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Abstract

A new algorithm has been developed which permits extremely accurate and fast computation

of the Discrete Fourier Transform for certain sets of non-uniformly sampled data. Specifically,

this algorithm can be used to process the data acquired during a Magnetic Resonance Imaging

experiment using the SPRITE technique with Multiple Point Acquisition, which samples data

non-uniformly in a spatial frequency domain.

Non-uniform MRI data is generally processed with an interpolation or regridding algorithm

which computes an approximate answer inO(NlogN +Nlog(1/ε)) time; the accuracy depends

on the parameterε and is typically one part in105. The algorithm developed herein uses a

combination of Chirp Z-Transforms (CZT) to compute the Fourier Transform to within one part

in 1015 (which is on the order of the machine epsilon) inO(NT NlogN) time, where N is the

number of points reconstructed andNT is the number of samples collected at each step of the

SPRITE experiment.

When MRI data is processed by the CZT algorithm, the result is an improvement in the

signal-to-noise ratio of the final image, by a factor of
√

NT . Though a resolution increase is

also observed in some images, it can be demonstrated that this effect is due entirely to the SNR

improvement. This result allows us to use a modified version of the transform which operates

in O(NlogN) time for all practical purposes. This algorithm has immediate application in the

rapid imaging of low-signal materials, and may also be developed for other uses, such as the

numerical solution of differential equations.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a proven technique for medical imaging, and in re-

cent years it has also found application in materials research. It allows non-invasive analysis

of a wide variety of substances, including human tissue, foods, polymers and porous media.

In addition to qualitative examination of the internal structure of materials, MRI also permits

quantitative measurement of structural features in the sample being imaged. In some cases,

dynamic processes such as fluid flow may also be quantified.

The MRI signal is generated by excitation of the sample with a radio-frequency pulse at an

appropriate frequency. Using any of a variety of methods, the frequency spectrum is sampled

in a reciprocal domain known as k-space, and converted into an image using a Fourier Trans-

form. Because image reconstruction is performed on a computer, we require a fast but accurate

algorithm to recover the desired image from the sampled k-space data. The algorithm of choice

is traditionally the Fast Fourier Transform (FFT) which was introduced by Cooley and Tukey

in 1965 [6], and which has an asymptotic complexity ofO(NlogN). In contrast, the direct

Fourier Transform has a complexity ofO(N2), which makes it too slow for processing datasets

containing more than a few thousand samples.

The FFT is only suitable for processing uniformly sampled, or Cartesian, data; for this

reason the majority of MRI techniques employ a rectilinear sampling scheme, enabling rapid

processing using the FFT. However, this restriction is incompatible with some MRI methods.

Contemporary clinical MRI methods acquire k-space data with spiral k-space trajectories [14].

These techniques feature a uniform angular separation, but a non-uniform linear separation.

Single Point Imaging [8] typically samples k-space in a rectilinear way, but it is possible to

acquire extra data during the SPI experiment at little time cost. This allows for a final image

with higher signal quality and greater apparent resolution, but although this extra data will still

exhibit some regularities, it will not fall onto the standard Cartesian grid.

The most common approach to processing non-uniformly sampled data is to use some form

of interpolation, such as convolution regridding with an appropriate kernel [12], to restore the

data to a Cartesian grid. The data can then be reconstructed with the FFT. Many of these inter-

polation schemes are based on (or equivalent to) the work of Dutt and Rokhlin [7], though other

methods exist, such as that of Sha, Guo and Song [18]. However, interpolation is by definition

an approximate method, and will always introduce some inaccuracy into the resulting image. It
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would be preferable to implement a true Non-Uniform Fast Fourier Transform, allowing for the

accurate reconstruction of an image inO(NlogN) time.

This thesis will show that such an operation is possible for the specific case of extra data

acquired during the course of an SPI experiment, as described above. For this particular case,

it will be shown that the discrete Fourier Transform can be implemented with an algorithm

known as the Chirp Z-Transform [16]. The Chirp Z-Transform is a more general version of the

standard Fourier Transform which is implemented using a convolution, and therefore executes

in O(NlogN) time. This algorithm will be used to improve the quality of various MRI images,

and will be compared to interpolation schemes to demonstrate its superior accuracy and speed.

2 Theory

In this section we shall outline some of the important mathematical formalisms upon which the

FFT algorithm for SPI-type data will be based. This includes both the standard Fourier Trans-

form and the Chirp Z-Transform. The physics of Magnetic Resonance Imaging will also be

described, to demonstrate how the MRI signal is generated and collected, and how the Fourier

Transform will be used to reconstruct the data. Finally we shall provide a description of Single

Point Imaging and the extension of SPI known as SPRITE, which will be used in the experi-

mental verification of the algorithm.

2.1 The Fourier Transform

It was shown in 1822 by the French physicist J. B. Fourier that any functionf(x) which is

periodic on the interval[−L, L] can be represented as an infinite series of sines and cosines:

f(x) =
∞∑

k=0

akcos(kπx/L) +
∞∑

k=0

bksin(kπx/L) (2.1)

where the Fourier coefficientsak andbk can be calculated by exploiting the orthogonality of the

sine and cosine functions. By making use of the Euler identityeiθ = cosθ + isinθ the Fourier

series can also be defined for complex functions periodic on[−L/2, L/2] as

f(x) =
∞∑

k=−∞

cke
2πikx/L (2.2)
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Transforming the complex coefficientsck from discrete variables to a continuous function, and

replacing the summation with an integral, we obtain the expression

f(x) =

∫ ∞

−∞
F (k)e2πikxdk (2.3)

which defines a function f(x) in terms of itsFourier transform,

F (x) =

∫ ∞

−∞
f(x)e−2πikxdx (2.4)

Equation 2.3 is typically referred to as theinverse Fourier transformsince it allows us to recover

an expression forf(x) given knowledge of its Fourier transformF (k).

F (k) can be thought of as an alternative representation of the functionf(x) in a different set

of basis vectors. In many cases the dependent variable is time and the Fourier representation is in

terms of frequency. For this application, our variable is spatial position, and the corresponding

reciprocal space is the spatial frequencyk whose basis vectors are trigonometric functions of

the forme2πik. In either case, the Fourier Transform is a useful tool in the solution of differential

equations because the basis vectors are eigenfunctions of the differentiation operator.

It should be clear that the Fourier transform need not be confined to one dimension. In two

dimensions, for example, we can express the Fourier transform as a double integral:

F (kx, ky) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi(kxx+kyy)dxdy (2.5)

It can be shown that this integral is separable, which means that we can execute this operation

by applying the Fourier transform across the first dimension only, and then across the second.

This will be of importance when it comes time to calculate the Fourier transform of a function

using a computer.

In practical applications we generally do not have access to an analytic functional form for

F (k); we can only sample it at certain number (say,N ) of discrete locationskn in the frequency

domain. To reconstructf(x) from this sampled data we set

F ′(k) = F (k)
N−1∑
n=0

δ(k − kn) (2.6)

to represent the sampling effect, such that equation 2.3 becomes

f(xm) =
N−1∑
n=0

F (kn)e2πiknxm m ε {0, 1, . . . ,M − 1} (2.7)
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This is known as the inversediscreteFourier transform (DFT); notice thatf(x) is restricted

to M discrete valuesxm. There is also a forward form of the discrete Fourier transform for

converting fromf(xm) to F (kn).

In terms of computational complexity, the DFT is anO(NM) operation, since evaluating the

functionf(x) at one pointxm requiresN complex multiplications and additions. For the special

case whenM = N = 2a for some integera, and both thekn and thexm are uniformly spaced,

Cooley and Tukey showed that it is possible to calculate the DFT inO(NlogN) time. This is

done by splitting theN -point DFT into twoN/2-point DFT’s, splitting those into four DFT’s of

length N/4, and so on until the trivial 1-point DFT is reached. This formulation is called the Fast

Fourier Transform (FFT). Further revisions have since made it possible to compute transforms

where N is not a power of two; it may even be a prime number.

In the case of data which do not fall onto a uniform rectangular (or Cartesian) grid, the FFT

will not properly compute the Fourier Transform. To address the problem of computing the

Fourier Transform of non-uniform data, a variety of interpolation schemes have been proposed;

that of Dutt and Rokhlin [7] is one of the most common of these. These methods allow compu-

tation of the Fourier Transform to a specified accuracy, with the understanding that increasing

the accuracy will involve a proportionate increase in computation time.

To conclude this section we introduce an important result called theconvolution theorem,

which states that the convolutionh(x) of two functionsf(x) andg(x),

h(x) = f(x)⊗ g(x) =

∫ ∞

−∞
f(t)g(x− t)dt (2.8)

has a fourier TransformH(k) equal to the product of the transformsF (k) andG(k) of the two

functions being convolved; that is,

H(k) = F (k)G(k) (2.9)

This follows directly from the definition of the Fourier transform and a change of variable. We

are therefore presented with a method for calculating the convolution of two functionsf(x) and

g(x). After finding the Fourier transform of each function (using eqn. 2.4), multiplying them

together and applying the inverse Fourier transform (using eqn. 2.3) will yield their convolution.

This theorem will allow us to compute the convolution of two functions at high speed using the

previously mentioned FFT algorithm.
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2.2 The Chirp Z-Transform

The Fourier transform is a special case of a more general mathematical operation known as

the Z-Transform. Another special case of the Z-Transform is the so-called Chirp Z-Transform

which, though more general in nature than the Fourier transform, remains computable inO(NlogN)

time. In this section we introduce the Chirp Z-Transform and outline its computation. This

derivation follows the example of Rabiner, Schafer and Rader [16] who are responsible for

developing the Chirp Z-Transform for applications in signal processing during the late 1960’s.

The most general Z-transform of a sequence of numbersxn is defined as

X(z) =
∞∑

n=−∞

xnz
−n (2.10)

wherez, xn andX(z) are all complex. For our purposes we will only concern ourselves with

sequences having a finite numberN of samples, and the z-transform will only be computed at

a finite numberM of points,zk. That is to say,

X(zk) =
N−1∑
n=0

xnz
−n
k k ε {0, 1, . . . ,M − 1} (2.11)

To make the interpretation of the variablez more clear, we shall select a contour in thez-plane

of the form

zk = AW−k, A = A0e
iθ0 , W = W0e

iφ0 (2.12)

This contour begins atz = A, a distanceA0 from the origin and at an angular displacement of

θ0 from the horizontal axis. The contour either circles the origin (ifW0 = 1), spirals inward (if

W0 < 1), or spirals outward (ifW0 > 1), with samples spaced at angular intervals ofφ0.

The Fourier Transform is a special case of the z-transform on the contour described by

A0 = 1, W0 = 1, θ0 = 0, φ0 = −2π/N . This choice describes a set of equally spaced points

on the unit circle, and our expression for the z-transform becomes

X(zk) =
N−1∑
n=0

xne
−2πink/N (2.13)

which is the discrete Fourier Transform (cf. equation 2.7).

Rabiner et. al. [16] have shown that it is possible to compute the z-transform for the more

general contour of equation 2.12,

X(zk) =
N−1∑
n=0

xnA
−nW nk k ε {0, 1, . . . ,M − 1} (2.14)
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(a) (b)

Figure 1: (a) A typical z-plane contour,z = AW−k, A = 1, W = 0.98e−iπ/16. (b) The z-plane
contour equivalent to the DFT,A = 1, W = e−2πi/N .

by using the so-called Bluestein substitution,nk = n2+k2−(k−n)2

2
, to express the transform in

terms of a discrete convolution:

X(zk) =
N−1∑
n=0

xnA
−nW n2/2W k2/2W−(k−n)2/2 (2.15)

= W k2/2

N−1∑
n=0

(xnA
−nW n2/2)(W−(k−n)2/2) (2.16)

= W k2/2((xnA
−nW n2/2)⊗ (W−n2/2))k (2.17)

As described at the end of the previous section, this convolution can be performed using a

combination of Fast Fourier Transforms. For this reason, the z-transform can be calculated in

O(NlogN) time. According to Rabiner et. al. [16], the functionW n2/2 found in the convolu-

tion is a sinusoid called a ”chirp” in some radar systems, and they have therefore named this

formulation of the algorithm the Chirp Z-Transform, or CZT.

The CZT has several properties not shared by the FFT. For our application, the two most

important such properties are that the number of input points (N ) need not equal the number of

output points (M ), and that the angular spacing of the points need not be2π/N as with the FFT.
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2.3 Nuclear Magnetic Resonance

The phenomenon of nuclear magnetic resonance (NMR) was discovered independently by

Bloch [3] and Purcell [15] shortly after the Second World War; they were jointly awarded the

Nobel Prize for this discovery in 1952. NMR arises in nuclei which have an intrinsic angular

momentum, or ”spin”. Classically, an object (such as a proton) with a charge Q, a mass M, and

an angular momentum~J will also have a magnetic dipole moment

~µ =
Q

2M
~J (2.18)

which, when placed in a magnetic field~B, will provide the particle with a magnetic energy

Eµ = ~µ · ~B = γ ~J · ~B (2.19)

Here we introduce the gyromagnetic ratioγ, a quantity which is characteristic of a given nu-

cleus, and which depends on the charge and mass. The hydrogen nucleus, for example, has

γ = 42.2 MHz/T.

In quantum mechanics the angular momentum of a particle is quantized along any axisẑ

according to the relation

Jz = m~ m ε {−j,−j + 1, . . . , j − 1, j} (2.20)

where~ is Planck’s constant andj is the particle’s spin quantum number. There will be a

different energyEm for each value of the quantum numberm. If we take ~B = B0 ẑ, we find

that this energy is

Eµ = ~mγB0 m ε {−j,−j + 1, . . . , j − 1, j} (2.21)

The energy difference between any two adjacent energy levels is simply

∆E = ~γB0 = ~ω0 (2.22)

with ω0 = γB0 called theLarmor frequency.

Two states of a system with different energies will be populated such that more particles

exist in the lower-energy state, and fewer in the higher-energy state. The difference in energy

between the states of nuclei in a magnetic field is quite small, so there will only be a slight

majority of particles in the lower-energy state, in which the dipole is oriented roughly along
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the direction of the field. However, this small excess of about one particle in every 100,000 is

sufficient to create a net sample magnetization in the direction of the external field~B.

If we now provide the system with energy at the Larmor frequency, this will cause some

of the nuclei to make transitions from one state to another. Knowingγ, B0 can be selected

such thatω0 is in the radio-frequency range. Applying an RF pulse at the appropriate frequency

will excite the sample as desired. In the classical representation the application of an RF pulse

perpendicular to~B will introduce a torque that rotates the net magnetization vector downwards,

into the transverse plane.

However, it can also be shown that a nucleus with a magnetic moment~µ which is not aligned

exactly along the external field will experience a torque as the field tries to align the dipole’s

axis with the field. This torque will lead to rotation in the same way that a gyroscope rotates

under the influence of gravity. For the nuclei in the magnetic field, this rotation takes place at

the Larmor frequency, and it means that the net magnetization for the entire system of atoms

will rotate in a similar fashion.

The laws of electrodynamics tell us that a rotating magnetic field will induce a voltage in

a suitably oriented conductor. This voltage is collected and amplified, and becomes the NMR

signal. This signal is typically known as the Free Induction Decay (or FID) since the voltage

decays exponentially after the RF pulse terminates. The FID’s time constant is calledT ∗
2 and

is characteristic of the material that is being imaged; this gives us a way to identify species by

their NMR signal.

2.4 Magnetic Resonance Imaging

The method described above will excite all of the nuclei within the sample. While this is quite

suitable for examining the bulk properties of the material, such as its chemical composition,

in order to determine the sample’s internal structure or how its constituents are distributed, we

need to generate a spatially resolved image.

In order to distinguish various regions of the sample, we can apply a magnetic field gradient

~Gx = d ~B0

dx
across the sample. This modifies the Larmor equation as follows:

ω(x) = γ(B0 + Gxx) (2.23)

Now the frequency of precession will change linearly with spatial position, and different regions

of the sample become distinguishable since they will induce voltages at different frequencies.
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The total received signal from all of the nuclei in the sample can be written by integrating over

all space, as

s(t) =

∫ +∞

−∞
ρ(x)eiω(x)t dx (2.24)

whereρ(x) represents the density of nuclei at a given positionx, and the complex exponential

is used to illustrate that the nuclei at that location are rotating with a frequencyω(x). While

the sample only occupies a finite region in space, sinceρ(x) = 0 outside that region we can

justifiably expand the limits of our integral to infinity. (Here we are treating only the one-

dimensional case, but it can be shown that this will readily generalize to higher dimensions.)

Substituting our previous expression forω(x) (eqn. 2.23), and noting that we can always

demodulate the signal by a constant frequency ofB0t during the acquisition process, the MRI

signal equation becomes

s(t) =

∫ +∞

−∞
ρ(x)eiγxGxt dx (2.25)

To clarify the significance of this signal equation, Mansfield [13] proposed the substitution

k = γGt/2π, which changes the equation to

s(k) =

∫ +∞

−∞
ρ(x)e2πikx dx (2.26)

By comparison with eqn. 2.3, this equation clearly describes a Fourier transform relationship

between the actual proton densityρ(x) and the intensity of the signalS(k) in the reciprocal

space, which is given the name k-space. This implies that, once we have determined the form

of the signal in k-space, applying a Fourier transform will allow us to recover the desired image

showing proton density as a function of position:

ρ(x) =

∫ +∞

−∞
s(k)e−2πikx dx (2.27)

For the discrete case this becomes

ρ(xm) =
N−1∑
n=0

s(kn)e−2πiknxm m ε {0, 1, . . . ,M − 1} (2.28)

The MRI experiment then consists of sampling k-space at certain discrete values, and using the

sampled data to reconstruct an image using the Fourier relationship of equation 2.26. While it

is theoretically possible to sample any desired values in k-space, generally the sampling is done

such that all of the acquired data will fall onto a Cartesian grid. This will allow the data to be

processed with the FFT.
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2.5 Single Point Imaging and SPRITE

Magnetic resonance imaging is usually applied in the context of medical imaging, using tech-

nqiues such as projection-reconstruction and spin-echo imaging [5]. All of these methods are

based around the collection of a k-space signal that evolves in time, and while they are suitable

for medical imaging, these techniques are not readily generalized to materials imaging because

they exhibit several artifacts due to chemical shift, magnetic field inhomogeneity, and other

time-dependent factors. The short signal lifetime of solid materials is also a problem, since

these methods were designed for imaging of liquids which have relatively long signal lifetimes.

(a) (b)

Figure 2: (a) Spin-echo pulse sequence. (b) SPI pulse sequence.

To address some of these problems, Emid and Creyghton [8] proposed an MRI method in

1985 that would become known as Single Point Imaging, or SPI. Instead of sampling data in

k-space by varying the timet, a single encoding timetp is selected and only the value of the

magnetic field gradient is changed. For any given value of the gradient, an RF pulse is applied

and the FID is sampled att = tp; the gradient is then changed to move to a new area of k-space.

This allows imaging of short-T ∗
2 materials - that is, materials whose signal decays rapidly [2].

These materials are often difficult or impossible to image by other methods.
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SPI in its original form is much slower than medical imaging techniques, and very demand-

ing of the hardware (specifically, the gradient duty cycle is high). In 1996, Balcom et. al. [1]

presented an extension of the standard SPI pulse sequence known as SPRITE, or Single Point

Ramped Imaging withT1 Enhancement. The major feature of the SPRITE sequence is a ramped

gradient which decreases switching time and which makes it possible to rapidly acquire images

of low-T ∗
2 materials. The standard SPRITE sequence is one-dimensional, though additional

gradients can be added in orthogonal directions to allow imaging in up to three dimensions if

desired. The sampling scheme is usually rectilinear, acquiring samples in k-space starting at

one extremity and moving to the opposite extremity.

(a) (b)

Figure 3: (a) SPRITE pulse sequence. (b) Spiral-SPRITE pulse sequence.

However, SPRITE has since led to a family of related techniques, and 2D imaging is more

quickly accomplished by one of these variant techniques called Spiral-SPRITE [10]. Using

Spiral-SPRITE, the magnetic field gradients in two orthogonal dimensions both have an initial

value of zero, and are ramped sinusoidally such that the sampling trajectory follows a roughly

spiral pattern, moving outward from the center of k-space. The gradient values are chosen such

that the sampled data still fall on a Cartesian grid, and therefore the image can be reconstructed

13



with the FFT as usual. In this sense Spiral-SPRITE differs from the inherently nonuniform

rounded spiral or rosette trajectory that is common in medical imaging [14].

Since not all of the k-space matrix is sampled, the Spiral-SPRITE method will be naturally

faster than the corresponding standard SPRITE sequence. In addition, the centric-scan method-

ology has a number of advantages for quantitative imaging. A new method called Conical-

SPRITE [10] provides a similar centric-scan technique for 3D imaging.

2.6 Multiple Point Acquisition

In all instances of the SPI and SPRITE techniques, the opportunity exists to sample more than

one point along the FID at each gradient step. Additional points after the base encoding timetp

are easily acquired; for example,NT points could be acquired attp(j) = tp0 + j∆tp, 0 ≤ j <

NT , with the spacing∆tp typically on the order of a microsecond. (Figure 4) The additional

data collection will not add to the duration of the acquisition, since we must wait for the signal

excited by one RF pulse to decay sufficiently before applying another pulse. This process is

referred to as Multiple Point Acquisition, or MPA.

Figure 4: Illustration of Multiple Point Acquisition withNT = 4.

In some instances it may be possible to acquire dozens of extra points before the FID decays

completely, and this extra data could conceivably be used to provide more information about

the sample. This will enhance the quality of the final image at no cost in terms of acquisition

time. However, despite the many potential benefits it offers, MPA is not widely practiced, for

two reasons.
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(1) Although it is possible to separately process the data acquired at each encoding time,

and reconstruct a number of separate images of the same sample, there is no straightforward

way to combine these images, since they will not have the same field of view. The field of view

for a given acquisition relates to the size of a step in k-space, given by the formula

FOV (j) = 1/∆k = 2π/γ∆Gtp(j) (2.29)

The magnitude∆G of a gradient step is constant for any given experiment, but as we collect

more points along the FID,tp(j) will increase and the field of view will shrink. The same pixel

in two separate images will no longer correspond to the same region of the sample. This means

that we cannot, for example, average the images to improve the signal-to-noise ratio, unless we

first correct the images so they all share a common field of view.

(a) (b)

Figure 5: Examples of non-uniform data in k-space acquired during an MPA experiment. (a)
Standard SPRITE acquisition, 16x16 gradient steps, 4 FID points. (b) Spiral-SPRITE acquisi-
tion, 187 gradient steps, 4 FID points.

(2) It is difficult process all of the acquired MPA data as a single dataset. Any extra data

sampled aftertp0 will not fall onto the Cartesian grid (see Figure 5), and the complete dataset

is therefore no longer amenable to processing with an FFT. A possible solution is to use one
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of the popular interpolation schemes described earlier for computing a non-uniform Fourier

Transform, with the knowledge that this provides only an approximate answer. It would be

beneficial, however, to compute the transform exactly but without an unreasonable amount of

processing time.

Fortunately, both of these problems can be solved with the same data processing strategy.

We have found that the FOV correction can be done using the algorithm described earlier,

the Chirp Z-Transform [11]. Furthermore, we have also discovered that the CZT can also be

used to exactly compute the Fourier transform for the entire dataset with the sameO(NlogN)

complexity as the FFT.

3 Algorithms

In this section we derive the mathematical formalism necessary to implement the non-uniform

discrete Fourier Transform using a combination of Chirp Z-Transforms. We shall then discuss

the implementation of these algorithms in IDL (Interactive Data Language) 6.0, a language

designed around matrix operations and which is therefore well suited for image processing

applications.

3.1 The DFT for SPRITE MPA Data

We have already seen how, for sampled MRI data, the integral form of the MRI signal equation

becomes a discrete summation, of the form

ρ(xm) =

NC−1∑
n=0

s(kn)e−2πiknxm m ε {0, 1, . . . , NC − 1} (3.1)

whereNC is the total number of collected points. We will now reverse the variable substitution

performed in equation 2.26 to restore explicit dependence on G and t:

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
−iγxmGktj (3.2)

We have therefore split the single summation into a double summation, one for theNT time

points acquired after each gradient step, and one for theNG gradient steps that comprise each

SPRITE acquisition. The total number of acquired points in the experiment isNC = NGNT ,

and the total number of calculatedρ(x) values is alsoNC .
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While this expression could be implemented as shown, we will modify the expression in

order to simplify the calculations and implementation. First, we wish to map the values of

the complex exponential into the range[0, 2πNG], or equivalently,[−πNG, πNG]. This change

yields the following:

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
−iθ (3.3)

θ = πNG(xm/xmax)(Gk/Gmax)(tp(j)/tmax) (3.4)

wherexmax represents the largest value of the position coordinate,Gmax is the maximum value

of the magnetic field gradient, andtmax = tp0 + (NT − 1)∆tp is the longest encoding time,

With this choice ofθ, both the positionx and encoding timet have been scaled into the

range[0, 1], while the gradient value has been scaled into the range[−1, 1] (sinceGk varies

from −Gmax to +Gmax). θ therefore takes on values between−πNG and+πNG as desired.

Notice that we have removed the dependence on the gyromagnetic ratioγ as this will only

introduce a constant scaling factor.

In order to create a more generic algorithm we now seek to remove the dependence on

the maximum gradient strengthGmax, which may vary from one experiment to another. For a

SPRITE experiment, we can state the following:

Gk = −Gmax + k∆G

∆G = 2Gmax/NG

∴ Gk/Gmax = 2k/NG − 1

We also adjust the expression forxm, such thatm = 0 corresponds tox = −1
2

andm = NC

would correspond tox = +1
2
. This eliminates the need to shift the data byNC/2 pixels when

the DFT is complete, and this can be done by changing(xm/xmax) to (m/NC − 1/2).

After these (mainly aesthetic) modifications we are left with our ”computable” form of the

Discrete Fourier Transform:

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
−iθ m ε {0, 1, . . . , NC − 1} (3.5)

θ = 2πNG(m/NC − 1/2)(k/NG − 1/2)(tp(j)/tmax) (3.6)

The question remains as to how the DFT given here can be executed on a computer inO(NC logNC)

time, since it appears to requireO(NC ∗NG ∗NT ) = O(N2
C) operations.
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3.2 Computation of DFT Using Chirp Z-Transform

It will now be shown that the form of the DFT given in eqn. 3.6 is equivalent to the following:

ρ(xm) =

NT−1∑
j=0

CZT (xm, tp(j))e
i(αn+β) (3.7)

CZT (xm, tp(j)) =

NG−1∑
k=0

s(Gktp(j))A
−kW km m ε {0, 1, . . . , NC − 1} (3.8)

for an appropriate choice of A, W,α, andβ. A and W are simply the parameters discussed in

section 2.2, describing a contour in the Z-plane corresponding to the desired image. The angles

α andβ are phase corrections which are necessary to bring the phase of the CZT and of our

reformulated DFT into complete agreement. Without these corrections, the resulting sequences

of complex data would not be exactly equal.

As has been mentioned, the fields of view for the datasets corresponding to different values

of tp have to be corrected, such that all of the datasets have the same field of view. The two most

practical choices are to match all of the fields of view to either that oftp(j) = tp0 (the largest

FOV) or that oftp(j) = tmax (the smallest FOV). Since the latter choice will provide an image

with higher resolution, this is the one which we select.

If the entire field of view for a given dataset corresponds to the full unit circle in the z-plane,

we are then interested in the region which spans an arc of length2πtp(j)/tmax for the image at

time tp(j), and which is centered about the positive horizontal axis. (See Figure 6.)

We can describe this region of the z-plane by the following choice of the contour parameters

A and W (see Figure 6):

A = e−πiTj , W = e−2πiTj/NC (3.9)

where we have setTj = tp(j)/tmax. Substituting these into (3.8), and then into (3.7), yields

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
πikTje−2πikmTj/NCei(αn+β) (3.10)

Comparing this with our earlier formulation of the DFT,

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
−2πiNG((m/NC)−1/2)((k/NG)−1/2)Tj , (3.11)
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Figure 6: The z-plane contour for a transform that will shrink the field of view by a factor of T.

we see that for these to be equivalent, the arguments of the exponentials must match:

πikTj − 2πikmTj/NC + iαm + iβ = −2πiNG(m/NC − 1/2)(k/NG − 1/2)Tj

= −2πiNGTj(km/NCNG − k/2NG −m/2NC + 1/4)

= −2πiTjkm/NC + πikTj + πiTjm/2NT − πiNGTj/2

From this we identify the linear phase correctionα = πTj/2NT and the global phase correction

β = −πNGTj/2.

We have therefore shown that, for the appropriate choice of parameters, the CZT can be used

to implement the non-uniform DFT of SPRITE MRI data. This is done by separately applying

the CZT to the k-space data for each encoding timetp to correct the field of view, performing

the two phase corrections on the transformed data, and then summing over allNT FOV- and

phase-corrected datasets.

In algorithmic notation, we can describe the procedure as follows:
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Input : An NT by NG matrixS containingNT FID points andNG gradient steps
An NT -element vectortimes containing encoding timestp(j) for the FID
points

Output : TheNC-point non-uniform DFT of the datasetS

NC ← NG ∗NT

out← An emptyNC-element vector
sum← An emptyNC-element vector
for i← 0 to NT − 1 do

Tj ← times [i] / times [NT − 1]
out← CalculateCZT (S [i], NC , Tj)
for j ← 0 to NC − 1 do

α← πTj/2NT

β ← −πTjNG/2
out← out * eiα+β

end
sum← sum + out

end
returnsum

Algorithm 1: DFT Using CZT

Here we have assumed thatCalculateCZT (S, NC , T ) is a function that will correctly

compute theNC-point Chirp Z-Transform of the vector S, using the parameterTj to generate A

and W for the desired contour, as outlined in eqn. 3.9. The implementation of this algorithm is

the topic of the next section.

The complexity of these algorithms will clearly depend on that ofCalculateCZT() .

As we shall demonstrate,CalculateCZT() operates inO(NC logNC) time. The algorithm

shown will therefore operate inO(NT NC logNC+2NT NC) time, since it callsCalculateCZT()

and performs twoO(NC) phase corrections, a total ofNT times. The asymptotic complexity is

thereforeO(NT NC logNC).

It should be noted that the complexity is quadratic inNT , sinceNC = NGNT , and this will

decrease performance significantly for largeNT . If NT were limited to small values this might

be acceptable, but this is not true in general. Indeed, Halse et. al. [11] have shown that the

optimum final image is obtained when

NT =
NG

2
(

1

Tmax

− 1) (3.12)

whereTmax denotes the maximum extent of FOV scaling (0 < Tmax ≤ 1). Although we will
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generally attempt to keepTmax close to unity, to avoid artificial noise reduction and maintain

good resolution, in some cases the SNR is the primary concern and we collect a larger number

of points. For these situations we propose a modified version of the algorithm which will

compute an image of sizeNC = NG. We shall refer to this as the ”Non-Expanded” version of

the algorithm, in contrast to the ”Expanded” version which usesNC = NGNT .

To construct the Non-Expanded algorithm, we simply replaceNC with NG everywhere.

This includes the equations of the previous section, and this modification will necessitate a

slight change in the linear phase correction, toα′ = πTj/2. The remainder of the data pro-

cessing strategy is unaffected. This will provide a superior reconstruction methodology when

signal intensity or processing time is the dominant concern, and it will be demonstrated that this

method will not reduce the information content of the final image.

3.3 Implementation of the CZT

In this section we shall describe the implementation of the Chirp Z-Transform algorithm, fol-

lowing the example of Rabiner et. al. [16], but making some small modifications to suit our

desired application.

Input : An NG element vectorX of SPRITE MPA data
N , an integer specifying the desired size of transform
T , a scaling factor (0 < T ≤ 1)

Output : TheN -point Chirp Z-Transform of the datasetX

L← 2 ∗N
W ← e2πT/N

A← e−πT

Y← an emptyL-element vector
for i← 0 to NG − 1 do Y [i] ← A−i ∗W i2/2 ∗ X[i]
FY← FFT (Y)
V← an emptyL-element vector
for i← 0 to N − 1 do V [i] ←W−i2/2

for i← N + 1 to L− 1 do V [i] ←W−(L−i)2/2

FV← FFT (V)
FG← FY * FV
G← InverseFFT (FG)
for i← 0 to N − 1 do G [i] ← G [i] * W i2/2

return firstN elements ofG

Algorithm 2: CalculateCZT
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As mentioned, the reason why the Chirp Z-Transform can be calculated at high speed is

that, along the contour of equation 2.12, the Z-Transform can be expressed as a convolution.

The purpose of the algorithm is then to create the functions which must be convolved, and then

carry out the convolution using the FFT.

It can be verified by inspection that Algorithm 2 will implement the convolution described

in equation 2.17. The computationally significant steps of the algorithm are the three L-point

FFT’s used to perform this convolution, each of which will be executed inO(L logL) time.

However, sinceL = 2N for this specific case, we can justifiably say that the complexity for this

algorithm isO(NlogN), whereN is the number of points in the transformed image.

This algorithm has been implemented in IDL, based upon the czt() function in the Matlab

signal processing toolbox, which has been optimized for speed. It should be noted that this

implementation does not exactly match the explicit form of the Z-Transform given in equation

2.11. Though the magnitudes of the transformed data are identical to within the maximum

precision available, there is a discrepancy in the phases of the complex data. At present it is not

known why this phase difference is present; attempts to predict its value based on parameters

supplied to the algorithm have failed. However, we must correct for this phase difference if the

Chirp Z-Transform is to match the DFT precisely.

Fortunately, the phase difference between the CZT of equation 2.11 and the fast CZT as

implemented for testing is always global; that is, the phase at each point differs from its true

value by the same constant. Once we have applied the derived phase correctionsα andβ of the

previous section, the leftover phase difference may be determined by calculating the phase of

the true DFT at any point, and then comparing it with the phase of the CZT at that same point.

The difference between these two values becomes our final phase correction, and applying this

correction makes the transforms identical.

The logical point at which to calculate the phase of the DFT, for comparison to that of the

CZT, is clearly that point which corresponds to x=0. At this point the exponential term in the

DFT expression (equation 2.7) equals unity, and the expression for the DFT is simply

ρ(0) =

NG−1∑
k=0

s(Gk) (3.13)

which requires onlyNG complex additions. This lets us determine and apply the right phase

correction with no increase in the overall computational complexity.
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3.4 Generalization to Higher Dimensions

Until this point, the algorithms we have discussed have all been designed to operate on one-

dimensional data. The majority of MRI data for both materials and medical applications is

two-dimensional, with three-dimensional imaging becoming increasingly common as the speed

and sensitivity of MRI techniques improve. The algorithms discussed previously must therefore

be generalized to higher dimensionality if they are to be of any practical value.

Since the one-dimensional Chirp Z-Transform, after the appropriate phase corrections, is

identical to the one-dimensional DFT, we can exploit the separability of the Fourier Transform

and use a succession of one-dimensional CZT operations to process data in multiple dimensions.

For example, in two dimensions, we have the following:

Input : An NT by NG by NG arrayS of SPRITE MPA data
An NT element vectortimes containing encoding times for the FID points

Output : TheNC by NC non-uniform DFT of the datasetS

matrInput← An emptyNC by NC matrix
matrStep1← An emptyNC by NC matrix
matrStep2← An emptyNC by NC matrix
matrSum← An emptyNC by NC matrix
for i← 0 to NT − 1 do

T ← times [i] / times [NT -1]
matrInput← S [i]
// CZT across first dimension
for j ← 0 to NC − 1 do

matrStep1 [j] ← CalculateCZT (matrInput [j], NC , T )
apply phase corrections as before

end
matrStep1← transpose ofmatrStep1
// CZT across second dimension
for j ← 0 to NC − 1 do

matrStep2 [j] ← CalculateCZT (matrStep1 [j], NC , T )
apply phase corrections as before

end
matrSum← matrSum + matrStep2

end
returnmatrSum

Algorithm 3: 2DDFTusingCZT
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For the Expanded algorithm, when we desire a larger image, we haveNC = NG

√
NT as

the total number of points along each side of the image. For this reason, this algorithm should

only be used to process data with a perfect square number of FID points. Inn dimensions, we

require that the number of points must be some integer raised to the powern, such that each

dimension can be expanded equally and by an integral value.

The Non-Expanded algorithm is not limited in this way and can process a dataset containing

any numberNT of FID points, returning an image of sizeNG by NG pixels. As in the one-

dimensional case, the Non-Expanded algorithm is derived from the Expanded algorithm by

settingNC = NG and modifying the linear phase correction as outlined earlier.

In terms of complexity, we already know that the computationally significant part of the

algorithm will be the call toCalculateCZT , which executes inO(NC logNC) time. In each of

the two loops this function is calledNC times, and each loops executesNT times, for an overall

running time ofO(NT N2
C logNC) for anNC by NC image. As has been discussed earlier, for

images withNT large, the Non-Expanded algorithm will be preferable since its dependence on

NT is linear, whereas the dependence of the Expanded algorithm onNT is quadratic.

4 Results

One must remember the primary motivation behind collecting non-uniform data during a SPRITE

MPA acquisition. It is assumed that this additional data will provide new information about the

sample being imaged, allowing us to somehow improve the image. For example, it may allow

us to increase the resolution of the image, so we can discern smaller features that might not

otherwise be perceptible. It may also increase the signal-to-noise ratio, lessening the effects of

random background noise.

It should be noted that similar increases in quality would be observed if the non-uniform

data were processed using one of the popular interpolation methods. Indeed, the results of the

interpolated non-uniform transforms and the CZT, when compared, are often visually indistin-

guishable. However, the two algorithms may execute at different speeds, and the algorithm

which runs fastest is clearly preferable for practical applications. There may be differences in

the accuracy of the algorithms which, though not visible by eye, are significant when compared

to the maximum precision available to the computer. Finally, since there is no need to select an

interpolation factor, the CZT should generally be a more robust method.
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The CZT algorithm as discussed in the previous section has been implemented and tested

on a variety of MRI data. This will permit us to verify that its computational complexity is as

expected, and that it properly reconstructs an image from SPRITE MPA data, improving the

quality of the image without any cost in terms of acquisition time. The Expanded and the Non-

Expanded forms of the algorithm will be compared to assess their differences. Finally, we will

also show that the CZT is superior to interpolation techniques both in terms of accuracy and

running time.

4.1 Running Time Analysis

To confirm that the running time for the CZT algorithm is as claimed, a number of datasets,

containing a variety of matrix sizes and numbers of FID points, were reconstructed with the

algorithm. Two independent tests were performed; one withNT fixed andNG changing, and

another withNG fixed andNT changing, to determine the dependence of the running time on

each parameter. The data were processed with both the Expanded and Non-Expanded versions

of the 2D algorithm so running times of the two implementations can be compared.

Figure 7: CZT performance for fixedNT As expected, both Expanded and Non-Expanded forms
demonstrate quadratic dependence onNG in the two-dimensional case.
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In Figure 7, we have setNT = 4 and reconstructed datasets with 32, 64, 128 and 256

gradient steps along each side of the acquired k-space matrix. In both cases the data illustrate

that the running time withNT fixed isO(N2
GlogNG). Also, we note that the running time for

the Non-Expanded algorithm at any givenNG is the same as that of the Expanded case atNG/2,

but the curves are otherwise very similar.

Figure 8: CZT performance for fixedNG. Dependence of the Expanded form onNT is
quadratic, whereas the Non-Expanded form follows a linear dependence.

In Figure 8, the number of gradient stepsNG was fixed at 64, and the number of FID points

varied between 1 and 25. Only perfect square values ofNT were chosen since the Expanded

CZT can only reconstruct datasets of that size. Here the difference between the Expanded and

Non-Expanded cases becomes evident, since the Non-Expanded case demonstrates anO(NT )

complexity while the Expanded case isO(N2
T ).

4.2 Processed MRI Data - Signal Enhancement

The first MRI image which has been enhanced with the CZT is an image of a fibre-reinforced

polyester resin, a material which is of interest to the automobile industry for structural parts

applications. Here we are imaging local water concentration through the hydrogen nuclei in

each molecule. The overall water concentration of this sample is only 3-4%, hence the MRI
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signal is very low. We will therefore attempt to use the CZT to enhance the signal-to-noise

ratio of this image, and compare the data processed with the CZT to other data which was

signal-averaged during the acquisition.

The experiment was performed on a 2.4T superconducting magnet having a horizontal bore

of inner diameter 32 cm, and manufactured by Nalorac (Martinex, CA). The console was a Tec-

mag (Houston, TX) Apollo. A 32-strut quadrature birdcage coil (Morris Instruments, Ottawa),

driven by a 2kW AMT (Brea, CA) 3455 amplifier, was used as the RF probe. The magnetic

field gradient was created with a set of water cooled gradient coils having an inner diameter of

7.5 cm and a maximum gradient strength of 100 G/cm, powered by three Techron (Elkhart, IN)

8710 amplifiers.

The sample has a time constant ofT ∗
2 = 650µs and a spin-lattice relaxation timeT ∗

1 = 65

ms. It is cylindrical with a height of 8 mm and a diameter of 38 mm. The imaging method was

Spiral-SPRITE, and the spiral data from each time point were sorted into a 64x64 matrix for

processing. A total of 125 FID points were collected at each gradient step; the field of view for

the final FID point,tmax = 325µs, is approximately 8 cm by 8 cm. All of the CZT-processed

images were scaled to this field of view so their quality may be directly compared.

Three separate experiments were performed with this apparatus and sample, each with a

different number of signal averages performed during the acquisition. This means that each

k-space point is sampled multiple times and the results are averaged within the spectrometer;

this increases signal quality but also increases acquisition time. The measurement with no extra

averaging was performed in 6.5 seconds. The second and third measurements were undertaken

with four and sixteen averages per point, respectively. The total acquisition time for these

measurements was 25 and 101 seconds.

Data from all three measurements were processed using the CZT. Five different numbers of

FID points were used to enhance the images; 1, 4, 9, 16 and 25 FID points. Using a single FID

point corresponds to reconstruction with the FFT, and it has been verified that reconstructing one

point with the CZT is equivalent to using the FFT. Nonetheless, the CZT was used throughout

the experiment for consistency. The results are shown in Figure 9.

The signal-to-noise ratio for each image is the ratio of the average intensity of the central

region, and the average intensity of a region in the background. The results of this calculation

are given in Table 1, and plotted in Figure 10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9: Signal-to-noise ratio improvement of an MRI image. Each column represents a differ-
ent amount of signal averaging during the acquisition: 1, 4, and 16 averages for the first, second
and third columns respectively. Each row represents a different amount of FID points used in
CZT image reconstruction; 1, 4, 9 and 16 FID points respectively.
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Figure 10: Signal-to noise ratio improvement due to signal averaging, both by performing extra
scans during the acquisition and by processing extra FID points with the CZT.

These results are significant in two ways. First, the signal-to-noise ratio of an image in-

creases proportionately with the square root of the number of averages, as expected from theory.

Second, the signal-to-noise improvement obtained using the CZT is comparable to that obtained

by extra signal averaging during the acquisition.

For example, the signal-to-noise ratios for the images with 16 averages (imagesc, e, j ) are

similar regardless of whether these averages were performed using traditional signal averaging

(imagec), MPA (imagej ), or some combination thereof (imagee). However, the data used to

create imagee took four times longer to acquire than the data used to create imagej , and the data

# FID Pts. SNR, 1 scan SNR, 4 scans SNR, 16 scans
1 2.30622 3.84558 7.54888
4 4.14624 7.34596 14.3680
9 6.62382 11.1346 21.0802
16 8.79874 15.8625 29.2950
25 11.6291 21.1504 37.5141

Table 1: Raw signal-to-noise ratio values for various numbers of scans and FID points.
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used to create imagec took sixteen times longer to acquire. Though the CZT- enhanced images

took correspondingly longer to process, this extra time investment is more than accounted for by

reduced acquisition times, and in practical applications, processing times are not a significant

issue unless they become extremely long.

4.3 Processed MRI Data - Resolution Enhancement

In a two-dimensional SPRITE acquisition withNG gradient steps in each dimension, we collect

enough information to create anNG×NG image, with a nominal resolution ofFOV/NG, where

FOV is the field of view. To improve this resolution we must acquire a larger matrix in k-space,

by increasing the number of gradient steps while maintaining a constant field of view. However,

this will also increase the total acquisition time, since more data must be sampled. Doubling

the number of gradient steps in a 2D image acquisition requires us to sample four times more

data, for instance.

Since the Expanded version of the CZT returns an image whose size isN2
C = N2

GNT , it

seems reasonable to expect that we will observe some improvement in the resolution due to the

larger matrix size. An experiment was performed to determine if such a resolution improvement

was taking place.

For this experiment we require a sample that will allow us to quantitatively determine the

resolution improvement yielded by the CZT, if any. We employ aresolution phantom, a sample

with features of a known size that will allow us to determine the smallest size of feature which

can be imaged by a given technique. Our phantom is a circular section of crosslinked polymer

which contains several cuts and holes of various sizes. The dimensions of the phantom and its

features are given in Figure 11.

The phantom was imaged using the same experimental setup as in the previous section. Its

time constantT ∗
2 was∼ 300µs. 25 FID points were collected at each gradient step of the Spiral-

SPRITE sequence, which collected a 64x64 k-space matrix. The maximum encoding time used

was tmax = 85µs and all CZT images were scaled to this value. Images were reconstructed

with 1, 4, and 9 FID points; it was found that using more points does not noticeably alter the

resolution of this particular image. The results are shown in Figure 12.

If we define the resolution of an image in terms of the smallest discernable feature, then

there is clearly an apparent resolution increase in these images. In the original image, neither
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Figure 11: Dimensions of the polymer resolution phantom and its various features.

the 1.5mm holes nor the 1.0mm holes were visible. The image created with 4 FID points allows

us to distinguish all of the smaller holes, and when 9 FID points are used in the reconstruction,

many of the features are more sharply resolved.

However, using this definition of resolution, the resolution and signal-to-noise ratio of an

image are always interrelated, with an increase in one leading to an increase in the other; an

image with better SNR will have more easily distinguishable features. To determine whether

the resolution enhancement observed in these images was greater than that which would be

expected through SNR improvement alone, the same images were reconstructed with the Non-

Expanded CZT, whose final size is that of the acquired matrix, and which should not exhibit

any resolution enhancement beyond that provided by increasing SNR.

As illustrated in Figure 12(d), though an image created with the Non-Expanded CZT appear

to be rougher and fills fewer pizels, all features that are distinguishable in an image created

with the Expanded CZT can still be observed. This indicates that there is no resolution en-

hancement associated with the increased matrix size, and no information is lost if the image is

processed with the Non-Expanded CZT instead of the Expanded CZT. This suggests that the

Non-Expanded algorithm, with its lower complexity, is a better choice for most practical ap-

plications since it will execute faster but will reconstruct an image that nonetheless contains as

much information as possible.
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(a) (b)

(c) (d)

Figure 12: Reconstructed images of a polymer resolution phantom. (a) Original image, 1 FID
point. (b) Image reconstructed with Expanded CZT and 4 FID points. (c) Image reconstructed
with Expanded CZT and 9 FID points. (d) Image reconstructed with Non-Expanded CZT and
9 FID points; the resolution matches that of figure (c) despite smaller number of pixels.
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4.4 Comparison with Existing Techniques

As mentioned earlier, many other non-uniform Fourier transform algorithms exist, and these

often provide similar results to the CZT. However, these other algorithms may not execute

in the same amount of time as the CZT, and they may not be as accurate in terms of their

difference from the analytic DFT. We now proceed to an examination of one such algorithm, the

interpolation scheme formulated by Dutt and Rokhlin [7], and generalized to two-dimensional

MRI data by Sarty et. al. [17].

The Dutt-Rokhlin algorithm approximates the non-uniform Fourier transform by a combi-

nation of over-sampling and interpolation, which are controlled by two parametersm andq. The

interpolation parameterq depends in turn on a valueb according to the relationq = d4bπe. Dutt

and Rokhlin found that a reasonable choice of values for these parameters wasm = 2, b = 0.6

and thusq = 8. These parameters are used to calculate an size-mN vector of uniformly spaced

data fromN non-uniform data points. After applying the FFT to the oversampled matrix, an

exponential weighting is applied to recover the transformed data.

The running time for the algorithm is stated asO(mNlogN+mNq) for the one-dimensional

case treated by Dutt and Rokhlin in their original paper. Sarty provided the logical extension

of the algorithm to two dimensions; this operates inO(mN2logN + mN2q) time on a dataset

containingN2 points. This two-dimensional version has been implemented for comparison

against the CZT in terms of speed and accuracy.

For this comparison we have used a different image of the previous section’s resolution

phantom (with slightly different imaging parameters), as well as a one-dimensional dataset

which was acquired from a prototype Electron Paramagnetic Resonance Imaging unit [9]. Each

was processed with the Expanded CZT, the Dutt-Rokhlin algorithm (using the Sarty implemen-

tation for the 2D case), and the Discrete Fourier Transform. The Non-Expanded CZT was not

used in this comparison since the image it produces is smaller than those returned by the other

methods; these images cannot be directly compared since they are of different sizes.

Speed testing was performed on a 1.07 GHz Intel Celeron processor. The accuracy of the

algorithms was quantified by subtracting the images reconstructed by method being tested (CZT

or Dutt-Rokhlin) from the DFT-reconstructed images, and dividing by the magnitude of the

DFT-reconstructed image to obtain a relative error for each pixel. The mean values of this

relative error then can be compared; the results are summarized in Table 2.
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Algorithm Mean Rel. Error, 1D Mean Rel. Error, 2D
CZT 1.97 x10−15 1.23 x10−13

DRS, b=0.6 8.38 x10−5 4.12 x10−5

DRS, b=1.0 8.57 x10−7 1.08 x10−6

DRS, b=2.0 3.036 x10−11 6.77 x10−11

DRS, b=3.0 4.4 x10−15 6.54 x10−14

Table 2: Mean error (vs. discrete Fourier Transform) for various reconstruction methods.

(a) (b)

(c) (d)

Figure 13: Comparison of Dutt-Rokhlin and CZT reconstructions for a 1D image,NG = 32,
NT = 4. (a) MRI image as reconstructed by CZT. (b) Differences between the DFT and CZT.
(c) Differences between the DFT and DRS. (d) DRS running times for various values of b.
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Consider the one-dimensional images in Figure 13. The first important result is that there is

a significant difference in the accuracy of the algorithms. As expected, the Chirp Z-Transform

computes the non-uniform DFT to considerable accuracy. In this case, the accuracy of the CZT

is generally on the order of the machine epsilon for double- precision floating point values,

εmach ∼ 10−16. However, with the suggested value ofb = 0.6, the Dutt-Rokhlin algorithm has

an accuracy of only10−5. Increasingb allows the accuracy to approachεmach but the running

time will increase steeply.

(a) (b)

(c) (d)

Figure 14: Comparison of the Dutt-Rokhlin-Sarty and CZT reconstructions for a 2D image,
NG = 64, NT = 4. (a) MRI image as reconstructed by CZT. (b) Differences between the DFT
and CZT. (c) Differences between the DFT and DRS with b=0.6. (d) DRS running times for
various values of b.
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The accuracy difference is similar in the two-dimensional case, as illustrated in Figure 14.

Since the 2D CZT is a series of 1D CZT operations along orthogonal axes, errors accumulate

throughout the transform. For the CZT, since the 1D error is on the order of10−15, we expect

2D errors in the range of10−14 to 10−13, which is confirmed in figure 14(b). The error in the

Sarty reconstruction, however, is still on the order of10−5 to 10−4 for the lowest value ofb.

Again, increasingb will increase accuracy, but a severe penalty is paid in terms of running time.

Figures 13(d) and 14(d) are plots of accuracy as a function of running time that summarize

the results of this testing, and illustrate that the CZT is preferable to the Sarty reconstruction in

all cases. The case whereb = 0.6 yields similar running times to the CZT but only at the cost

of greatly reduced accuracy. Comparable accuracy is achieved forb = 3 but running time has

now been increased by a factor of almost 50 in both the 1D and 2D cases.

Finally, we will note once more that these comparisons have all been carried out using the

Expanded CZT algorithm; as we have seen, the Non-Expanded version has a faster running

time and would demonstrate even greater advantages over Dutt-Rokhlin for largeNT .

5 Conclusions

It has been known for some time that the standard algorithm used to process MRI data, the

Fast Fourier Transform, is not well suited for processing the data acquired during an MPA

SPRITE experiment. In the past, interpolation techniques have been used to reconstruct such

non-uniform data with reasonable success. However, it has now been demonstrated that these

data can be processed much more accurately, and much more rapidly, using an algorithm based

upon the Chirp Z-Transform.

The Chirp Z-Transform is a more general formulation of the Fourier Transform, but which

has the sameO(NlogN) asymptotic complexity. By a careful choice of the parameters which

define the contour along which the Chirp Z-Transform is evaluated, and a proper correction

to the phase of the transformed data, the Discrete Fourier Transform of the SPRITE data can

be computed inO(NT NlogN) time for a dataset containingNT FID points and whose recon-

structed image contains N pixels. This is readily generalized to multiple dimensions.

Two versions of the algorithm exist; the Expanded CZT increases the size of the final image

while the Non-Expanded CZT does not. Both methods reconstruct images with the same infor-

mation content in terms of resolution and signal-to-noise ratio. Of the two, the Non-Expanded

36



CZT will be the algorithm of choice for practical applications because of its increased speed

and because it has no restrictions concerning how many FID points can be used. In contrast, the

number of FID points input to the Expanded CZT must be a perfect square.

When compared against the performance of existing interpolation methods, such as that

of Dutt and Rokhlin, the CZT offers advantages both in terms of execution time and in terms

of accuracy. For the one-dimensional case, accuracy is on the order of10−15, while accuracy

for two-dimensional images is typically on the order of10−13. For applications in Magnetic

Resonance Imaging, such high accuracy makes no perceptible difference to the image quality;

our primary concern is the speed of the algorithm.

However, the reformulation of the Discrete Fourier Transform in terms of a sum of Chirp Z-

Transforms has other potential applications beyond those considered in this work. Any kind of

non-uniform mesh which contains certain regularities may be amenable to processing with the

CZT. For example, since the Fourier transform can be used to solve some kinds of differential

equations, the CZT might assist in the numerical solution of these equations. In such a scenario,

the accuracy of the CZT would be an important factor, as would its speed.

In terms of further application to MRI, the CZT presents itself as a technique for enhancing

the signal-to-noise ratio of images at virtually no time cost. This will be valuable in the study

of materials whose MRI signal strength is naturally low. Instead of performing extra signal

averaging scans, which may incur a time penalty, a Multiple Point Acquisition can be performed

and a high-quality image reconstructed in a fraction of the time. The CZT could also be used

to assist the imaging of dynamic systems by reducing acquisition time, allowing researchers to

image rapid dynamic processes in materials.

At the moment, the application of the CZT in magnetic resonance imaging is limited to

SPI-type measurements, such as SPRITE and the family of related techniques for 2D and 3D

imaging. The non-uniform data often acquired in clinical spiral methods, for example, can-

not be processed in this manner because the data lack the regularities in the k-space sampling

scheme which allowed us to reformulate the Discrete Fourier Transform in terms of the Chirp Z-

Transform. Within this restriction, however, we have demonstrated that the Chirp Z-Transform

is a valuable tool for the enhancement of SPRITE MRI images, and future developments will

surely permit us to extend the range of its capabilities.
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Errata and Addenda

The following are errors in the manuscript which were not corrected until after submission.

On page 18, formula (3.10) should read

ρ(xm) =

NT−1∑
j=0

NG−1∑
k=0

s(Gktp(j))e
πikTje−2πikmTj/NCei(αm+β)

On page 19, the linear phase correction should beα = πTj/NT , and the last line of the

series of equations should read

= −2πiTjkm/NC + πikTj + πiTjm/NT − πiNGTj/2

This will also affect Algorithm 1 on page 20 and the correction toα on page 21.

Algorithm 1 also suffers from a poor choice of indices in the twofor loops, and several

small errors exist in the last few lines. The correct formulation of the algorithm is as follows:

for j ← 0 to NT − 1 do
Tj ← times [j] / times [NT − 1]
out← CalculateCZT (S [j], NC , Tj)
α← πTj/NT

β ← −πTjNG/2
for k ← 0 to NC − 1 do out [k] ← out [k] * ei(kα+β)

sum← sum + out
end
returnsum

On page 20, formula (3.12) is actually a formula for the number of timeintervals, not the

number of time points. (3.12) should read

NT =
NG

2
(

1

Tmax

− 1) + 1

Finally, the discussion on page 22 regarding the difference in phase between the imple-

mented CZT and the analytical form of the CZT has been rendered moot. A way has been

found to modify the implementation of the algorithm such that this phase difference no longer

manifests itself. This modification also perceptibly increases the accuracy of the algorithm.

For the 1D dataset considered in table 2 and figure 13, for example, the mean relative error is

decreased from 1.97 x10−15 to 4.00 x10−16.
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