHAPTER 2

BACKGROUND

2.1 Promoter Binding Regions and Gene Expression

As previously mentioned, promoter binding regions (promoters) are regulatory regions within
genes, and control how and when a gene will create a protein. This routine process in which a
gene creates a protein is called gene expression. It can be said then that promoters directly
affect gene expression levels which is a measurement of gene expression. Gene expression

consists of two primary stages: transcription and translation.

During transcription groups of enzymes and proteins bind to promoter regions [8]. These
enzymes and proteins are referred to as RNA polymerase. The enzymes and proteins
contained within the RNA polymerase are strictly regulated by the promoter itself. Each
promoter contains a different sequence of DNA, or template, which is accessible only by the
matching enzymes and proteins. The RNA polymerase begins by unwinding the DNA helix at
the promoter region. The RNA polymerase then traverses down the gene, unwinding the
DNA at its head and rewinding the DNA at its tail, to the transcription anchor. The
transcription anchor is a small portion of DNA which exists just before the gene coding
regions which signals the RNA polymerase to begin transcription of the DNA. Once the
transcription anchor is located, the RNA polymerase begins to make a copy of the ‘coding’
DNA strand as it is unwound from its complement strand [8]. As each DNA base is
synthesized to its RNA equivalent, it is added to the RNA chain being constructed. This

process is called elongation. Once the RNA polymerase has reached the terminating region,

transcription of that gene has been completed and the result is a strand of RNA called
messenger RNA (mRNA). While at the terminating region, the RNA polymerase collapses and
the initial enzymes and proteins are released with the mRNA. The mRNA copy is then used in
translation, which is the next primary phase in gene expression [8]. It is important to note that
promoter regions have a huge impact on transcription because they determine which enzymes
and proteins will transcribe the gene. Since transcription is the first stage in gene expression, it

is clear that promoters have a large impact on the entire gene expression process.

Translation, which occurs near the end of the gene expression process, is the act of coding the
RNA segments into the amino acids which make up the resulting protein. I will not describe

translation in any further detail as it is difficult to relate its process to promoter regions.

2.2 Gene Co-Expression

Given two genes, gene A and gene B which exist in the same genome, there are three
possibilities that can be explored with respect to their gene expression processes [5]. First, the
genes can be unrelated, meaning they have relatively nothing in common. Second, gene A can
be promoted by gene B, meaning that the resulting protein of gene B directly affects the
expression of gene A, or gene B can be promoted by gene A. Lastly, gene A and gene B may
be promoted under similar conditions. Known as co-expression, this is the central focus of
this research. By examining the promoter regions of a set of genes, it is believed that co-
expression can be determined based upon the similarities within the promoter regions. If two
promoters have many similarities, then it can be said that the RNA polymerase that binds to
these promoter regions will also be similar and thus gene expression could be triggered

simultaneously and the gene expression levels will likely be very similar. Identifying those genes

that may be co-expressed is important in understanding which genes may be reliant on each
other for important and necessary functionality within the organism, or which genes work

together to form a common functionality. [5]

While examining promoter sequences is, once again, a very simplistic approach to identifying
possible co-expression, it is the first logical and necessary step. Doing so will, if nothing else,
potentially cluster the genes into a smaller subset that are more likely to be co-expressed and

should be investigated further.

2.3 String Comparison Algorithms

The problem of finding substring patterns within larger sets of strings has been studied by
computer scientists for many years and many algorithms to solve these pattern finding
problems have been discovered [19]. While many of these algorithms were written with
databases and text searching in mind, these algorithms are certainly applicable to genetic

sequences.

Similar to any well-defined algorithm, string pattern matching algorithms can be adapted to
their problem environment, often yielding even greater efficiency by exploiting restrictions to
the problem [19]. One obvious restriction which can, and will be, exploited in this research is
the fact that genetic sequences are defined over a very small four letter alphabet. This fact
quickly singles out algorithms which are most effective over small alphabets, a few of which I
will mention, along with the reasons why these algorithms are not the best approach to the

problem at hand.

2.4 Using Q-grams

The idea of using q-grams, substrings of a fixed length q, was first introduced [6] as a filtration
technique for text and database searching. The idea was that a g-gram could be any particular
word used to filter out areas of text. However, when applied differently, q-grams could also
identify text sequences which had words in common [11]. Being able to identify common
pieces in sequences using g-grams gives the ability to measure the similarity of the sequences,

because it is expected that similar sequences will share a large number of q-grams. [16]

Knowing that g-grams can be used to measure similarity between two sequences is one reason
for choosing this method. The other reason is that g-grams can effectively encapsulate entire
promoter regions given that q is large enough. This is very valuable as it means promoters
compare exactly to other promoters with a minimal amount of non-promoter data on either

end of the g-gram.

2.4.1 Q-grams and String Algorithms

When dealing with g-grams, the pattern in the string searching algorithm limited to a fixed
length (q). Determining a useful value for q depends entirely on data being used. An
appropriate q value for genetic sequences is one which is large enough to encapsulate some
genetic function from the sequences. This, of course, is different for every genome. A study of
genetic sequences and their related functions would be encouraged before placing a value on q.
However, large values for q would certainly restrict the amount of similarity across a set of

genes. Focusing on smaller values would, while allowing for more error, encourage similarity.

The methods I used to determine an appropriate value for q are a bit simplistic because
studying gene functions is well outside the bounds of this research. Instead, I have decided to
run many tests using various values for q and present the results for each value. I will be using
values of q which are relatively small. The idea, as mentioned earlier, is to try and encapsulate
the promoter, or most of it, within the g-grams. Because of this, choosing a value for q that is
too large would mean not only getting the promoter, but the other non-promoter data around
it. The danger here is that the similarities may become too great as the g-grams are small, and

random similarities may be found instead of promoter regions.

2.5 Measuring the Value of an Algorithm

In order to determine the level of effectiveness of an algorithm to a problem, it is often
necessary to understand the efficiency of the algorithm [18]. Efficiency can be viewed both in
terms of the time it takes to run the algorithm and the amount of space required. This is
measured using asymptotic complexity. Asymptotic complexity allows algorithms to be
measured for their efficiency based upon the size of their input. A high asymptotic complexity
translates to a very poor algorithm for large input sizes, while a small asymptotic complexity
translates to a very efficient algorithm for large input sizes [18]. This is extremely important in
this research, as the number and size of the sequences which can be compared is very large. It
is clear then that the desired algorithm will require a low asymptotic complexity, especially as it

relates to the running time of the algorithm.

Asymptotic complexity can be denoted in many ways, but typically it is denoted by one of
three Greek alphabet symbols: omicron (O), referred to as ‘Big-Oh’ [13]; omega (£2), referred

to as ‘Big-Omega’ [14]; and theta (@), referred to as ‘Big-Theta’ [15]. ‘Big-Oh’ is used to

denote an asymptotic upper bound for an algorithm, which is to say that its asymptotic
complexity can not exceed a constant multiple of this value. I will be using ‘Big-Oh’ notation,

since it is the most understood and commonly used notation.

CHAPTER 3

ALGORITHM DESIGN

3.1 Dealing with the Problem Efficiently

The focus of this research is to determine if there is a relationship between promoter regions
of a set of genes. This resulting relationship might better explain the high levels of similarity
across the gene expression data. This requires a large number of comparisons to be performed
across all the input sequences looking for matching q-grams. For each g-gram that is found in
one sequence, a search of each remaining sequence is needed to determine if they also contain
this g-gram. Any pair of sequences that contain this gq-gram must be noted as having some
level of similarity; if one does not contain the g-gram, the pair is noted as having some level of
difference. The number of occurrences of a particular g-gram in a sequence is how the
measurement of similarity or difference is done. Given this information, it is easy to see that
this requires a large amount of computation. Consider that there are at most k sequences, with
each sequence containing at most n bases. For each sequence at most n-(q-1) g-grams can be
extracted. Each g-gram from each sequence must then be searched for in all remaining

sequences. Combining these steps gives an algorithm which resembles the following:

For each sequence j do the following:
1) Extract the next substring of length q (q-gram)
2) For each sequence m, where m is not j do the following:

1) Search for the g-gram from j in m

10

As can be seen, this yields a time complexity of O(k(n-(g-1))(k-1)(complexity of search
algorithm)). So clearly a fast searching algorithm must be found, however, this will still provide
a very inefficient algorithm. I will discuss a pair of fast searching algorithms which could be
used for this approach. I will also discuss a completely different solution which could be used,

and finally, explain a much more efficient method that I have devised for the problem.

3.2 String Searching Algorithms

3.21 Knuth-Motris-Pratt (KPM)

The KPM algorithm is an extremely well-known and efficient algorithm for string searching
[19]. Given a string pattern of length m, and sequence of length n, the KPM algorithm will
find all occurrences of the pattern within the sequence in O(n + m) time and O(m) space [4].
However, given the problem as stated above (with m = q), this leaves us with a total time
complexity of O(k(n-(g-1))(k-1)(n+q)) which itself has an upper bound complexity of O(k’n*).

[19]

3.2.2 Boyer-More (BM)

The BM algorithm is yet another well-known and efficient algorithm [19]. It is very popular
and is used by many applications that have “search and substitute” functionality. Given a string
pattern of length m, a sequence of length n, and an alphabet size of o, BM will find all
occurrences of the pattern within the sequence in O(nm) time and O(m + o) space. However,
given the problem as stated above (with m = q), this leaves us with a total time complexity of

O(k(n-(q-1)) (k-1)(nq)) which itself has an upper bound complexity of O(k’n’q). [19]

11

3.2.3 Variations on BM and KPM

While there are many variations of both the BM and KPM algorithms [2], I will not discuss
those as they do not provide any significant amount of improvement in terms of asymptotic

complexity.

3.3 Q-gram Alignment Based on Suffix Arrays (QUASAR)

The QUASAR algorithm [1] takes a much different approach to searching for g-grams in a
given set of sequences. Originally designed for database searching, the algorithm works on the
principle that if two sequences are relatively the same (that is to say the amount of editing
required to make one sequence identical to the other is reasonably small) then it follows that
the two sequences will share a large number of g-grams. This then allows a large amount of
pruning of the sequences to be searched. Using suffix arrays, sequences are initially grouped
together based upon a scoring scheme. Following this, g-grams can be searched for within
each grouping separately. While this sounds a bit redundant (grouping similar sequences
together only to further show that they are similar), it is a valid approach to exact pattern
matching because the initial grouping deals strictly with approximation and does not identify

the exact matches.

The running time of this algorithm is measured in two parts. It initially takes O(klog,k) time to
perform the suffix preprocessing on k sequences. The searching then requires O(k) time for
each g-gram. Given that there can be a maximum of n-(q-1) g-grams from each sequence of
maximum length n, the total searching time is O(k’n). Of course this time complexity is the

worst case and considers that all sequences are similar to each other. [1]

12

Clearly this approach is much more efficient than the previously mentioned methods.
However, it is a very complex method and requires preprocessing of the sequences
beforehand. More importantly, the QUASAR technique cannot handle common sequences
where the q-grams are unordered. This is actually a problem with most existing g-gram
methods as well; these methods are all concerned with the order in which the g-grams appear
in the sequence. This makes most g-gram methods useless for this problem because promoters
are unordered and the desired technique needs to account for this. I will proceed to
demonstrate a much more simplistic g-gram method which applies specifically to the problem

at hand and makes use of a few obvious restrictions to allow for an even faster solution.

34 Using Q-grams Differently

As mentioned eatlier, looking for g-grams using string searching algorithms can be very time
consuming. One of the reasons for this is that character-to-character comparisons need to be
made for each searched g-gram. One way I propose to speed this up is described in the

following paragraph.

If each of the characters in our four letter alphabet correspond to two bits in a bit string, that
is {A =00, G = 01, C =10, T = 11}, each g-gram will be labeled with an integer between 0
and 4%. Next, a table of the number of possible g-grams (47 rows) by number of sequences (k
columns) can be constructed. This table will be used to store the number of occurrences of a
particular g-gram within each sequence. By looking at each sequence in turn, it is then possible
to process each sequence’s g-grams by extracting them, converting the g-gram to its integer

value, and updating the table. An additional column will be used to indicate if a particular g-

13

gram was present in any of the sequences. This last column will be used later to speed up the

comparison of the sequences. Building this table (M) is done as follows:

For each sequence (k) do the following:

1) Extract the first g-gram (first q characters)

2) Convert the g-gram to its integer value (qval)

3) Update the g-gram column, M|qval, last column]| += 1

4) Update the sequence column, M[qgval, k] +=1

5) Shift the g-gram characters and grab the next character in the sequence to

form the next q-gram

6) Repeat from step 2 until all characters in the sequence have been used.

This process can be accomplished in linear time (O(kn) for a maximum sequence length of n).

Once the table of g-gram occurrences has been built, the next step is to perform a pair wise
comparison of the sequences. This comparison will be determined by looking at the number
of occurrences of a particular g-gram within the pair of sequences. To do this, a positive score
value (pos), and a negative score value (neg) will be needed. A tolerance value (tol) must also
be used to specify the allowable difference between the g-gram value pairs. The scores from
this comparison will be stored in a separate table (T). The scoring shall be described in the next

paragraph.

14

For each g-gram (qval) that was found (M[qval, last column] > 0), do the following:

For each pair sequences i and j (j > i):

1) If M[qgval, i] = 0 or M[qval, j] = 0, then TTi, j] = T[4, j] + neg, otherwise;

2) If |M]qval, i] — M[qval, j]| < tol, then TT[i, j] = T[i, j] + pos, otherwise;

3) T[i, j] = T, j] + (MIN{M]qval,i], M[qval,j}; /MAX{[qval,i], M[qvalj]}) * pos)

Analyzing this algorithm, the complexity is found to be O((4%-c)k(k-1)), where c is the number
of g-grams that were not found within the sequences. This complexity itself has an asymptotic
upper bound of O4k?). It must then be determined if this algorithm is actually better than
O(k’n®). While it may not be immediately obvious, I will proceed to show that it is. When
considering genetic sequences, the number of characters can become extremely large (I
consider sequences of length 1000). Even in this case, where I only look at regulatory regions
of the genes, the sequences are still very large. Also, when you consider that promoters are
expected to be relatively short (I examine q < 8), 49becomes smaller than n’. However, even if
q begins to become large, the number of g-grams actually found in these sequences will
decrease, and as such the number of g-grams ignored (c) will begin to increase. As such, even
though the possibility of encountering more g-grams increases, the number of g-grams actually

used for comparison decreases.

15

CHAPTER 4

IMPLEMENTATION AND TESTING

4.1 Implementation

Implementation of the above algorithm was written as an application in the C programming
language [7] (Appendix 1). The application allows for user specification of g-gram length (q),
number of input sequences (k), the desired number of output sequences, a tolerance value
(tol), as well as positive (pos) and a negative (neg) scoring values. All of these values must be
specified upon runtime. A flat file of the gene sequences is required, and it is expected that this

file is formatted with one sequence per line. This file is also specified by the user.

The reason for making the application flexible is to allow various tests to be performed and to
be able to compare the effects each value has on the results. It should be noted that keeping
the positive and negative score values approximately the same absolute size is not necessary,

however doing so keeps the weighting of the comparisons less inflated.

The output from this application includes the number of g-grams used for sequence
comparisons (4 - ¢), as well as two files that will contain a user specified number of the highest

and lowest scoring pairs of sequences.

16

4.2 Testing

To test the algorithm, I decided to use various lengths of g-grams to investigate what effect the
size of the g-grams would have on the output. Values of 5, 6, 7, and 8 where chosen as lengths
for the g-grams. The reason for choosing these values was based upon discussion with Dr.
Evans. If I were to use values that are below 5, it is expected that a lot of random similarities
will occur regardless of promoter similarity. A maximum g-gram length of 8 was chosen not
only from discussions with Dr. Evans, but also due to the limited availability of hardware

capable of supporting the memory requirements.

I also used two different cases for positive and negative scores. In the first case, I used a
positive score value of 1, and a negative score value of 0. As such if, for a pair of sequences,
one sequence has a particular g-gram where the other sequence does not, I will not penalize
this. In the second case, the positive score value remains 1, however the negative score value
was set to -1. This was done so that in the above case of a poor sequence comparison, the
score will be penalized. This keeps the sequence comparison score equally in favor of both
positive and negative scoring, where as in the first case, I allow for positive scoring only. In

both test cases the tolerance value (tol) was 0.

The input data that I tested consisted of the entire S. cerevisiae (yeast) genome. The availability

of both sequence data [3] and expression data [9], as well as the small size of this genome

(approximately 6200 genes) were the compelling reasons for choosing this input data. For each

gene from the genome, sequences of length 1000, upstream of the transcription anchor, were

extracted. These were then formatted into a large flat file.

17

Below are the results from the first case of testing as mentioned eatlier. The scatter plot graphs
(Figures 1 — 4) show the 100 highest pairs of g-gram similarity, as well as the 100 lowest pairs
of g-gram similarity for the corresponding value of q. The pairs are plotted according to their

g-similarity score vs. their difference in expression values.

q=5

High Q-gram Similarity ® Low Q-gram Similarity

Q-Gram Similarity Score

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Difference in Expression Values

Figure 1 : q =5, pos = 1, neg = 0

18

Q-gram Similarity Score

Q-gram Similarity Score

=2 =2 NN W WA DO DD NN O 0 © ©
g O O O U O U O g O U O U O g O ua o O
O O O O O O O O O O O 0O o o o o o o o o

1050
1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50

q=6

¢ High Q-gram Similarity ® Low Q-gram Similarity

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Difference in Expression Values

Figure 2: q =6, pos = 1, neg =0

q=7

& High Q-gram Similarity ® Low Q-gram Similarity

o

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
Difference in Expression Values

Figure 3:q =7, pos =1, neg =0

Q-gram Similarity Score

1050
1000
950
900
850
800
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50

100

200

300

400

q=8

¢ High Q-gram Similarity ® Low Q-gram Similarity

500 600 700 800 900 1000 1100
Difference in Expression Values

Figure 4 : q =8, pos = 1, neg =0

20

1200

1300

1400

1500

1600

1700

The second case of testing produced the following results (Figures 5 — 8). Note that in this

case of testing, I am using a value for neg that will penalize the g-gram comparison when

necessary.

Q-gram Similarity Score

700
650
600
550
500
450
400
350
300
250
200
150
100

50

-50
-100
-150
-200
-250
-300
-350
-400
-450
-500
-550
-600
-650
-700

q=5

¢ High Q-gram Similarity ® Low Q-gram Similarity ‘

Difference in Expression Values

Figure 5: q =5, pos = 1, neg = -1

21

Q-gram Similarity Score

Q-gram Similarity Score

q=6

High Q-gram Similarity ® Low Q-gram Similarity

Difference in Expression Values

Figure 6 : q = 6, pos = 1, neg = -1

q=7

High Q-gram Similarity ® Low Q-gram Similarity

Difference in Expression Values

Figure 7: q =7, pos = 1, neg = -1

22

q=8

High Q-gram Similarity ® Low Q-gram Similarity

1 %‘w 0&:0 ®» o & o PS *
% ? vy
R S
Jo 406 % o4 * *
1 *
o9, R 4 i4
17 Ceomee &
§ :_ 14 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
2> K]
T
8 =
E
[7 -]
£ 9501
IR
o b]
&
250 ————m e w w (N u - 0

Difference in Expression Values

Figure 8 : ¢ = 8, pos = 1, neg = -1

4.3 Results Analysis

When looking at the results, it is obvious that four different scenarios appear. Initially, plots
can have low g-gram similarity and low difference in expression values. If this result is seen,
then it is possible to conjecture that since the g-gram similarity is low, but the expression
similarity is high (their difference is low), then some other factor outside of the promoter

regions is causing the co-expression of these genes.

Secondly, plots can have low g-gram similarity and high difference in expression values. In this

case it could be conjectured that since the q-gram similarities are low, the promoters are most

23

likely very different. As a result a high difference in expression values is expected, and these

genes should not be co-expressed.

Thirdly, plots can have high g-gram similarity and low difference in expression values. This
scenario is cleatly the desired case as it could be conjectured that the high similarity in the
promoter regions could have a direct effect on the co-expression of these genes. This is
important as it corroborates the arguments of this research and I will focus primarily on this

scenatio.

Finally, plots can have high q-gram similarity and high difference in expression values. This last
scenario is the least desired one. In this case there is another reason, other than promoters,
which lead to very different expression levels for the genes, and it can be conjectured that
promoters have very little effect on expression levels. This goes against the argument of this

research; promoter similarity could help explain expression similarity.

The remaining question concerns an acceptable level of expression difference to consider the
genes co-expressed. When studying the expression data used, it was found that the average
expression value for a gene was 297, where the smallest value was 171, and the largest value
was 6999. Clearly then, the expression values between a pair of genes can potentially be
radically different. The only effective way to establish bounds on co-expression is to perform
a gene clustering technique to establish sets of co-expressed genes [5]. Clustering this
expression data is outside the scope of this research, however, reviewing data compiled by
some of my own previous research [4] reveals that dense clustering of the S. cerevisiae genome
can and does occur with genes having expression values that differ by as much as 100-150.

This range makes sense because it is expected that genes whose expression values are say ~350

24

to be paired with genes whose expression values are also ~300-400, giving a total window of

~100.

Within the first case of testing, it can be seen how the length of the g-gram affects the results.
When q is 5 (Figure 1) there is a lot less density within the plots than can be seen when q is 8
(Figure 4). Also it is expected that when q is smaller, there will potentially be a larger difference
in expression values since there is a greater potential for more random g-gram similarities. This
is evident when q is 5, as many more gene pairs of high g-gram similarity fall outside the
acceptable level of expression similarity. Increasing to q to values of 7 and 8, there is a much
denser grouping of the plots falling within the 0 — 150 range of expression value difference.
More importantly, the distance of the plots that fall outside this range decreases as well. This
means that as q is increased, and genes with higher promoter similarity are found, genes with

higher expression similarity are also found.

Also worth noting is that the number of plots which fall extremely far outside the 0 — 150
range stays very consistent, and very few. This is desired because it minimizes the cases where
the promoters are very similar yet the expression value of one of the genes is extremely high

and the other is extremely low.

Switching attention to the second case of testing, where poor comparisons are penalized,
slightly different results appear. While the increase of q still admits the same increase in the
grouping of plots, the effect is much more noticeable. The density of the plot groupings
becomes very intense when q is 7 or 8. This is most certainly due to the addition of penalizing
sequences which admit very different g-grams. In effect, these poor scoring sequences get

filtered out as the value of q is increased. There is also an increase in the number of plots

25

which fall into the acceptable (0 — 150) range. Once again this is due to the filtering effect of
including the ability to penalize sequences. Yet another consistency throughout the tests is the
number of plots which fall outside the acceptable range. This number stays very consist, and
once again, very low across all values of q. The overall consensus from these tests is that many

genes in this genome with similar promoter regions also exhibit very similar expression.

26

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Gene promoter regions are only a small piece of the puzzle known as gene expression. But
by understanding and studying this piece, it brings us closer to understanding how and
why gene are expressed and co-expressed. This in turn helps to further understand which
genes are needed for particular functions of each organism and the affects of evolution on

those genes and functions.

Using g-gram analysis of the promoters is a valuable approach to determining promoter
similarities across a set of genes, and improves identification of co-expressed genes. The
results confirm this, as there is some positive relationship between the promoter similarity
and co-expression of a pair of genes. It must be noted, however, that not all co-expression

can be explained simply by examining promoters.

5.2 Recommendations

There are several areas of improvement which could be further investigated. One of which
includes using known data about the promoters of a genome so that random similarities
among the sequences can be minimized. The idea here is that the algorithm will only consider
specific sets of known promoters and ignore all the other “garbage” which is not a known

promoter. If very little information is known about the promoters of the genome, then it is

27

also possible to use a gene expression clustering algorithm to limit the number of genes that
need to be examined. For instance, if a known group of highly clustered genes which exhibit
very similar expression values, this could limit our input set to only those genes, thus
examining only their promoters. A slight downside to this might be that it limits the ability to
identify genes with high expression similarities across different clusters since the input data

forces all co-expressed genes to be present in the same cluster.

Aside from the above mentioned filtration techniques, g-gram differences, and not similarities,
could also be examined. The idea behind this is to identify pairs of genes which have such
different g-grams that only the remaining pairs need to be investigated for co-expression. This

is essentially the complement of the approach taken by this research.

28

APPENDIX 1 - IMPLEMENTATION CODE

//Q-Gram Application to score gene sequences.
//Blair Foster

//Last Modified - April 02, 2003

#include <stdio.h>

#include <math.h>

//Some useful global variables
int pattern_length;

int num_sequences;

char *pattern;

//for matrix
int rows;
int cols;

e

char **matrix;

//for files
char *fileName;)
FILE *inputFile, *outputFile;

//seq. scoring

float **score_matrix;

int *total_qggrams; //not currently used
int score,scorediff, scorepos, scoreneg;

//finding similarity
int current_seq;

int smallest,highest;
int sim_num;

struct pairs{

int seql;

int seq2;

§1oat val;

struct pairs *highlist;
struct pairs *lowlist;

void initLists()

int i;

smallest = 0;

highest = 0;

highlist = (struct pairs *) malloc(sizeof(struct pairs)*sim_num);
Towlist = (struct pairs *) malloc(sizeof(struct pairs)*sim_num);
for(i = 0; i < sim_num; i++)

{
highlist[i].val = 0;
;ow1ist[i].va1 = 1000000; //some reasonably 'high' value!

}
goid tryListInsert(int i, int j, int which)

int k;
if(which == 0)

}f(score_matrix[i][j] > highlist[smallest].val)

highlist[smallest].val = score_matrix[i][j];
highlist[smallest].seql = i;
highlist[smallest].seq2 = j;

smallest = 0;

for(k = 0; k < sim_num; k++)

ifChighlist[k].val < highlist[smallest].val)
smallest = k;

else

if(score_matrix[i1[j] < Towlist[highest].val)

29

Towlist[highest].val = score_matrix[i][j];
Towlist[highest].seql = 1;
Towlist[highest].seq2 = j;
highest = 0;

for(k = 0; k < sim_num; k++)

if(lowlist[k].val > Towlist[highest].val)
highest = k;

}
void printSeqCompare(int which)

int i,status;
}f(which == 0)

outputFile = fopen("seq_compare_data_high.txt","w");
for(i = 0; i < sim_num; i++)

status = fprintf(outputFile,"Sequences %d and %d\n -
%f" ,highlist[i].seql,highlist[i].seq2,highlist[i].val);

}
}
else

outputFile = fopen("seq_compare_data_low.txt","w");

for(i = 0; i < sim_num; i++)

status = fprintf(outputFile,"Sequences %d and %d\n -

} %f",Towlist[i].seql, lowlist[i].seq2,lowlist[i].val);

}

/*Find the desired number of
* most similar sequences

goid seqCompare()

int 1,3,k;
initLists(Q;
for(i = 0; 1 < num_sequences; i++)
for(j = i+1l; j < num_sequences; j++)

tryListInsert(i,j,0);
tryListInsert(i,Jj,1);

printSeqCompare(0) ;
printSeqCompare(l);

//Initialize the matrix to all 0's
void initMatrix(char *m[], int nrows, int ncols)

int i,3;
printf("Initializing Matrix....");

fflush(stdout);
for(i=0; i<nrows; i++)

for(j=0; j<ncols; j++)
m[i1[j] = O;

printf("Done!\n");

//Initialize the matrix to all 0's

void initFMatrix(float *m[], int nrows, int ncols)
int 1,3;
printf("Initializing Matrix....");
fflush(stdout);
for(i=0; i<nrows; i++)

30

for(j=0; j<ncols; j++)
m{il1[3] = 0;

}
printf("Done!\n");

//print out score data
void printScore()

int i, j, status;
outputFile = fopen("score_data.txt","w");
for(i = 0; i < cols - 1; i++)

status = fpr1ntf(outputF11e "%d\t",1);
//printf("row %d\n",
or(j =0; j < co1s - 1, j++)
status = fpr1ntf(outputF11e "%.2F\t\t",score_matrix[i][j]);
status = fpr1ntf(outputF11e "\n");

}

/* For Tlater implementation .
* We can use this to consider the number of g-grams in a sequence
* when scoring
goid getTotals()
int i,j,temp;
temp = 0;

total_ggrams = (int *)malloc(sizeof(int)*num_sequences);
for(i = 0 ; i < num_sequences; i++)

total_qgrams[i] = 0;
Eor(J =0; j < rows; j++)

total_qgrams[i]+=matrix[j]1[i];

}

/*Score the sequences in a pairwise fashion

* but only consider g-grams that have been found
* also we don't look at a g-gram more than once.
* Saves time!

void scoreMatrix()
int 1,3,k;
unsigned int count;
float percent,add;
count = 0;
score_| matrix = (float **) malloc (sizeof(float **) * (cols-1));
getTotals();
for(i=0; 1<num_sequences; i4+4)
score_matrix[i] = (float *) malloc(sizeof(float)*num_sequences);
initFMatrix(score_matrix,num_sequences,num_sequences);
for(i=0;i < rows; i++)
}f(matrix[i][co1s—l] 1= 0)

count += 1;
if(i % 100 = 1)

{
printf(".");
§f1ush(stdout)

for(j=0; j < num_sequences; j++)
for(k=j+1; k < num_sequences; k++)
if(matrix[i][j] == 0 && matrix[i][k] == 0)
{/*do nothing!*/}
%1se if(matrix[i]1[j] == 0 || matrix[i][k] == 0)

score_matrix[j] [k]+=scoreneg;

31

else

if(abs(matrix[i][j] - matrix[i][k]) <= scorediff)
score_matrix[j] [k]+=scorepos;

else

/*We want to use a percentage of scorepos since both

sequences

* have the g-gram, but their difference is

signifigant

if(matrix[i1[j] < matrix[i][k])
percent = ((float) (matrix[i1[j1)) /
((float) (matrix[i][k1));

percent = ((float) (matrix[i]1[k])) /
((float) (matrix[i]1[31));
score_matrix[j][k]+=(scorepos * percent) ;

else

}
score_matrix[k][j] = score_matrix[j][k];
}

matrix[i][cols-1] == O;
free(matrix[i]);

printf("\n%d qg-grams Examined!\n",count);

}

//print out matrix data
void printMatrix()
{

int i, j, status;)
outputFile = fopen("matrix_data.txt","w");
for(i = 0; i < rows; i++)

status = fprintf(outputFile,"%d\t",i);
//printf("row %d\n",i);
for(j = 0; j < cols; j++)

status = fprintf(outputFile,"%d\t",matrix[i]1[j]1);

status = fprintf(outputFile,"\n");
}

//simple value assigned to the characters
int charval(char c)

if (c == 'a'" || c == "A")
return 0;

if (c="g" || c=="6"
return 1;

if (c == 'c' || c=="C")
return 2;

if (c=="t' || c=="T")
return 3;

return -1;

}

//calculate the matrix position of the g-gram
}nt calpos(char string[])

int i,ret,val;

ret = 0;
for(i=0;i<pattern_length;i++)
{

val = charval(string[i]);
}f (val == -1)

printf("Encountered an invalid character %c....

exit(l);
}
ret = ret + pow(4,pattern_length - i - 1) * val;

return ret;

}
/*We can free the g-gram matrix after scoring.

void freematrix()

32

exiting!\n",string[i]);

// free(matrix);
// free(pattern);

printf("AT1 matrix memory has been de-allocated!\n");

fflush(stdout);

//shift input characters to prepare for next input
¥oid shift_chars(char *string,int length)

int 1i;
for(i = 0; i < length - 1; i++)
{

string[i] = string[i + 1];

//update the table entry
void addentry(int row, int col)

{
}

/*Process each sequence.)
*Grab the patterns and update the matrix!
¥ /

matrix[row] [col]+=1;

void processSeq(int seq_num)

int i,temp;
char c;
for (i = 0; i < pattern_length;i++)

(char) fgetc(1nputF11e)
}f (c == EOF || ¢ == "\n")

printf("Sequence %d is too short...

; exit(l);
pattern[i] = c;

temp = calPos(pattern);

addEntry(temp,seq_num - 1);

if(matrix[temp] [cols-1] == 0)
matrix[temp] [cols-1] =

¥h11e(c I= "\n' && c != EOF)
Cc = (char) fgetc(1nputF11e),
if(c == "\n")
break;
if(c == EOF)
break;

shift_chars(pattern, pattern_length);
pattern[pattern_length - 1] = c;
temp = calPos(pattern);
addEntry(temp,seq_num - 1);
1f(matr1x[temp][co1s 1] == 0)
matrix[temp] [cols-1] =

//Test file and start sequence processing
void processFile()
int i;
inputFile = fopen(fileName,"r");
if(inputFile == NULL)
{

printf("Error opening the input file...

exit(l);
}
printf("Processing sequences:");
fflush(stdout);
for (i=1;i<=num_sequences;i++)
// printf(".. %d",1);
/7 fflush(stdout);
X processseq(i);

33

exiting!\n"

exiting!\n");

,seq_num) ;

// printf(" done!\n");
printf("Finished processing all sequences!\n");

}

//close our files
void closeFiles()

fclose(inputFile);
fclose(outputFile);
) printf("All files have been closed!\n");

int main(int argc, char *argv[])

int i;
}f(argc <= 3)

printf("Parameter(s) Missing -> [int:pattern Tength] [int:num sequences]
[filename]l\n");

printf("\tAdditional Paramters (sequence scoring)\n\t-> [int: score diff.]
[int: score pos.] [int: score neg.] [int: # of most similar sequences to
output]\n");

return 0;

}

scorediff = (int)NULL;

scorepos = (int)NULL;

scoreneg = (int)NULL;

sim_num = (int)NULL;

score = -1;

pattern_length = atoi(argv[1l]);

num_sequences = atoi(argv([2]);

fileName = argv[3];

printf("USING:\t--> Pattern length: %d \n", pattern_length);
printf("\t--> Total Sequences: %d \n", num_sequences);
printf("\t--> Input File: %s \n", fileName);
}f(argv[4] I= NULL)

score = 0;

scorediff = atoi(argv[4]);
scorepos = 1;
scoreneg = -1;

sim_num = 0;

printf("\t--> Sequence scoring difference of %d \n",scorediff);
}f(argv[S] I= NULL)

scorepos = atoi(argv[5]);
if(argv[6] != NULL)
scoreneg = atoi(argv[6]);
if(argv[7] != NULL)
sim_num = atoi(argv[7]);

printf("\t--> Positive Score = %d | Negative Score = %d
\n",scorepos,scoreneg) ;
) printf("\t--> %d Most similar sequences will be extracted!\n", sim_num);
else
printf("NOTE: Sequences will not be scored!\n");

printf("Contructing Matrix...");

fflush(stdout);

cols = num_sequences + 1;

rows = pow(4.0, (double)pattern_length);

pattern = (char *) malloc(sizeof(char) * pattern_length);
matrix = (char **) malloc (sizeof(char **) * rows);
for(i=0; i<rows; i++)

matrix[i] = (char *) malloc(sizeof(char)*cols);

}

printf("%d X %d Matrix contructed!\n", rows, cols);

initMatrix(matrix, rows, cols);

processFile();

//printMatrix();// only need this if we wish to output our matrix for analysis
if(score !'= -1)

printf("scoring sequences...\n ");

fflush(stdout);

scoreMatrix();

printscore();// only need this if we wish to output our sequence scoring for
analysis

printf("Finished scoring sequences!\n");

34

sleep(1);
freeMatrix(Q);
if(sim_num > 0)

printf("Determining %d most similar sequences...", sim_num);
fflush(stdout);
seqCompare() ;

printf("done!\n");

closeFiles();
return 0;

35

APPENDIX 2 - SUMMARY SHEET

STUDENT NAME: Blair Foster Jr.

STUDENT SIGNATURE:

UNIVERSITY OF NEW BRUNSWICK
FACULTY OF COMPUTER SCIENCE

CS4997 SUMMARY SHEET

2002-2003

ID #: 265932

E-MAIL: e22b2@unb.ca
PHONE: (506) 363-4680

THESIS TITLE: COMPARATIVE Q-GRAM ANALYSIS OF GENE PROMOTER REGIONS

SUPERVISOR: Dr. Patricia Evans

DATE SUBMITTED: April 14, 2003

(original — January 14, 2002)

PHASE TITLE ESTIMATE ACTUAL
PERSON- COMPLETION PERSON- COMPLETION
HOURS DATE HOURS DATE
Initial Research (Molecular Biology) 20 25 02/14/03
Algorithm Analysis / Design 45 30 02/25/03
Implementation (Coding) 40 65 04/02/03
Testing / Results Analysis 15 25 04/12/03
Presentation Preparation 15 10 03/30/03
Writing Final Report 35 45 04/12/03
Total: 170 Total: 200

Keep this Summary Sheet for updating during the life of the thesis project. Submit a copy of the updated Summary Sheet with

your Plan and attach the final version of this Summary Sheet as an Appendix in your Thesis.

You must deliver copies of the PLAN directly to both the Coordinator and the Supervisor.

36

BIBLIOGRAPHY

[13]

[14]

[15]

S. Burkhardt, A. Crauser, P. Ferragina, H. Lenhof, E. Rivals, M. Vingron. (J-gram Based
Database Searching Using a Suffix Array (QUASAR). RECOMB (99), pgs 77-83

C. Charras, T. Lecroq. Exact String Matching Algorithms, http:/ /www-igm.univ-

mlv.fr/~lecroq/string/index.html [as of April 1, 2002]

Cold Spring Harbor Laboratory, Yeast Promoter Database, SCPD,
http://cgsigma.cshl.org/jian/ [as of April 1, 2002]

B. Foster. Gene Expression Clustering. CS5905 Project Report, pp. 9-16 (2003)

L. Heyer, S. Kruglyak, S. Yooseph. Exploring Expression Data: 1denfication and Analysis of
Coexpressed Genes. Genome Research Vol. 9 pp. 1106-1115

P. Jokinen, E. Ukkonen. Two Algorithms for Approximate String Matching in Static Texts.
Proc. Mathematical Foundations of Computer Science 1991 (ed. A. Tatlecki), Lecture
Notes in Computer Science, Vol. 520, Springer-Verlag, Berlin, 1991, pp. 240—248

B. Kernigan, D. Ritchie. The C Programming I anguage 2** Ed. Prentice Hall (1988)

B. Lewin. Genes 1711. Oxford University Press, 2000

NBCI, Gene Expression Omnibus, Full-genome S. cerevisiae ORF array,
: [as of April 1, 2002]

G. Navarro, A Guided Tonr to Approximate String Matching. ACM Computing Surveys
33(1):31-88, 2001

G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate q-grams.
In Proc. 11th Annual Symposium on Combinatorial Pattern Matching (CPM'2000)

E. Ukkonen. Approximate String matching with q-grams and maximal matches. Theoretical
Computer Science, 92(1):191-211 (1992)

National Institue of Standards and Technology. big-O notation.
http://www.nist.gov/dads/HTML/bigOnotation.html [as of April 1, 2003]

National Institue of Standards and Technology. Ozega.
http:/ /www.nist.gov/dads/HTMIL./omegaCapital.html [as of April 1, 2003]

National Institue of Standards and Technology. Theta.
http://www.nist.gov/dads/HTML/theta.html [as of April 1, 2003]

37

A. Puri, N. Katatia. Approximate String Join.

J. Setubal, J. Meidanis. Introduction to Computational Molecular Biology. Brooks/Cole
Publishing Company, 1997

S. Skiena. The Algorithm Design Manual. Springer-Verlag New York, Inc. (1998)

G. Stephen. String Searching Algorithms. Singapore; River Edge, NJ: World Scientific,
c1994.

38

