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Abstract 
The Bottleneck Traveling Salesman Problem (BTSP) asks us find the Hamiltonian cycle 

in a graph whose largest edge cost (weight) is as small as possible.  Studies of this 

problem have been limited to a few preliminary results.  A heuristic algorithm was 

constructed using well known Traveling Salesman Problem (TSP) heuristics.  

Experimentally, it was found that computing the bottleneck biconnected spanning 

subgraph (BBSSP) for the problem coupled with a single call with the Lin-Kernigan (LK) 

TSP heuristic was sufficient to solve BTSP to optimality for the majority of graphs in the 

TSPLIB problem library as well as for random problems.  Otherwise, the BBSSP and LK 

heuristic provided a lower bound and upper bound on the solution respectfully.  A binary 

search was then performed, finding Hamiltonian cycles using the LK heuristic, to 

converge to a solution, although not necessarily to optimality.  It was also found that 

introducing randomness into the costs of our graphs provided us with better results with 

the LK heuristic.  These results allowed us to solve BTSP on all but four problems from 

the TSPLIB problem library.   
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1. Introduction  
Many readers will be familiar with the Traveling Salesman Problem (TSP) - a problem 

that, in addition to resisting political correctness, has been very well studied in the field 

of combinatorial optimization.  In layman’s terms, a salesman wants to find the shortest 

tour through a number of cities (which will presumably save him time and money).  A 

related problem is the Bottleneck Traveling Salesman Problem (BTSP) where our 

salesman wants to spend as little time traveling between any pair of cities (perhaps he 

gets carsick easily).  

 

We formulate BTSP as a graph problem on a complete graph ),( EVG =  and a cost 

matrix C where we wish to find the Hamiltonian cycle whose largest edge cost (weight) 

is minimized.  A more formal definition of this problem (and supplementary theory) is 

given in section 2.  

 

The origins of BTSP are fuzzy, but Gilmore and Gomory [8] discussed a specific case of 

the original problem.  Garfinkel and Gilbert [7] discussed the general problem in relation 

to machine scheduling.  Certainly, BTSP has not been as well researched as TSP.  

Whereas TSP has enjoyed the attention of many researchers in solving various problems, 

BTSP results have been limited to problem sizes less than or equal to 200 vertices [4, 7]. 
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2. Background and Theory 
This section covers some basic definitions and theorems that are important for studying 

our problem.  We assume the reader has some basic graph theory behind them.  

Knowledge of problem complexity is also helpful. 

 

We have three problems we need to define: 

 

Definition 2.1: A Hamiltonian cycle (sometimes known as a Hamiltonian 

circuit or tour) is a cycle ),,...,,( 121 vvvv n=π  through a graph  

that visits every vertex in V exactly once. 

),( EVG =

 

Definition 2.2: Given a graph ),( EVG = , a cost matrix C, and a collection 

of Hamiltonian cyclesΠ of G, the Traveling Salesman Problem (TSP) 

solution is the cycle Π∈= ),,...,,( 121 vvvv nπ such that: 

)},(),(min{ 1

1

1
1 +

−

=
∑+ ii

n

i
n vvCvvC  

(The TSP solution to a graph is the Hamiltonian cycle whose total cycle 

cost is minimized.) 

 

Definition 2.3: Given a graph ),( EVG = , a cost matrix C, and a collection 

of Hamiltonian circuitsΠ of G, the Bottleneck Traveling Salesman 

Problem (BTSP) solution is the cycle Π∈= ),,...,,( 121 vvvv nπ such that: 

}}}1,...,1,0for   ),({),(min{max{ 11 −=∪ + nivvCvvC iin  

(The BTSP solution to a graph is the Hamiltonian cycle whose largest 

edge cost is minimized.) 

 

This paper refers to the largest edge cost in a BTSP solution as its bottleneck value.  It is 

also known as the objective value of BTSP. 
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BTSP (and TSP for that matter) applies to both directed (digraphs) and undirected graphs.  

In literature, BTSP on undirected graphs is known as Symmetric BTSP, and on directed 

graphs it is known as Asymmetric BTSP.  We will be concentrating solely on Symmetric 

BTSP for this report, but much of what is discussed here can be extended to solving 

Asymmetric BTSP. 

 

TSP and BTSP solutions are not necessarily unique.  Finding all the TSP and BTSP 

solutions to a graph is a tedious and probably pointless exercise, so we are happy to limit 

ourselves to one solution.  We also note that the TSP solution and BTSP solutions are not 

necessarily equivalent.  Here is a simple example where we see the TSP tour differs from 

the BTSP tour: 

 

5 
1 2 

TSP Tour: 1, 4, 2, 3, 1 (length: 18)  

BTSP Tour: 1, 2, 4, 3, 1 (length: 20) 
5 2 56 

3 4 
5  

Figure 2.1: A comparison of a TSP tour to a BTSP tour 

 

Let us now say something about the complexity of all three problems introduced at the 

beginning of this section.  For readers who are not familiar with the idea of complexity 

classes, the general idea is that solving any of these problems is expensive in terms of the 

total number of operations that need to be performed.  As the graphs we want to consider 

become larger, the number of operations needed grows exponentially.  As a result, naïve 

algorithms for tacking these sorts of problems will only finish for small graphs. 

 

Theorem 2.4: TSP belongs to the NP-complete complexity class. 

Theorem 2.5: BTSP belongs to the NP-complete complexity class. 

Theorem 2.6: The problem of finding all the Hamiltonian cycles in a 

sparse graph belongs to the NP-complete complexity class. 
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For proofs of all three theorems, please see appendix B in Gutin and Punnen’s book on 

TSP [17] for the appropriate proofs. 

 

For our purposes we will assume that all the graphs we study, unless otherwise noted, are 

complete. 

 

Definition 2.7: A complete graph is a graph ),( EVG =  such that there 

exists an edge or allEvu ∈),(  f Vvu ∈,  vu ≠ . 

(Each pair of vertices in the graph is connected by an edge.) 

 

To make a graph complete, simply add edges to a graph with a very large edge cost 

between unconnected pairs of vertices until the graph is complete.  Any TSP or BTSP 

solution will avoid those edges if it can.  If one of these edges exists in the final TSP or 

BTSP solution then no Hamiltonian cycles exist in the original graph.   

 

Corollary 2.8: For a graph with n vertices there are 2/)!1( −n  Hamiltonian 

cycles in an undirected complete graph.   

Proof: There are 
2

)!1(
)!2(!2

!
2

−
=

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ nn
n
nn  ways to pick n pairs of vertices.  

Because we are dealing with a cycle of n vertices, the order does not 

matter so we can divide out a factor of n.   

 

It might seem alarming that the number of Hamiltonian cycles we could consider rapidly 

grows as we add another vertex to the complete graph.  However, the techniques we will 

later develop do not depend on the number of edges or number of candidate Hamiltonian 

cycles in a graph, but solely on the number of vertices.  Therefore, it is convenient to deal 

with complete graphs.  Even if the original non-complete graphs had only a handful of 

Hamiltonian cycles, finding such cycles is a hard problem anyways (as proven by 

theorem 2.8), so we gain no advantages by dealing with sparse graphs. 
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3. Algorithms 
As mentioned in the previous section, we are concentrating on solving BTSP on 

undirected, complete graphs.  In this section we will discuss the TSP algorithms we will 

use in solving BTSP, algorithms for finding an upper and lower bound on the bottleneck 

solution of BTSP, and finally an algorithm that attempts to find BTSP solutions.  The 

word “heuristic” is thrown around quite a bit as you will see.  For our purposes, it 

indicates an algorithm that does not guarantee an optimal solution.  Heuristics can be 

though of as good guesses for a particular problem.   

 

Pseudo-code is used to detail how each algorithm works.  All arrays are 0-indexed (that is 

they start counting at 0 instead of 1) as is common in C like programming languages.  

The notation used often refers to a set of vertices and a cost matrix.  The set of vertices 

can be thought of as being the numbers from 0 to n-1, where n is the number of vertices 

in the graph.  Since we are working with complete graphs, except where noted, we ignore 

the set of edges that normally accompany graph structures.  We instead rely extensively 

on a cost matrix C, where the entry C[u, v] is the edge cost between the pair of vertices u 

and v. 

 

As is convention when dealing with the complexity of graph algorithms, n will equal the 

number of vertices in the graph, while m will equal the number of edges in the graph.  

Since we are mostly dealing with complete graphs,  except where noted.  As well, 

all logarithm functions are assumed to be in base 2. 

2nm =

 

3.1 TSP Algorithms 

TSP has been a very popular problem of study for years.  As a result many good 

algorithms have been developed to tackle the problem.  One of the advantages of our 

approach to solving BTSP is that we attempt to leverage this work.  This next section 

gives a brief overview of a heuristic for approximating TSP tours and an exact algorithm 

for definitively solving TSP tours.   
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3.1.1 The Lin-Kernighan Heuristic 

In their 1973 paper [12], Lin and Kernighan detailed a popular algorithm that today is 

considered to be one of the best heuristics for finding near-optimal TSP solutions [9].  It 

has been used in finding optimal solutions of up to 24,978 vertices [1] and has produced 

estimates that are within 0.068% of the optimal tour for a problem with 1,904,711 

vertices [6].   

 

The LK heuristic is complicated, and a thorough discussion of its workings is beyond the 

scope of this paper.  A good resource that details the heuristic as well as submits an 

implementation is Helsgaun’s paper [9].  It should be noted that the quality of the output 

(that is to say, how close the result is to the optimal solution) is affected by the input.   

 

Helsgaun [9] performed some experimental studies on the LK heuristic and found an 

average running time complexity of .  However, the running time is not strictly 

dependent on the number of vertices but also the structure of the graph.  For example, 

cost matrices that satisfy the triangle inequality (that is to say for

)( 2.2nO

Vzyx ∈∀ ,, , 

 for a given set of vertices V and cost matrix C) seem to require 

more time to solve, but their results are more accurate.  To reflect this uncertainty, we’ll 

parameterize the time complexity of algorithms that use the LK heuristic with an oracle 

(e.g. ).  

],[],[],[ zyCyxCzxC +≤

)(log2 LKnO ⋅

 

For our purposes we will pass the LK heuristic a set of vertices and a cost matrix.  It will 

return a tour and its length: 

 

Algorithm LK-Heuristic(V, C): 
Inputs: A set of vertices V and a cost matrix C. 
Outputs: An ordered pair (T, l) where T is the best Hamiltonian 

cycle the Hamiltonian cycle the heuristic could find of length l. 
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3.1.2 Integer Linear Programming with Branch-and-Cut techniques 

Solving TSP to optimality is a computationally intensive problem as proven by the fact it 

belongs to the class of NP-complete problems.  A great deal of research has been done to 

try and find the best way to yield optimal results while minimizing number of 

calculations.  The technique that seems to have had the most success is formulating TSP 

as a linear programming problem using what’s known as Branch-and-Cut techniques.  Its 

origins can be traced back to 1952 with the research of Dantzig, Fulkerson, and Johnson 

who solved a 52-vertex problem by hand [5].  The branch-and-cut technique was most 

recently used by Applegate, Bixby, Chvátal, Cook, and Helsgaun in 2004 to confirm a 

24,978-vertex problem [1]. 

 

Much like the LK heuristic, we will refer the reader to Naddef’s chapter [15] for a 

complete discussion of the method.  Because it as an algorithm that produces an optimal 

result, we expect the same result no matter the input.   

 

3.2 Lower Bound Heuristics 

There are two lower bound heuristics we will examine, the largest of which shall be a 

lower bound on our problem.  Both rely on the idea that a Hamiltonian cycle for a graph 

will have two edges incident on every vertex.  The proof of this is left as an exercise to 

the reader. 

 

3.2.1 2-Max Bound Heuristic 

For this heuristic, described by Kabadi and Punnen [11], we simply calculate the second 

smallest cost incident on every vertex and take the largest of all these costs.  In the 

context of BTSP, the Hamiltonian cycle of a graph will use at best the smallest and 

second smallest cost edge incident on every vertex to form a cycle.  A lower bound on the 

bottleneck value will therefore be the largest of these edges.  This is known as the 2-Max 

Bound (2MB).  The algorithm is given below and clearly runs in  time for 

complete graphs.  

)( 2nO
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Algorithm 2-Max-Bound(V, C): 
Inputs: A set of vertices V and a cost matrix C. 
Output: A lower bound on the bottleneck value for BTSP 
 
max ←  ∞−
alpha ←   // smallest edge ∞+
beta ←   // 2∞+ nd smallest edge 
for all  Vu∈
 for all  }{\ uVv∈
  if alphavuC <],[ then 
   beta ← alpha 
   alpha ←  ],[ vuC
  else if betavuC <],[  
   beta ←  ],[ vuC
  end if 
 end for 
 if max<  beta then 
  max ← beta 
 end if 
end for 
return max 

 

3.2.2 Biconnected Bottleneck Spanning Sub Graph Heuristic 

A graph is biconnected if there is no vertex that exists such that its removal will 

disconnect the graph.  A tour, by definition, is biconnected, so finding the minimum edge 

cost that still allows for a biconnected graph will be a lower bound on the BTSP solution.  

We refer to this algorithm at the Biconnected Bottleneck Spanning Sub Graph Problem 

(BBSSP).  A simple way of solving this problem was introduced by Parker and Rardin 

[16] and will be the implementation discussed here. 

 

To find what this cost is, we perform a binary search over an ordered array of unique 

edge costs.  Taking the median value b we see if the graph is biconnected if we consider 

only edges of cost less than or equal to b.  If the graph is biconnected at that value, then 

we lower the upper bound to b and repeat.  If the graph is not biconnected, then we raise 

the lower bound to the next cost after b (as we’ve already shown that b is no good, so we 

try the next lowest cost as the lower bound).   
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The algorithm for testing biconnectivity of a graph is well known, so we leave the 

implementation up to the reader.  For those unfamiliar with how biconnectivity is tested, 

we refer to Dave Mount’s excellent lecture on the subject [14].  Please note this is the 

only time where we deal with a set of edges and ignore the cost matrix. 

 

Algorithm Graph-Is-Biconected(V, E): 
Inputs: A set of vertices V and a set of edges E. 
Output: True if the graph is biconnected, false if not. 

 

Algorithm Biconnected-Spanning-Subgraph(V, C): 
Inputs: A set of vertices V and a cost matrix C. 
Output: A lower bound on the bottleneck value for BTSP. 
 
let W be an ordered array of size m consisting of the unique edge 

costs found in C 
low ← 0 
high ←  1−m
while low ≠  high do 
 median ← lowlowhigh +÷− )2)((  
 medWeight ← W[median] 
 let E be an empty set of edges 
 for all  Vu∈
  for all }{\ uVv∈  
   if medWeightvuC ≤],[  then 
    add (u,v) to E 
   end if 
  end for 
 end for 
 if Graph-Is-Biconnected(V, E) then 
  high ← median 
 else 
  low ← median + 1 
 end if 
end while 
return W[low] 

 

The algorithm involves ordering the unique edge costs found in C.  Given a complete 

graph with n vertices, there are up to  edge costs to order, so at best the running 

time for ordering will be .  The running time for testing biconnectivity of a 

graph is .  The value of m will grow or shrink for each call, depending on 

2/2n

)log( 2 nnO

)( mnO +
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whether we are raising the lower bound or lowering the upper bound.  Certainly for a 

complete graph, .  Since we are doing a binary search on the ordered edge costs, 

we will ask the algorithm to make  biconnectivity tests.  In total, the running 

time for this bound will be .   

2nm ≤

)(log nO

)log( 2 nnO

 

It should be noted that there are better ways, asymptotically speaking, of finding the 

BBSSP solution of a graph.  The implementation given is probably the simplest to 

implement.  Punnen and Nair [18] proposed an )log( 2 nnmO + algorithm, Timofeev [20] 

an  algorithm and, finally, an  algorithm was proposed by Manku [13]. )( 2nO )(mO

 

3.2 Upper Bound Heuristics 

Just as for lower bounds, we will try and find a tight upper bound on the BTSP solution.  

The general approach to these algorithms is to build a Hamiltonian cycle and choose the 

largest edge.  The largest edge of any Hamiltonian cycle in a graph will be an upper 

bound on the bottleneck value for a BTSP solution.  As before, the proof of this is left as 

an exercise for the reader. 

 

3.3.1 Nearest Neighbour Heuristic 

The Nearest Neighbour Heuristic (NNH) was one of the first heuristics for approximating 

a  TSP solution.  Although the quality of this heuristic is poor with respect to other 

heuristics available to us, it is simple to implement and runs quickly.  We pick a starting 

node and move to its nearest neighbour, repeating until we form a cycle.  The largest 

edge weight in this cycle will be an upper bound on the bottleneck value.  This algorithm 

clearly runs in  time. )( 2nO

10 



Algorithm Nearest-Neighbour(V, C): 
Inputs: A set of vertices V and a cost matrix C 
Outputs: An upper bound on the bottleneck value for BTSP 
 
mark all vertices in V as unvisited 
let s be any starting vertex 
max ←  ∞−
u ← s 
while there are unvisited vertices in V 
 mark u as visited 
 min ←  ∞+
 nn ← NULL 
 if there are no unvisited vertices then 
  nn ← s  // Connect back with start of tour 
 else 
  // Find the nearest neighbour 
  for all unvisited vertices }{\ uVv∈  
   if minvuC <],[  then 
    min ←  ]

]

,[ vuC
    nn ← v 
   end if 
  end for 
 end if 
 if hen maxnnuC >],[  t
  max ←  ,[ nnuC
 end if 
 u ← nn 
end while 
return max 

 

3.3.2 Node Insertion Heuristic 

The Node Insertion Heuristic (NIH) attempts to gradually build a tour one random vertex 

at a time.  Starting with a three-vertex cycle, each new randomly chosen vertex is inserted 

in what is thought to be the best possible place.  In an attempt to keep the number of 

comparisons to a minimum we keep track of the largest and second largest cost in the 

current tour.   
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Algorithm Node-Insertion(V, C): 
Inputs: A set of vertices V and a cost matrix C 
Outputs: An upper bound on the bottleneck value for BTSP 
 
mark all vertices in V as unvisited 
let  be a tour of three random vertices 

where 
}},{},,{},,{{ uwwvvuT =

Vwvu ∈,,  
alpha ←  }},{},,{},,max{{ uwwvvu
beta ← second largest of  }},{},,{},,{{ uwwvvu
mark u, v, w as visited 
while there are unvisited vertices in V 
 let w be a random vertex from V 
 minVal ← ∞+  
 for all Tvu ∈},{  
  if alphavuC =],[ then 
   largest ←  ]},[],,[,max{ vwCwuCbeta
  else 
   largest ←  ]},[],,[,max{ vwCwuCalpha
  end if 
  if largest <  minVal then 
   minVal ← largest 
   minSpot ← {u,v} 
  end if 
 end for 
 insert w into tour between the edge {u,v} 
 mark w as visited 
 if minVal > alpha then 
  beta ← alpha 
  alpha ← minVal 
 else if minVal  beta then >
  beta ← minVal 
 end if 
end while 
return alpha 

 

This algorithm clearly runs in  time.  Because of the random nature of this 

algorithm, we could possibly improve the upper bound result we get from it by running 

the algorithm more than once. 

)( 2nO
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3.3.3 LK Tour Heuristic 

The two previous upper bound heuristics make efforts to build reasonable tours that can 

help define a good upper bound on the bottleneck value.  The advantage of both methods 

is that they run reasonably quickly, even for large graphs.  But since an upper bound can 

be found from any Hamiltonian cycle, it is reasonable to assume that the Hamiltonian 

cycle of a TSP solution to a graph will be a reasonably good upper-bound.   

 

Finding the TSP solution to a graph is expensive, but we can make a very good guess 

with the Lin-Kernighan (LK) heuristic.  As we’ll see in the next section, the LK heuristic 

is used in our scheme for finding the BTSP solution to a graph.  If a single call with the 

LK heuristic produces a significantly better upper-bound than either than nearest 

neighbour heuristic or the node-insertion heuristic, then it is certainly worth our while to 

spend the time. 

 

For the cost matrix we pass the LK heuristic, we can utilize a lower bound we have 

already computed to help find a good TSP tour.  If the resulting TSP tour length equals 

zero then the upper and lower bounds are equal.  Otherwise, we choose the largest edge 

in the tour the LK heuristic found.  Figure 3.1 illustrates the idea. 

4 0 05 0 0 

6 0 0

5 0 04 0 0 

8 6 8 0 8 03 0 07 7 7 

4 0 0

The original graph.  
BBSSP heuristic gives a 
lower bound equal to 6. 

New graph where costs less 
than a lower bound of 6 set 

to a new cost of 0. 

TSP Tour of Length 0 
Result: Lower bound 
equals upper bound. 

Figure 3.1: An illustration of the LK Tour heuristic for finding an upper bound. 
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Algorithm TSP-Tour(V, C, lb): 
Inputs: A set of vertices V a cost matrix C, and a lower bound lb. 
Outputs: An upper bound on the bottleneck value for BTSP 
 
let D be a new cost matrix of the same dimensions as C 
for all  Vu∈
 for all  }{\ uVv∈
  if lbvuC ≤],[  then 
   ← 0 ]

],[ vu

,[ vuD
  else 
   ← C  ],[ vuD
  end if 
 end for 
end for 
(tour, length) ← LK-Heuristic(V, D) 
if length  0 then =
 return lb 
else 
 max ←  ∞+
 for all tourvu ∈},{  
  if ≤],[ vuC  max then 
   max ←  ],[ vuC
  end if 
 end for 
 return max 
end if 

 

3.4 Finding Hamiltonian cycles using the LK heuristic 

Before we introduce either a method for finding BTSP solutions, we start by explaining 

how to use a TSP heuristic to make a good guess at a Hamiltonian cycle.  Finding 

Hamiltonian cycles in a sparse graph is an NP-Hard problem and there are too many 

Hamiltonian cycles in a complete graph to consider (as explained in section 2).  We can, 

however, make a good guess at whether a Hamiltonian cycle exists in a complete graph 

by using the Lin-Kernighan (LK) heuristic.   

 

Suppose we wish to know whether a Hamiltonian cycle exists in a graph using only edge 

costs less than or equal to a value b in a complete graph.  Given a set of vertices V, a cost 

matrix C, and a value b we construct a new cost matrix D as follows: 
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Vvu
bvuC

vuD ∈∀
⎭
⎬
⎫

⎩
⎨
⎧ ≤

= ,for  
otherwise1

],[ if0
],[  

 

We then run the LK-heuristic using this new cost matrix.  Because we are now attempting 

to solve TSP, the LK-heuristic will try and minimize the total length of the tour it finds.  

For this reason, the LK-heuristic will try and use as many edges of cost 0 as it can.  If we 

find a tour of length 0 then we have found definite proof of a Hamiltonian cycle using 

only edge weights up to the value b.  This idea is much like the one illustrated by figure 

3.1. 

 

If we don’t find a tour of length 0 then we guess that such a Hamiltonian cycle does not 

exists, but because we are using a TSP heuristic we cannot say conclude with any 

certainty that one does not exist.  Therefore, we might want to make more than one 

attempt at finding a TSP tour of length 0.  Of course, we could use an exact TSP 

algorithm, but we want to avoid making such expensive calls. 

 

We refer to the above cost matrix we constructed as the Zero/One cost matrix, but here 

are other cost matrix formulations that we can utilize to find Hamiltonian cycles.  We are 

interested in studying them because they might provide better solutions or run quicker for 

the LK heuristic.  Table 3.1 lists five different cost matrix formulations, but certainly is 

not an exhaustive list.   

 

If we don’t find a Hamiltonian cycle on the first attempt with any of the given cost matrix 

formulations then we can try making additional attempts using the Zero/Random cost 

matrix formulation.  The LK heuristic can, for lack of a better term, get stuck trying to 

find an optimal tour.  This added element of randomness might allow it to find a better 

tour.  This appears to be a new idea; one that Dr. Punnen has termed “shaking the cost 

matrix”.  The PR department is currently hard at work finding a more catchy term.
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Name: Zero/One Cost Matrix 
Formulation: 

Vvu
bvuC

vuD ∈∀
⎭
⎬
⎫

⎩
⎨
⎧ ≤

= ,for  
otherwise1

],[ if0
],[  

Notes: A Hamiltonian cycle exists if TSP tour has length equal to 0. 
  
Name: Zero/Random Cost Matrix 
Formulation: 

Vvu
bvuC

vuD ∈∀
⎭
⎬
⎫

⎩
⎨
⎧

Ζ
≤

= + ,for  
otherwise random

],[ if0
],[  

Notes: A Hamiltonian cycle exists if TSP tour has length equal to 0.  The 
random number can any non-zero integer. 

  
Name: Zero/Normal Cost Matrix 
Formulation: 

Vvu
vuC

bvuC
vuD ∈∀

⎭
⎬
⎫

⎩
⎨
⎧ ≤

= ,for  
otherwise],[

],[ if0
],[  

Notes: A Hamiltonian cycle exists if TSP tour has length equal to 0.  
  
Name: Normal/Infinity Cost Matrix 
Formulation: 

Vvu
bvuCvuC

vuD ∈∀
⎭
⎬
⎫

⎩
⎨
⎧

∞+
≤

= ,for  
otherwise

],[ if],[
],[  

Notes: The positive infinity value can be any relatively large number.  The new 
A Hamiltonian cycle exists if TSP tour has length less than positive 
infinity. 

  
Name: Ordered Position Cost Matrix 
Formulation: 

Vvu
bvuC

vuD ∈∀
⎭
⎬
⎫

⎩
⎨
⎧

∞+
≤

= ,for  
otherwise

],[ ifarray)cost  orderedin (position 
],[  

Notes: Before we use this cost matrix we need to order all the unique costs in 
the graph.  If the cost bvuC =],[ is found in position i in the ordered 
array, then ivuD =],[ .  The positive infinity value can be any relatively 
large number.  A Hamiltonian cycle exists if TSP tour has length less 
than positive infinity.  

 

Table 3.1: Five different cost matrix formulations for finding Hamiltonian cycles 

 

3.5 BTSP Binary Search Heuristic 

We will order the edge weights and locate the upper and lower bounds on the bottleneck 

value.  Attempts will then be made to find a Hamiltonian cycle using the median edge 
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weight.  If one can be found, we can lower the upper bound to the median.  If one cannot 

be found, we can raise the lower bound to the median (plus one step).  We repeat this 

procedure until we converge to the bottleneck value. 

 

For the sake of clarity, we define two helper functions.  The implementation of these two 

functions is omitted as they are standard sort and binary search methods.  

 

Algorithm Order-Edge-Weights(V, C): 
Inputs: A set of vertices V and a cost matrix C. 
Outputs: An array of unique edge weights ordered from lowest to 

highest. 
 

Algorithm Binary-Search-Array(Array, Value): 
Inputs: An ordered Array, and a Value to search for. 
Outputs: The position in Array where Value is stored. 
 

 

We now define our basic algorithm for finding the BTSP solution: 

 

Algorithm BTSP-Binary-Search(V, C, lb, ub): 
Inputs: A set of vertices V, a cost matrix C, a lower bound lb, an 

upper bound ub. 
Outputs: A BTSP tour and the bottleneck value of the graph 
 
E ← OrderEdgeWeights(V, C) 
low ← Binary-Search-Array(E, lb) 
high ← Binary-Search-Array(E, ub) 
do while low  high ≠
 median ← lowlowhigh +÷− )2)((  
 medCost ← E[median] 
 D ← Build-Cost-Matrix(V, C, medCost) 
 (tour, length) ← LK-Herustic(V, D) 
 if  then 0=length
  high ← median 
  bestTour ← tour 
 else 
  low ← median + 1 
 end if 
end do 
return (bestTour, W[low]) 
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In the pseudo-code outlined above, only one attempt is made at finding a Hamiltonian 

cycle using whatever cost matrix formulation desired.  This would be fine if the LK 

heuristic was an exact TSP solver, but in reality we will want to make additional attempts 

with a Zero/Random cost matrix if we cannot find a Hamiltonian cycle on the initial 

attempt, what we have termed “shaking the cost matrix”. 

 

In analyzing the time complexity of the algorithm, we note that the time spent searching 

for the bottleneck value will dominate, so the complexity of this method is . )(log LKnO ⋅

 

After this algorithm completes, we can confirm the result using an exact TSP solver.  By 

performing a linear search from the found bottleneck value to the lower bound value, we 

can confirm that Hamiltonian cycles do or do not exist for smaller bottleneck values. 
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4 Implementation and Testing Details 
All code was written in C using the GNU GCC compiler on Red Hat Linux.  The 

algorithms detailed in the previous section were implemented as outlined according to the 

pseudo-code descriptions given.   

 

The one exception is the Node Insertion algorithm.  In an effort to generate good results 

quickly, 10 trials were attempted, the best of which was chosen to be an upper bound.  At 

each step, the best result was recorded.  At every stage in a trial a check was made to see 

if the current result was worse than the best result found so far.  If the answer to that 

question was true, then the current attempt was abandoned.  This was a practical 

consideration, as if the current tour being built is no better than the best tour found then 

there is no advantage to completing the tour. 

 

The implementation of the branch-and-cut TSP algorithm and the Lin-Kernighan 

heuristic in the Concorde TSP solver [2l] was used.  Concorde is a well known solver for 

symmetric TSP.  The solver is free for academic use and the full source code is available 

in ANSI C.  Furthermore, Concorde was used to solve the largest known TSP solution at 

the time of writing, a 24,978 vertex problem [1].  The QSpot linear programming solver 

[3], written by the same authors of Concorde, was used to confirm results.  QSopt is a 

free linear programmer that interfaces naturally with Concorde.   

 

Our test problems mostly came from Reinelt's TSPLIB problem collection [19].  We 

limited testing to problems of 10,000 vertices or less.  Of the remaining TSPLIB 

problems, we were unable to test the linhp318 problem because Concorde does not 

support problems with fixed edges.  We also neglected to perform testing on vm1084 and 

vm1748 due to an oversight. 

 

We also tested the standard random problems from the instance generation codes 

provided by Johnson and McGeoch [10].  These codes, used in the 8th DIMACS 

Implementation Challenge, allowed generation of random TSP instances that followed 
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three different plans: uniform point, clustered points, and random distance matrices.  We 

modified the random distance matrix generator to give us some specific random 

problems.  These changes are explained in the next section.   

 

Testing was carried out on UNB’s 164-processor Sun V60 clustered computer, Chorus.  

Chorus consists of 60 slave nodes consisting of dual 2.8GHz Intel Xeon processors with 

2 to 3 GB of RAM.  Detailed information about the cluster can be found on UNB’s 

ACRL site [21]. 
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5 Experimental Results 
We were interested to see how well our lower and upper bounds performed, which cost 

matrix formulation gave the best results, and how, if at all, shaking improved our ability 

to find Hamiltonian cycles.  Finally, we attempted to solve as many problems from 

TSPLIB as we could. 

 

5.1 Lower and Upper Bound Heuristic Analysis 

5.1.1 Running Times and Accuracy on TSPLIB Problems 

We examined both the accuracy and the run time of our bounds.  10 trials were carried 

out on each problem from our TSPLIB problem set and averaged the results to create a 

single result for each graph.  Sample results can be found in Appendix A.  Figure 5.1 

summaries the run times of the lower bound heuristics, while figure 5.2 summaries the 

run times of the upper bound heuristics.  The run times for these bounds are as expected.  

Unsurprisingly, the BBSSP lower bound heuristic and LK upper bound heuristic are the 

most expensive heuristics.  The odd pattern the LK upper bound heuristic makes can be 

attributed to the fact that its run time is not solely dependent on the number of vertices 

but also the structure of the graph.  This effect is noted by Helsgaun [9]. 

 

For analyzing the accuracy of each heuristic the percent error of a value of a given 

heuristic result was taken against the optimal solution for that particular graph.  The 

results were plotted against the number of vertices.  Figures 5.3 and 5.4 summarize the 

results for the lower and upper bound heuristics respectfully.  Please note that the 

problem “brg180” was removed from the upper bound plots because of an outlier. 

 

It appears that the BBSSP and LK tour heuristics provide extremely good bounds on the 

BTSP solution.  In fact, for every problem attempted, with the exception of ts225, we 

found a lower bound equal to an upper bound, effectively finding the BTSP solution in 

the matter of minutes.   
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Figure 5.1: Run times of lower bound heuristics 
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Figure 5.2: Run times of upper bound heuristics 
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Figure 5.3a: Accuracy of lower bound heuristics (all problems) 
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Figure 5.3b: Accuracy of upper bound heuristics (problems of 1000 vertices or less) 
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Figure 5.4a: Accuracy of upper bound heuristics (all problems) 
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Figure 5.4b: Accuracy of upper bound heuristics (problems of 1000 vertices or less)  
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5.1.2 Analysis on Randomly Generated Instances 

With the majority of problems of TSPLIB effectively solved with little effort we turned 

toward a random instance generator to hopefully give us more difficult problems.  The 

instance generation codes we used, as already mentioned, came from the ones used in the 

8th DIMACS Implementation Challenge.  There is a standard set of random problems 

that a number of different TSP heuristics and exact solvers were asked to solve.  We 

attempted all the random problems of 10,000 vertices or less.  The results are given in 

Appendix C.  We were once again able to easily solve every problem but one to 

optimality using nothing more than the BBSSP heuristic result combined with the LK 

tour heuristic.  The one lone problem might be optimal, but no effort was made to run an 

exact solver on it due to its large size.  

 

We then made an attempt to try and construct problems we hoped would have a weak 

lower bound.  We theorized that perhaps random problems with a large range of costs 

might produce a weak lower bound with the BBSSP heuristic.  To this end, we modified 

the random distance matrix generation code to use a modulo function to restrict values to 

a given range.  We then generated a number of problems with 100, 500, 1000, 2500, 

5000, and 10,000 vertices, restricting the range of costs based upon the size of the 

problem according to the following equations: 

n          2n 22n nn              2/n 10/n nn log 2)(log nn

 

With five different seeds this gave us a total of 240 unique problems.  Of these 240 

problems, only one problem (with 100 vertices, range of ) seems to have a bottleneck 

solution that is not equal to the lower bound computed by the BBSSP heuristic.  This one 

lone problem converged to the upper bound calculated by the LK tour heuristic.   This 

solution was not confirmed with an exact solver, so it is possible a smaller bottleneck 

value exists.  However, our solver works quite well for small instances (discussed in the 

next section), so it is likely this solution is optimal.  Overall, it seemed that the range of 

costs did not affect the quality of the BBSSP heuristic.  

2n
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While this result was exciting, we still wanted to find problems where the upper and 

lower bounds we were calculating we not tight. The solution was to construct a cost 

matrix we were guaranteed not to calculate tight bounds on.  We once again modified the 

random distance matrix generation code to produce problems with cost matrices of the 

following form: 

 
A is a symmetric γγ ×  matrix with entries in the range ],1[ βα + .  B is a s×γ  matrix 

with entries in the range ],0[ α .  D is a symmetric ss ×  matrix with entries in the range 

],1[ βα + .  Furthermore, 2≥γ , , and 2≥s ns =+γ .   

 

We generated problem instances from sizes of 100 to 2500 for various values of α, β, and 

γ and tried solving them with our binary search algorithm.  Here are the averaged results 

for n = 100, α = 1000, β = 10000, and various values of γ over 5 trials: 

 

γ 
Lower 
Bound 

Upper 
Bound 

Unconfirmed 
Solution 

% Solution From 
Lower Bound 

% Solution From 
Upper Bound 

10 459 1427 1357 195.64% 4.90%
20 377 1299 1285 240.85% 1.08%
30 209 1217 1211 479.43% 0.46%
40 205 1064 1064 419.02% 0.00%
50 150 150 150 0.00% 0.00%
60 173 1095 1095 532.95% 0.00%
70 160 1223 1199 649.38% 1.96%
80 234 1270 1247 432.91% 1.82%
90 466 1463 1354 190.56% 7.44%

Table 5.1: Results with specially constructed matrix 

 

The other trials performed similarly.  This small problem size is a nice to look at because 

we can be fairly confident in the solution found, even without running an exact TSP 

γ rows 

s rows 

C =
A B 

BT D

γ columns s columns 
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solver to confirm it.  Without reading too much from this one sample, we notice that the 

solution found is certainly not equal to the lower bound as expected, except when s=γ .  

rder because it will not be 

ble to compute a tight upper and lower bound.  Furthermore, without running an exact 

.2 Cost Matrix Formulation Results 

We previously introduced five different ways of formulating a cost matrix to find 

lt act TSP algorithm then all five 

c gives 

ee 

lt of the extremely strong lower and upper bounds we were computing on 

SPLIB problems, we used the weaker 2-Max Bound and Node Insertion heuristics to 

d.  

ve 

 

 

 

It seems that when the dimensions of A and B are equal that the lower bound computed 

by the BBSSP heuristic is the solution. 

 

Problems of this nature are going to make our solver work ha

a

solver on these problems to confirm any solution it makes any analysis of our heuristics 

pointless.  In order to gain any knowledge of how well our algorithms tackle these sorts 

of problems time is needed to run an exact solver to find an optimal solution.  This is a 

very expensive operation, so no effort was made to confirm any of the solutions we 

found.  We therefore leave the analysis of this particular cost matrix for another thesis. 

 

4

Hami onian cycles in a graph.  If we were using an ex

should give us the same answer.  However, the quality of solutions the LK heuristi

us will be reliant on how we formulate the problem.  Therefore, we were interested to s

which formulation gave us the best results, as well as look at their respective running 

times.   

 

As a resu

T

ensure that our binary search method for arriving at a bottleneck solution was neede

For each problem in our TSPLIB problem set we performed 10 trials with each of the fi

cost matrix formulations described in table 3.1.   The solutions and running times for all

10 trials were averaged.  Since we had an optimum solution for all the problems in our 

TSPLIB problem set, we calculated the percent error from the calculated solution against

the optimum solution.  
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Figure 5.5a: Accuracy of cost matrix formulations (all problems) 
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Figure 5.5b: Accuracy of cost matrix formulations (problems of 1000 vertices or less) 
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Figure 5 la7397 .6a: Box plot of solutions for all five cost matrix formulations on p
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Figure 5.6b: Box plot of solutions for three best cost matrix formulations on pla7397 
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Figure 5.7: Mean run times of cost matrix formulations (all problems) 

 

Figure 5.5 illustrates the accuracy of each of the five cost matrix formulations.  Figure 5.6 

shows box plots of the solutions from each trial for each formulation calculated for the 

pla7397 problem, which was the largest problem in our problem set.  It’s quite clear that 

the Zero/Normal cost matrix formulation is giving the best results.  For problems less 

than 1000 vertices the Zero/One and Zero/Random formulations appear to be giving 

pretty good results as well.  Overall, the Normal/Infinity and Ordered Position 

formulations appear to be giving very poor results.   

 

Figure 5.7 shows that the running time of the Zero/Normal formulation is quite good as 

well when compared to the Zero/One and Zero/Random formulations.  It seems the other 

two formulations run much more quickly, but to the consequence of poor answers.  This 

more or less agrees with what Helsgaun observed [9]: problems that obey the triangle 

inequality are harder to solve (in the sense that they require more calculations) but their 

results are more accurate.  
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4.3 “Cost Shaking” Results 

In addition to evaluating the performance of each of the five cost matrix formulations, we 

wanted to know how well this idea of “shaking” the cost matrix could improve our 

solutions.  We made a single attempt to find a Hamiltonian cycle using the Zero/One 

formulation.  If a Hamiltonian cycle could not be found, we made a number of additional 

attempts with the Zero/Random formulation.  Three experiments consisting of no shake 

attempts, five shake attempts, and ten shake attempts were performed on problems from 

our TSPLIB problem set.  Additionally, an experiment was performed where we made 

five repeated attempts with the Zero/One formulation.  

 

The percent error difference from the optimal solution versus the number of vertices in 

the graph is summarized in figure 5.8.  Figure 5.11 summarizes the range of values for 

the pr2392 problem from TSPLIB.  This result is typical for the larger problems.  As we 

increase t dition, 

making repeated attempts with a Zero/Random cost matrix formulation appears to 

n 

(figure 

ch trial (figure 5.10).   The shape of 

e points in figure 5.9 unsurprisingly resembles the shape of the LK heuristic of figure 

 

cle that is not there, because it will still make the five or ten 

ttempts.   

he number of “shake” attempts the range of our solutions tightens.  In ad

produce better results than additional attempts with the same Zero/One formulation.  As 

we speculated earlier, the LK heuristic can sometimes get “stuck” at a certain place whe

trying to find a good TSP tour.  Introducing some randomness into the graph can 

sometimes help the LK heuristic find a better tour. 

 

The remaining figures summarize the mean run time for each LK heuristic call 

5.9), and the mean total run time for each binary sear

th

5.2.  Figure 5.10 shows that for problems of less than 1000 vertices that the difference in

run times will not be that significantly larger as we attempt more and more shakes.  The 

reason for this probably because the LK heuristic can easily find Hamiltonian cycles for 

problems less than 1000 vertices, so all four experiments will probably make a correct 

guess the first attempt.  The difference comes when the LK heuristic is making attempts 

at finding a Hamiltonian cy

a
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Figure 5.8a: Accuracy from performing shaking (all problems) 
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Figure 5.8b: Accuracy from performing shaking (problems of 1000 vertices or less) 
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Figure 5.9: Mean running times of LK heuristic 
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Figure 5.10: Mean total running time of BTSP binary search heuristic 
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Figure 5.11: A ch experiment 

 

Based on this data it might be best to determine the number of “shake” attempts with the 

Zero/Random formulation based upon the size of the graph.  As figure 5.8b shows, we 

tend to get just as good solutions for problems of less than 1000 vertices using five shake 

attempts as we do making ten shake attempts.  For problems of less than 100 vertices it is 

probably sufficient enough to make a single call without any shaking.  Implementing 

such a method could allow us to maintain the quality of the solutions while minimizing 

the total run time. 

 

4.3 Results on TSPLIB Problems 

Although our testing was limited to only problems less than 10,000 vertices, we 

attempted all the problems we could solve.  It appears the BBSSP lower bound heuristic 

is the solution for almost every problem.  This allowed us to find the solutions to the vast 

majority of the problems quite easily. 

 

 box plot of the solutions found for pr2392 for ea
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Five problems remain unsolved: linhp318, brd14051, pla33810, pla85900, rl11849.  The 

first is because, as already noted, Concorde does not support TSPLIB problems with 

fixed length edges.  It appears a memory limitation as a result of our implementation is 

preventing us from solving the other four large problems.  Hopefully some minor coding 

changes will allow us to attempt these larger problems. 

 

The BTSP solutions to the remaining problems can be found in Appendix B. 
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6 Conclusions and Further Study 
The BBSSP lower bound and related LK tour upper bound appear to be excellent for 

solving BTSP on many problems.  We have started study into problems where the 

BBSSP lower bound is weak.  Another interesting study might be into the probability the 

BSSP lower bound is the BTSP solution to a random graph.   

f the five cost matrix formulations we tested, the Zero/Normal one appears to work the 

best.  However, there are other possible formulations we could test.  It is possibly a 

different formulation could gives us even better results. 

 

The idea of “shaking” the cost matrix to help the LK heuristic find Hamiltonian cycles 

appears to be a worthwhile idea.  It certainly helps improve the results of our BTSP 

binary search heuristic. To strike a balance between accuracy and total run time it might 

be prudent to decide the number of shake attempts based upon the size of the graph.  

 

Two other areas of further study include solving BTSP on directed graphs, and solving 

the related Maximum Scatter Traveling Salesman Problem.  Most of the theory and 

techniques described in this paper can be applied to both problems. 

 

B

 

O
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Appendix A: Sample Results 
Note: All times are in seconds. 

Bounds Results for pla7379 
Trial # 2MB Time BCSSP Time NN Time NI Time LK Time 

1 69772 0.38 81438 48.83 453983 0.59 476539 15.39 136015 66.64 
2 69772 0.37 81438 48.68 453983 0.60 502499 15.09 81438 53.45 
3 69772 0.37 81438 48.23 453983 0.59 481471 15.42 136015 66.60 
4 69772 0.38 81438 48.36 453983 0.59 459952 15.17 81438 65.31 
5 69772 0.38 81438 48.27 453983 0.60 572071 7.67 81438 64.70 
6 69772 0.37 81438 48.30 453983 0.60 548436 23.05 136015 66.58 
7 69772 0.37 81438 48.28 453983 0.60 516047 22.54 136015 66.62 
8 69772 0.37 81438 48.31 453983 0.60 522750 22.95 136015 66.28 
9 69772 0.37 81438 48.24 453983 0.59 504970 29.75 81438 64.19 

10 69772 0.38 81438 48.36 453983 0.60 461946 7.58 136015 66.84 
Mean 69772 0.37 81438 48.39 453983 0.59 504668 17.46 114184 64.72 

StdDev 0 0.00 0 0.19 0 0.00 34747.7 6.72 26737.2 3.86 

 

Cost Matrix Formulation result (Zero/Normal fomulation) for pla7397: 

Trial Optimal 
Solution 

Lower 
Bound 

Upper 
Bound Solution %-Opt #LK 

Calls 
Mean Lk 

Time 
Total
Time

 
 

1 81438 69772 474232 102173 25.46% 18 66.8 1217.6 
2 81438 69772 564586 88814 9.06% 19 62.6 1212.6 
3 81438 69772 524107 102058 25.32% 19 66.4 1285.1 
4 81438 69772 555177 90359 10.95% 18 64.2 1187.2 
5 81438 69772 509099 88752 8.98% 18 65.2 1204 
6 81438 69772 548605 87914 7.95% 18 64.9 1191.9 
7 81438 69772 507583 121665 49.40% 18 68.2 1250.9 
8 81438 69772 492688 94493 16.03% 18 65.6 1210.7 
9 81438 69772 481728 88384 8.53% 18 64.3 1188.2 

10 81438 69772 549033 85960 5.55% 18 65.4 1208.3 
Mean 81438 69772 520684 95057.2 16.72% 18.2 65.36 1215.65 

StdDev 0 0 32450.1 10990.2 13.50% 0.42 1.55 30.59 

 

inary Search Heuristic result (5 “shakes” with 0/random cost matrix) for pr2392: 

Trial Optimal 
Solution 

Lower 
Bound 

Upper 
Bound Solution %-Opt #LK 

Calls 
Mean Lk 

Time 
Total 
Time 

B

1 481 401 6374 553 14.97% 46 39.60 1822.90 
2 481 401 5691 553 14.97% 36 38.60 1390.70 
3 481 401 7401 576 19.75% 49 40.10 1964.30 
4 481 401 6751 543 12.89% 35 38.90 1360.70 
5 481 401 8114 570 18.50% 38 39.10 1487.00 
6 481 401 7517 538 11.85% 50 39.50 1974.70 
7 481 401 5764 552 14.76% 45 39.50 1776.50 
8 481 401 8055 560 16.42% 46 40.60 1866.60 
9 481 401 7341 546 13.51% 37 38.60 1427.00 

10 481 401 6337 571 18.71% 39 39.40 1537.20 
Mean 481 401 6934.5 556.2 15.63% 42.1 39.39 1660.76 

StdDev 0 0 881.294 12.75234 2.65% 5.67 0.63 244.00 
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Appendix B: BTSP Solutions to TSP-LIB Problems 
optimal.  All these problems, with the exception of ts225, 

g a tour whose largest cost was equal to the lower bound 

given b b i 5 

solution was proven optimal  a l
 

A CITIES  T
8 _2

i5  9 
t4 9
t5

bayg29 29 GEO 111 

bier127 127 EUC_2D 7486 
zil58 58  14

80 180 MATRIX 30 
a14 GEO 8 
0 E  2 
0 EU  3 
 EU  0 
 E  8 
 EU  8 
1 EU  9 
5  6 

d2103  3 
d15112 15112 EUC_2D 1370 

1000 1000 D 93
1  13 

 EUC 16 
1 EUC 13 
 EUC 72 
0 EUC 30 
7 EUC 31 
5 EUC 28 
61 EUC 32 
 MA  93 
2 23 

gr17 17
gr21 21 GEO 355 
gr24 24 GEO 108 
gr48 48 GEO 227 
gr96 96 GEO 2807 
gr120 120 MATRIX 220 

All the solutions given here are 

were proven optimal by findin

y the biconnected bottleneck spanning su graph problem heur stic.  The ts22

 using Concorde’s ex ct so ver. 

N ME # TYPE SOLU ION 
a2 0 280 EUC D 20 
al 35 535 GEO 388
at 8 48 ATT 51  
at 32 532 ATT 229 

bays29 29 GEO 154 
berlin52 52 EUC_2D 475 

bra MATRIX 2 9 
brg1
burm  14 41
ch13 130 UC_2D 14
ch15 150 C_2D 9
d198 198 C_2D 138
d493 493 UC_2D 200
d657 657 C_2D 136
d129 1291 C_2D 128
d165 1655 EUC_2D 147

2103 EUC_2D 113

d18512 18512 EUC_2D 476 
dantzig42 42 MATRIX 35 
dsj
eil5

CEIL_2
EUC_2D

295 9 
51

eil76 76 _2D 
eil10 101 _2D 
fl417 417 _2D 4
fl140 1400 _2D 5
fl157 1577 _2D 4
fl379 3795 _2D 5
fnl44 4461 _2D 1
fri26 26 TRIX
gil26 262 EU

GEO 
C_2D 

282 
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NAME # CITIES TYPE SOLUTION 

530 
498 

kroD100 100 EUC_2D 491 
 D 0 

0 
0 

00 2 2D 
 2D 

1
3

13

500 
11

8 3
 7 8

4701 
2 498 

2 10 2129 
 2 481 

 

 13 1535 
1 2489 

 18
 59
 59
9 118

1 IX 

gr137 137 GEO 2132 
gr202 202 GEO 2230 
gr229 229 GEO 4027 
gr431 431 GEO 4027 
gr666 666 GEO 4264 
hk48 48 MATRIX 534 
kroA100 100 EUC_2D 475 
kroB100 100 EUC_2D 
kroC100 100 EUC_2D 

kroE100 100 EUC_2 49
kroA15 150 EUC_2D 392 

436 kroB15 150 EUC_2D 
kroA2 00 EUC_ 408 
kroB200 200 EUC_ 344 
lin105 05 EUC_2D 487 
lin318 18 EUC_2D 487 
nrw1379 79 EUC_2D 105 
p654 654 EUC_2D 1223 
pa561 5

442
61 MATRIX 16 

pcb442 EUC_2D 
pcb1173 73 EUC_2D 243 
pcb303 038 EUC_2D 198 
pla7397 397 CEIL_2D 14

3946 
38 

pr76 76 EUC_2D 
pr107 107 EUC_2D 7050 
pr124 124 EUC_2D 3302 
pr136 136 EUC_2D 2976 
pr144 144 EUC_2D 2570 
pr152 152 EUC_2D 5553 
pr226 226 EUC_2D 3250 
pr264 264 EUC_2D 
pr299 99 EUC_2D 
pr439 439 EUC_2D 2384 
pr100 02 EUC_2D 
pr2392
rat99 

3
99
92 EUC_2D 

EUC_2D 20 
rat195 195 EUC_2D 21 
rat575 575 EUC_2D 23 
rat783 783 EUC_2D 26 
rd100 100 EUC_2D 221 
rd400 400 EUC_2D 104 
rl1304 04 EUC_2D 
rl1323 323 EUC_2D 
rl1889 89 EUC_2D 896 
rl5915 15 EUC_2D 602 
rl5934 34 EUC_2D 896 
rl1184 49 EUC_2D 842 
si175 75 MATR 177 
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NAME # CITIES TYPE SOLUTION 
si535 535 MATRIX 

1 IX 
IX 

 IX 

 2

1 2378 
1
1
2
2

 1504 
22 1504 
09 13 16

4 1
 

Unsolved Problem 18, brd14051, pla33810, pla85900, rl11849 

227 
si1032 032 MATR 362 
st70 70 MATR 24 
swiss42 42 MATR 67 
ts225 225 EUC_2D 1000 
tsp225 25 EUC_2D 36 
u159 159 EUC_2D 800 
u574 574 EUC_2D 345 
u724 724 EUC_2D 170 
u1060 060 EUC_2D 
u1432 432 EUC_2D 300 
u1817 817 EUC_2D 234 
u2152 152 EUC_2D 105 
u2319 319 EUC_2D 224 
ulysses16 16 GEO 
ulysses 22 GEO 
usa135 509 EUC_2D 754 
vm1084 1084 EUC_2D 998 
vm178 784 EUC_2D 1017 

s: linhp3

40 



Appendix C TSP Solutions to Standard Random 
Problems 
All the solutions given here are 

optimal, as proven  existence of

tour (found by the LK tour upper 

bound heuristic) w rgest cost i

equal to the lower (found by t

BBSSP lower bound heuristic) 

 

Key: 

E = Uniform Poin

 = Clustered point 

 

Note: The solution to C10k.1 is just a 

lower and upper bound, not the optimal 

solution. 

 

For more information about these 

problems, please visit Johnson and 

McGeoch’s web site [10]. 

 

 

 

 

N PE SEED S SOLUTION 
C1k.0 C 1000 00 290552 
C1k.1 C 10001 00 335184 
C1k.2 C 10002 00 225295 
C1k.3 C 10003 00 416768 
C1k.4 C 10004 00 318930 
C1k.5 C 10005 00 260389 
C1k.6 C 10006 00 175740 
C1k.7 C 10007 00 301366 
C1k.8 C 10008 00 246519 
C1k.9 C 10009 00 208091 
C3k.0 C 3162 62 252245 
C3k.1 C 31621 62 167466 
C3k.2 C 31622 62 194007 
C3k.3 C 31623 62 180852 
C3k.4 C 31624 3162 180583 

0 161062 
C10k.1 C 100001 10000 [94139, 106864] 
C10k.2 C 100002 10000 121209 
E1k.0 E 1000 1000 64739 
E1k.1 E 10001 1000 67476 
E1k.2 E 10002 1000 88522 
E1k.3 E 10003 1000 59220 
E1k.4 E 10004 1000 68259 
E1k.5 E 10005 1000 61406 
E1k.6 E 10006 1000 68777 
E1k.7 E 10007 1000 70389 
E1k.8 E 10008 1000 57597 
E1k.9 E 10009 1000 68420 
E3k.0 E 3162 3162 39854 
E3k.1 E 31621 3162 37500 
E3k.2 E 31622 3162 35145 
E3k.3 E 31623 3162 44428 
E3k.4 E 31624 3162 36621 
E10k.0 E 10000 10000 20174 
E10k.1 E 100001 10000 22883 
E10k.2 E 100002 10000 20208 
M1k.0 M 1000 1000 9328 
M1k.1 M 10001 1000 8856 
M1k.2 M 10002 1000 11282 
M1k.3 M 10003 1000 11617 
M3k.0 M 3162 3162 3289 
M3k.1 M 31621 3162 3034 
M10k.0 M 10000 10000 1189 

: B

 by the  a 

hose la s 

 bound he 

t 

AME TY NODE
10
10
10
10
10
10
10
10
10
10

 31
 31

31
31C

M = Random distance matrix     C10k.0 C 10000 1000
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