
 1

Table of Contents
CHAPTER 1: INTRODUCTION ... 3

1.1 MOTIVATION AND OBJECTIVES... 3
1.2 OUTLINE ... 4

CHAPTER 2: A LOOK AT OPEN SOURCE DOCUMENTATION.. 5
2.1 INTRODUCTION ... 5
2.2 SURVEY OF LITERATURE .. 5

2.2.1 VLC Streaming How-To... 6
2.2.2 VideoLAN Streaming Features List ... 6
2.2.3 VLC User guide.. 7
2.2.4 VLC Updates.. 7
2.2.5 VideoLAN Wiki pages .. 7
2.2.6 VLC Knowledge Base (from the VideoLAN Wiki).. 7
2.2.7 VLC Command Line Help (from the VideoLAN Wiki) ... 7
2.2.8 VLC Play How-To.. 8
2.2.9 VLC API Documentation ... 8
2.2.10 VLC Frequently Asked Questions .. 8
2.2.11 VideoLAN Play How-To/Advanced Use of VLC (from VideoLAN Wiki) 8
2.2.12 VLC Doxygen Documentation.. 8
2.2.13 VLC Linux How-To Guide ... 9

CHAPTER 3: THE STRUCTURE OF VLC .. 10
3.1 OUTPUT MODULES ... 10
3.2 VIDEO FILTER MODULES .. 10
3.3 INPUT MODULES... 10
3.4 CODEC MODULES ... 11
3.5 DEMULTIPLEXER MODULES.. 11
3.6 USER INTERFACE MODULES ... 11
3.7 STREAM OUTPUT MODULES ... 12

3.7.1 Display Module.. 12
3.7.2 Standard Module.. 12
3.7.3 Transcode Module ... 13
3.7.4 RTP Module ... 13
3.7.5 Elementary Stream Module.. 14
3.7.6 Duplicate Module... 14

CHAPTER 4: CUSTOMIZATION.. 15
4.1 DEFAULT SETTINGS AND ACTIONS OF VLC.. 15
4.2 WHY CUSTOMIZE VLC? ... 15

CHAPTER 5: GENERAL SYNTAX GUIDE ... 17
5.1 INTRODUCTION ... 17
5.2 GENERAL ADVICE... 17

5.2.1 Troubleshooting ... 17
5.2.2 Operating System-Specific Advice ... 18
5.2.3 Video Output .. 18

5.3 SYNTAX .. 19
5.3.1 Notation Conventions... 19
5.3.2 All Purpose Command Template ... 19
5.3.3 Global Versus Item Specific Options ... 20
5.3.4 Input Stream... 20
5.3.5 Module Selection.. 21

 2

CHAPTER 6: IMPLEMENTATION .. 22
6.1 ENVIRONMENT SPECIFICATIONS ... 22
6.2 TEST CASES .. 22

6.2.1 File to Screen ... 23
6.2.2 Device (DVD) to Screen... 23
6.2.3 File to File (transcoding) ... 24
6.2.4 File to Network (UDP)... 29
6.2.5 File to Network (HTTP) ... 30
6.2.6 Network to Screen (UDP) .. 32
6.2.7 Network to Screen (HTTP)... 32
6.2.8 Network to File (any network type).. 32
6.2.9 Combinations ... 34
6.2.10 Video Filters... 36

CHAPTER 7: EVALUATION OF RESULTS.. 39
CHAPTER 8: CONCLUSIONS AND FUTURE WORK ... 40
BIBLIOGRAPHY .. 41
APPENDIX A: ANNOTATED BIBLIOGRAPHY .. 42
APPENDIX B: GLOSSARY OF TERMS... 44
APPENDIX C: TEST FILE SPECIFICATIONS.. 46
APPENDIX D: VLC KEYWORDS .. 48

DEMULTIPLEXERS .. 48
VIDEO CODECS... 48
AUDIO CODECS .. 49
MUXERS ... 50
VIDEO FILTERS... 51

APPENDIX E: COMMAND LINE OPTIONS... 53
VIDEO... 53
MISCELLANEOUS.. 53
CPU ... 54
DECODERS.. 54
INPUT ... 55
STREAM OUTPUT .. 55
FILE INPUT.. 56
FTP INPUT .. 56
HTTP INPUT ... 56
TCP INPUT.. 56
UDP/RTP INPUT... 57
AVI DEMUXER ... 57
CLONE VIDEO FILTER.. 57
FFMPEG AUDIO/VIDEO DECODER/ENCODER ((MS)MPEG4,SVQ1,H263,WMV,WMA) 57
RTP/RTSP/SDP DEMUXER (USING LIVE555)... 58
ASF MUXER ... 58
MP4/MOV MUXER... 59
MPEG TRANSPORT STREAM DEMUXER.. 59

APPENDIX F: CS4997 SUMMARY SHEET ... 60

 3

Chapter 1: Introduction
1.1 Motivation and Objectives
Video LAN Client (VLC) is an open source application used to manipulate a variety of
audio and video data. VLC is an incredibly versatile, highly portable multimedia player
that supports a very large number of audio and video formats (detailed in Appendix D),
as well as DVD and VCD playback, acquisition cards, and various streaming protocols.
However, if simply being used to play audio and video locally, VLC has no real
advantage over any other media player. VLC’s real strength is that it can also be used as a
server to stream in unicast and multicast on an IPv4 or IPv6 network everything that it is
able to read, via UDP, RTP or HTTP. [3] This stream can also be transcoded on the fly,
in real time, as it is being sent. Once the input stream has been received, it can be
manipulated in various ways and output either to the screen, a file, or the network. [4]

Because of this versatility, VLC can be a valuable research tool for providing network
performance measures. However, these performance measures are only relevant if the
exact operation of the program is known and they can be taken in context. Unfortunately,
reliable documentation describing the internal architecture of VLC is not readily
available. It is difficult to best make use of the program's capabilities without detailed
descriptions of its organization, implementation, and networking features.

The majority of documentation readily available does not address these concerns.
Specific tutorials and user guides are available to answer common questions, almost
always pertaining to the navigation of the user interface and the use of common
functions. They rarely address the advanced functions of VLC and never describe its
internal operations. The documentation that is available is written by the core VideoLAN
team of approximately two dozen people, without any contribution from the many
volunteer programmers who contribute significantly to the project. Because of this, the
documentation is written once and unable to be maintained by the small administrative
team, who are also responsible for overseeing all other aspects of the project. The
documentation quickly becomes out of date and incomplete.

This thesis includes a detailed annotated bibliography listing all current available
resources and describing their usefulness in order to provide a comprehensive reference
for future investigation into VLC. From these sources, as much of the correct, relevant
information as possible has been put together to form a cohesive report of the architecture
of VLC. Emphasis has been placed on the modules and functions involved in encoding,
decoding, and compressing data for transmission across a network and how specific
features of VLC can best be used to take advantage of the way in which these tasks are
performed. General advice on how to use the command line and properly form the
syntax is also given, along with generic templates to aid the user in creating their own
unique commands.

 4

A significant amount of testing has been performed to demonstrate the results gathered in
this report. As a demonstration of the problems with VLC’s official documentation, the
exact command line examples given are used as a starting point for testing the functions
of VLC. These examples are then analyzed and developed into proper syntax. Test cases
have been broken down into several categories based on the method of input and output
being used. The results of each command are predicted and then tested. Test results are
analyzed either simply by remarking whether or not the output reaches its destination or
(in the case of transcoding) by gathering information about the output file (most
importantly its container format, video codec, and audio codec) using the free, open
source program MediaInfo.

The results of this thesis are useful not only to researchers interested in using VLC as a
tool, but also to the open source community. However, this document is far from
complete and there is always a need for more documentation, especially for a project that
is constantly evolving.

1.2 Outline
The rest of this thesis is organized as follows:

• Chapter 2 gives a brief summary of the problems that inherently arise in open
source documentation and how these problems manifest in the focus project VLC.
It then discusses the strengths and weaknesses of the specific documents available
concerning VLC.

• Chapter 3 is a description of the structure of VLC, specifically its modular
design. These six main modules are key in understanding how to effectively use
VLC, as the command line syntax directly reflects this modular layout.

• Chapter 4 gives more in-depth answers to the basic questions about the use of
VLC: What exactly are the default actions taken by VLC in the typical case when
the user does not specify a course of action, and why would a user ever need or
want to change these actions and customize them?

• Chapter 5, following from the previous chapters, gives the user the tools to
customize VLC. These tools are presented in the form of general tips to
remember when using VLC for any purpose and general syntax templates that can
be used as a starting point to create custom commands.

• Chapter 6 uses the templates given in Chapter 5 to give specific test cases of
commands and the exact output generated by VLC. These examples are grouped
based on input and output methods (file, device, or network). Incorrect examples
are also given for demonstration purposes.

• Chapter 7 evaluates the test cases presented in the previous chapter and
summarizes the findings.

• Chapter 8 presents conclusions and suggestions for future work.

 5

Chapter 2: A Look at Open Source
Documentation
2.1 Introduction
In a project whose contributors number almost one hundred, span across nearly twenty
countries, and consist of mostly volunteers who simply enjoy coding, it is incredibly
challenging to create and maintain documentation that is correct, up-to-date, and
consistent. The potential problems that can arise when trying to achieve this are endless.

In one scenario, the programmers also contribute documentation, at least for the modules
or methods they are personally working on. Here, documents are all produced
independently by different people, without any global decisions or agreements on
terminology, style, and format. This leads to the misuse or inconsistent use of
terminology, discrepancies between explanations and instructions across documents, and
translation problems.

In the case of VLC, casual programmers (making up approximately 41% of the total
attributed team) do not contribute to any of the documentation; it is all written by the core
VideoLAN team of under two dozen people. While this allows for an increased
consistency, it also means that documents are written once, become obsolete, and, due to
time constraints, are never able to be rewritten. The “official” documentation (as
available on the VideoLAN website) is thus terribly outdated, though the average user is
unaware as it is not even indicated for what version a given document was written for, or
if it was ever updated. Often documents are hastily thrown together, leaving a large
percentage entirely blank, perhaps in the hopes that it would later be completed.

As with most open source projects, there is a greater need for volunteers capable of
putting together clear documentation than there is for programmers. Very few people
enjoy writing documentation in their spare time, but it is necessary for the success of a
project.

Because of this, gathering the relevant information from VLC’s sparse documentation is
very difficult. This thesis elaborates on the useful information that was found and
presents it in a clear, concise, manageable format. For anyone who wishes to consult
VLC’s available documentation, a complete survey of each resource’s strengths and
weaknesses is given below.

2.2 Survey of Literature
As a general overview of all available VLC documentation, it is essentially categorized
How-To’s. Arguably, having at least a few documents of this nature would be useful, if
they were not all outdated and misleading. As a starting point to begin learning about

 6

VLC, the command line examples as taken exactly from each of the official VLC
documents that serve as user guides were input and run. Regrettably, the only reaction
from VLC from any of these examples was to output a string of error messages (these are
detailed in Chapter 5). This problem arises from misleading documentation. The
command line interface is explicitly stated as being operating system independent, though
this is not the case. A detailed explanation for these results is given in Chapter 7.

It is also very frustrating how much the different documents overlap. Of course, they
were all written by the same small group of people, but the wording in two different
documents is often so similar as to be almost exact. This caused quite a bit of confusion
as it sometimes leads the reader to skip over a section, thinking that it has already been
read, when there is really additional useful information. There are also cases of
documents that appear to be entirely new because chapter titles were changed and
rearranged, but it turns out to be the same as a previous document, or in another case, two
documents merged together.

The majority of documentation is also woefully incomplete. It was very frustrating to
open a document and find all the chapter headings listed and organized, but the body of
the document was almost empty, consisting of entire chapters that contained only a “TO
DO” reminder. Some documents also explicitly state that they are completely outdated.

Following are a few details about each specific document available regarding VLC. They
have been ordered according to usefulness and their locations and reference information
can be found in Appendix A.

2.2.1 VLC Streaming How-To

VLC Streaming How-To is easily the most useful VLC document. It is basically a
streaming tutorial, but it contains explanations of basic concepts needed to understand
streaming, step-by-step streaming examples using the GUI and the Wizard for each major
operations system as well as advanced command line options (though this syntax for
these examples does not work for every operating system if taken exactly as shown), and
an example of each type of advanced streaming that VLC is capable of.

2.2.2 VideoLAN Streaming Features List

VLC’s extensive features list is a necessity for using any of VLC’s advanced features,
especially if you plan on using the command line. The GUI will automatically direct you
and only allow compatible options, but on the command line you will need this reference
to know what features are supported in what operating system, what type of multiplexing
is allowed when streaming to certain output methods, what audio and video codecs can
be used in what container format, and what output formats can be used for the
transcoding module.

 7

2.2.3 VLC User guide

The VLC User Guide, despite its title, is actually the document that is least like a tutorial.
It contains comprehensive lists of all modules available (video outputs, video filters,
audio outputs, input modules, demultiplexers, interface, codec, OS support, and
miscellaneous) and what options are enabled or disabled by default. The descriptions
given for each of the modules could be better; most are just a single redundant sentence.
This document also contains the best command line interface help section. The examples
given are very basic, but the syntax given does work as is in most cases. It also gives the
best explanation of how to actually use VLC’s modules using the command line.

2.2.4 VLC Updates

This document gives details of the differences between each version of VLC in case
certain features change or are not supported in certain versions. The changes are
described relative to the previous version and are grouped into categories. It is unknown
how complete this document really is as it was not used in this thesis.

2.2.5 VideoLAN Wiki pages

This site is an excellent idea in theory as it would be great to have all related
documentation in one central place. However, in reality, it is just deceptive. The links
listed cover all aspects of VLC; unfortunately almost all of them do not point to anything
or point to blank documents. For example, The Hacker’s Guide to VLC sounded
incredibly useful, but so far only contains headers without any content. The documents
that do exist are the official VideoLAN documentation copied to this new location.
Currently, both copies do agree, though this could become a problem in the future. There
are some useful documents here that do not exist anywhere else, including the Installing
VLC guide.

2.2.6 VLC Knowledge Base (from the VideoLAN Wiki)

These pages provide general information about necessary concepts and terminology
related to VLC; including codecs, file formats, protocols, hardware compatibility,
servers, video output, and interfaces. It was useful for basic definitions, but as with all
VideoLAN Wiki pages, there is a lot missing and left empty.

2.2.7 VLC Command Line Help (from the VideoLAN Wiki)

 8

This document gives the full list of all possible command line arguments and brief
descriptions of each. It is just the output of the complete command line help option, but
it is easier to look at and browse than accessing the help from the command line.

2.2.8 VLC Play How-To

This document is a tutorial on the use of VLC. It contains a lot of information covered in
other documents, specifically the VLC Streaming How-To and the VLC User Guide. It
does give very in-depth instructions of how to use some of the more advanced features of
VLC using the GUI, but that is basically its only contribution. Its Chapter 4 is taken
directly from the VLC User Guide, but with some information missing.

2.2.9 VLC API Documentation

This document is the official API documentation for VLC. It is widely rumored to be
incomplete, and is listed as incomplete on the VideoLAN site. The actual content is very
insufficient and unprofessional. In essence, it is a How-To for codec and filter
developers and only the information regarded as necessary for this purpose is given. It
contains lists of certain methods but they are not explained well. A lot of potentially
useful information is deemed unnecessary and intentionally left out.

2.2.10 VLC Frequently Asked Questions

Very few questions are actually addressed here and most have very simplified answers.
The questions themselves seem very random, ranging from very general and vague (such
as, VLC has strange behavior) to extremely advanced and specific (Where is VLC’s
config file?). The generic answer to almost every question about a problem with VLC is
to reset preferences, delete the config file, and restart the program. A few legal concerns
are addressed here that are helpful.

2.2.11 VideoLAN Play How-To/Advanced Use of VLC (from VideoLAN
Wiki)

This document is an exact copy of Chapter 4: Advanced Use of VLC of the VLC Play
How-To and is listed as being completely outdated.

2.2.12 VLC Doxygen Documentation

This is the documentation generated by Doxygen. It is nowhere near complete but may
be somewhat useful to developers.

 9

2.2.13 VLC Linux How-To Guide

All the chapters of this document are copied exactly from either the VLC User Guide or
the VLC Streaming How-To. It does not contribute any extra useful information, except
that it gives extra instructions on how to perform actions in VLS, though VLS is no
longer being developed or supported as its functionality has all been added to VLC and
improved. Chapters are arranged differently to make this document even more
confusing.

This document is an excellent example of the problems with open source documentation.
It copies an existing official document, puts it in a new, clumsy format, leaving out or
adding small amounts of information in the process. The changes made are minor
enough to make it incorrect, inconsistent and confusing. Even if the changes made are to
correct the original document, these changes should be brought to the attention of the
authors so the original document can be updated, or at the very least highlighted in the
new document and explicitly explained (for example, so the user knows a change was
made to accommodate a certain version). Posting a new, slightly different document in a
different location is just overloading users with even more irrelevant information to sift
through.

 10

Chapter 3: The Structure of VLC
In order to really understand how to use VLC, it is essential to be familiar with its design.
VLC uses a modular system, which allows new functions and formats to be easily added.
It also allows greater flexibility in development and integration, an important design
feature for a program that is developed concurrently by so many different people. Also,
the command line syntax and graphical user interface are modeled around the modular
system. Options are accessed by the module they are contained in.

Certain modules are not enabled by default, and must first be enabled before they can be
accessed. Depending on what release of VLC is being used, certain modules may not be
included with the program at all. The official release available from the VideoLAN
website contains all available modules, but due to copyright infringements, certain
releases of VLC packaged with certain open source operating systems do not contain any
modules that include proprietary formats. It is recommended to use the current stable
release from the official VideoLAN website to be sure access to all modules is available.

The main categories of modules are video and audio output, video filter, input, codec,
demultiplexer, and stream output. [3]

3.1 Output Modules
The video and audio output modules enable the system to display video to the screen and
output audio. The most common types of output are enabled automatically for each
operating system and can handle the majority of output systems. [3]

3.2 Video Filter Modules
The video filter modules are always enabled, allowing the user to perform modifications
on the rendered image, such as transforming or rotating the video, inverting color, cutting
the video into several split windows, adjusting contrast and brightness, cropping, cloning,
or distorting the image. [3]

To use video filters when outputting to a screen, see the Video Filters section of
Appendix D for the syntax and keywords to use.

3.3 Input Modules

 11

Input modules allow VLC to read its input streams from different sources. DVD input,
Video CD input, Audio CD input, and SLP input are enabled by default and HTTP, FTP,
UDP, MMS and file input are always enabled. There are a few other less common input
modules that are disabled by default, such as input from acquisition cards. [3]

Input modules are specified by the input stream. If the input stream is a file name, the
file module will be used. This module is a bit different from the others in that VLC is not
detecting the best option to use; there is only one possible correct module and it must be
specified by the user so VLC knows where to access the input stream.

The proper syntax to access each type of input is described in Chapter 5, section 5.3.4.

3.4 Codec Modules
Codec modules add support for compression formats, so VLC is able to decompress
streams in order to read them and compress streams into another format when
transcoding. [3]

To force certain codecs to be used in priority when opening an input stream, see the
Video and Audio Codec sections in Appendix D for the syntax and keywords to use.

3.5 Demultiplexer Modules
In a multimedia stream, the video and audio data streams are contained together in a
container format. Demultiplexers separate the streams out of the container so they can be
decoded and processed individually. All demultiplexer modules are always enabled. [3]

To force a certain demultiplexer to be used in priority when opening an input stream, see
the Demultiplexer section in Appendix D for the syntax and keywords to use.

3.6 User Interface Modules
It is important to mention that various user interface modules exist that may be useful,
notably the HTTP interface that allows VLC to be accessed and controlled from a web
browser. However, they are not important to the focus of this thesis, sending and
receiving data streams, and thus will not be covered in detail.

 12

3.7 Stream Output Modules
The stream output modules allow any stream capable of being input and read by VLC to
be output to a file or the network, as opposed to the traditional screen output. Different
options and processing can be applied to the stream depending on the output method
selected. Modules can also be chained and duplicated to combine features. The stream
output modules currently available include display, standard, transcode, rtp, es, and
duplicate. Each of these will be discussed in detail below.

3.7.1 Display Module

This module can be used to display the stream to the screen. This is most commonly
used in conjunction with the duplicate module, so the stream can be viewed locally while
being saved or streamed. [1]

3.7.2 Standard Module

This is the most versatile streaming module and will usually be used in every command
chain. It is used to send the stream via any of the output modules or save the stream to a
file. The three mandatory options for this module are the access, mux, and dst options.
[1]

The access option sets the medium used to save or send the stream. These include saving
the stream to a file, streaming to a UDP unicast or multicast address, streaming over
HTTP (a secured SSL connection can be used if desired), streaming using the Microsoft
MMS protocol, and streaming over RTP. However, to stream over RTP, it is a better idea
to use the RTP module described later as it includes more options that are specific to
RTP. [1]

The mux option sets the container format used for the resulting stream. Available options
are the MPEG2/TS muxer, the MPEG2/PS muxer, the standard MPEG1 muxer, the ogg
muxer, the Microsoft asf muxer (also has a special version for MMSH streaming), the
Microsoft AVI muxer, and the multipart jpeg muxer. [1] Note that options selected must
be compatible. Certain codecs are compatible with only certain container formats, and
certain access methods require certain container formats. It is best to check with the
VideoLAN Streaming Features [5] website as some formats have limited compatibilities.
Available mux options and a complete description of each are listed by keyword in the
Muxer section of Appendix D.

The dst option specifies the destination of the stream. This is entirely dependent on the
access method selected. If saving to a file, the dst option would be the complete path of
the file to save to. If streaming to the network, dst would be the unicast or multicast
address and the port VLC should stream to. [1]

 13

Other non-compulsory options are available to have VLC send Session Announcement
Protocol (SAP) announcements.

3.7.3 Transcode Module

This module is used to re-encode the audio and video of a stream using different codecs
and bit rates. Additional adjustments can also be made during transcoding, such as
scaling, deinterlacing, cropping, or adjusting subtitles. Transcoding is always used in
conjunction with another module in order to use the resulting output of the transcoded
stream. Usually this is to save the transcoded stream to a file or stream it to the network.
Depending on the input and output methods and the parameters set, transcoding can
require a lot of CPU power. If the transcoding is being done locally (both input and
output methods do not involve the network or a capture device), the transcoding can be
done at the pace of the system. However, if the input or output methods do not allow
pace control, transcoding is done dynamically in real time. [1]

Video options include specifying the compression format the video data of the input
stream should be changed to, setting the bit rate of the transcoded video stream, setting
the encoder to use to encode the video stream, setting the frame rate of the transcoded
video, cropping the video, scaling the video, and deinterlacing interlaced video streams
before encoding. [1]

Audio options include specifying the compression format the audio tracks of the input
stream should be changed to, setting the bit rate of the transcoded audio stream, setting
the encoder to use to encode the audio stream, setting the sample rate, setting the number
of audio channels of the resulting audio stream, specifying the subtitle format, setting the
number of threads to use to encode the streams, and syncing the audio to the video by
dropping or duplicating video frames. [1]

Note that options selected must be compatible. Certain codecs are compatible with only
certain container formats (which will need to be specified to send or save the transcoded
stream), and certain access methods require certain container formats. It is best to check
with the VideoLAN Streaming Features [5] website as some formats have limited
compatibilities.

3.7.4 RTP Module

This module is used to stream over RTP. It also allows for RTSP support. Available
options for this module are dst, the destination UDP address, mux, the container format to
be used (note that only ts and raw, no encapsulation, are possible values for RTP
streams), ttl, the TTL (Time to Live) of the sent UDP packets, sdp, how the stream’s SDP
(Session Description Protocol) file should be made available, and port, the UDP port
used to send the first elementary stream. Separate port options are also available for

 14

audio and video individually. There are also additional options for giving additional
information about the stream, such as a name and description. [1]

3.7.5 Elementary Stream Module

The elementary stream module allows VLC to process the audio and video streams
separately. This module has two separate access, mux, and dst options, one for video and
one for audio. As with the standard module, the access options set the medium used to
save or send the stream, the mux options select the container format for the streams, and
the dst options specify the path or address of the destination based on the access methods.
[1]

3.7.6 Duplicate Module

The duplicate module can be used to duplicate the stream and process it through several
different chains. The only option this module takes is dst, but multiple dst options must
be specified for the stream to actually be duplicated. Any of the stream output modules
described earlier can be used as parameters of this option. A non-compulsory select
option can also be set to duplicate only certain elementary streams. [1]

 15

Chapter 4: Customization
4.1 Default Settings and Actions of VLC
VLC is designed to detect the best choice of action for any file. It selects the best output
module (this will depend on your operating system), the appropriate demultiplexer and
decoder, and takes advantage of whatever hardware it can. A file will always be
streamed and opened as is (in the current container and compression format) if it is not
being transcoded.

The command line interface and graphical user interface are both available by default.
The command line is the most powerful and flexible interface, allowing the user the
greatest control over the program, and the graphical user interface is the most user-
friendly, giving the user access to a Wizard and automating input, output, transcoding,
and filters.

Most of VLC’s options and modules are enabled by default and directly available. Those
that are enabled by default are that way for a reason; they exist to take advantage of a
certain resource if possible, and do not cause any harm if not. Therefore, there is no
reason to ever disable these options, though it is always possible to.

For example, all of the CPU command line options, listed in Appendix E, are enabled by
default to take advantage of any special hardware features that might be available. If
these features are not supported, they are simply not used. Also, all demultiplexer
modules are enabled by default to allow VLC to read as many container formats as
possible. There would be no reason to disable any of these modules, as if a certain
format is not required, it does no harm to still have access to it.

4.2 Why customize VLC?
The question that naturally follows from the previous section is, if VLC can detect the
best output module, the appropriate demultiplexer and decoder, and takes advantage of
whatever hardware it can, why would the user want to tamper with any of its options? To
put it simply, VLC is not perfect. While it always makes an attempt to detect the best
choices for a file it is opening, sometimes there are problems and these settings cannot be
detected automatically. Also, there are advanced features of VLC that require certain
options to be selected, such as for streaming and transcoding a file. [3]

In essence, the user does not really ever choose a demultiplexer or a decoder. However,
VLC will allow you to set options to force certain ones to be used in priority. Therefore,
VLC will attempt to use those demultiplexers/codecs first, and then check the rest for
compatibility.

 16

Choosing a multiplexer and encoder is necessary when you are transcoding (changing the
encapsulation and compression) a file because you want to change the file’s format. You
can also choose these options during streaming if you want to transcode the file as it is
being sent. Transcoding a file while streaming requires a bit more planning; the
transformation must be one that can be done efficiently by your CPU because it is
transcoding in real time as it sends the video. If possible, it is always better to transcode
to a file first and then stream the transcoded file. This removes the time constraints and
will increase quality and performance, especially if your CPU is slow.

Sometimes it is necessary to transcode a file a certain way because it is a more common
format (can be opened by a wider variety of media players). VLC is often used to
transcode less compatible file types (ones that are played by very few players) into a
more common format. Sometimes this will even require that a codec module be enabled
if the format is especially uncommon (it is supported by VLC but is disabled by default).
This is especially important if the file is intended to be streamed, so the clients do not
require a specific media player to receive the stream. Transcoding a file to a format that
has a smaller bit rate may also be important if planning to stream a file, as it will be faster
to send and improve performance.

In certain cases, it may be necessary to customize the video output module (using one of
the output types that is usually disabled) if you have an obscure video card or output
system. This applies equally to audio output.

To receive input from any type of acquisition card, the appropriate video input module
must be enabled, as all of this type of input module is disabled by default.

Another common option is to select a different interface. VLC provides eight different
user interfaces, each with its own strengths.

In the next section, I will describe how to access these options effectively using a
standard, generic template that will easily lend itself to customization so any desired
effect can be achieved.

 17

Chapter 5: General Syntax Guide
5.1 Introduction
The goal of this chapter is to present various guidelines and general examples to give the
user a template to work from to create custom commands. Specific examples and their
outcome will be examined in Chapter 6.

For the duration of this document, examples and instructions will be provided using only
VLC’s command line interface. This is for three main reasons: First, the command line
instructions are supposedly common to all operating systems (this will be examined in
detail later), unlike the graphical user interface (GUI) which is different for each
platform. Second, the GUI is fairly intuitive, so an adept user (with the proper
understanding of VLC’s modules) should be able to easily navigate it. Third, the GUI is
more likely to experience significant changes between versions, while the command line
interface remains more consistent (changes are primarily due to the addition of features,
not changing the syntax of current features). Finally, there are certain features that are
only accessible from the command line.

Before restricting discussion entirely to the command line interface, there are a few
things that should be noted about the GUI. VLC provides an excellent
Streaming/Transcoding Wizard which is very helpful. It is well laid out and only allows
the user to select compatible options. It is highly recommended, even for tasks that
require a lot of customization. Available options are grouped by modules (as they are in
Chapter 3) to make them easier to find and understand.

The following section gives general advice for using VLC’s command line interface.

5.2 General Advice
There are a few important things to make note of when using VLC and the command line
interface.

5.2.1 Troubleshooting

As an initial troubleshooting step whenever VLC is exhibiting strange behaviour,
especially all of the sudden, the best thing to do is reset VLC’s preferences (it has not yet
been discovered if this is possible using the command line and may have to be done using
the GUI), delete the configuration file, and restart the program [4].

It is always beneficial to add the following option to increase the verbosity of VLC’s
messages:

 18

 -vvv

It does not affect any other options and is useful for getting feedback about why a
command does not work.

5.2.2 Operating System-Specific Advice

While command line syntax is consistent across the different operating systems,
Windows users will have to use the following syntax:

 --option-name=“value”

instead of:

 --option-name=value

which is allowed by the other operating systems. [2] This is to avoid problems with
certain characters that Windows recognizes as special characters. Placing the value
inside quotation marks forces it to be taken as the value.

Users with a UNIX based operating system will have to enclose their stream output
chains in single quotes for the command to be recognized.

Certain commands that deal with modifying VLC’s modules under UNIX based
operating systems require root access.

5.2.3 Video Output

Video filters refer to any postprocessing done to the video immediately before it is
displayed. Therefore, video filters only apply to the on screen display and thus cannot be
streamed. They only format how your video is displayed once VLC receives it [2]. In
order for filters to take effect on the client machine, they would have to be set on the
client machine.

The user may wish to consider using the GUI to apply video filters, as it is very
straightforward and is a hassle to do on the command line. By opening the Settings menu
and selecting Extended GUI, all available video filters are conveniently laid out on the
main interface so the direct consequences of adding and adjusting filters can be seen
immediately.

To play the playlist items continuously, add the

 --loop

option.

 19

5.3 Syntax
These examples follow directly from the modules and options described in Chapter 3.

5.3.1 Notation Conventions

For the remainder of this thesis, regular expression notation will be used to describe
generic commands.

Open and close square brackets (“[]”) are used to enclose portions of a command that
are optional.

The Kleene star (“*”) is used to denote portions of a command that may appear any
number of times, or not at all.

5.3.2 All Purpose Command Template

This is the general syntax template that should be used for any command [1]:

 vlc input_stream --sout=#module{option=parameter[{parameter-

 optionlist}][,option2=parameter]*}[:module{option1=parameter,opt
ion2=parameter}]*

This template will be easier to understand VLC’s modules and the options associated
with them have been described.

A condensed form of this syntax can also be used, though it is not as flexible and cannot
be passed as many options [1]. Access, mux, and dst are the options are described in
Chapter 3, section 3.7.2.

 vlc input_stream --sout access/mux:dst

An alternative syntax template is also given, but it should never be used. It does not
work as expected and does not have an equivalent directive to duplicate output, as is
easily implemented using the syntax above and the duplicate directive. This alternative
syntax is shown below:

 vlc input_stream --sout-module1-option1=parameter [--sout-
module1-option2=parameter]* [--sout-module2-option1=parameter --
sout-module2-option2=parameter]*

 20

5.3.3 Global Versus Item Specific Options

Options can either be set as global (set for the duration of the program and apply to all
streams) or item-specific (apply only to the stream directly before it and override any
previous global settings).

Global options are set with the following syntax:

 --option

Item specific options are slightly different:

 :option

Global options can be specified in any order (as they will be applied to all streams
anyway) but item-specific options must be placed immediately after the applicable
stream. [2]

Examples of using item specific and global options:

 vlc input_stream1 :option1 input_stream2

This command will apply option1 only to input_stream1 and input_stream2 will remain
default. [2]

 vlc --option1 input_stream1 input_stream2

Alternatively, this command will apply option1 to both input streams. [2]

5.3.4 Input Stream

Multiple input streams can be specified on the command line. They will be enqueued in
the playlist in the order they were listed. An input stream is specified using the following
syntax.

File [file://]file

file is the complete path of the file to open
HTTP stream http://ip:port/file
FTP stream ftp://ip:port/file
MMS stream mms://ip:port/file
Screen capture screen://
DVD [dvd://][devicepath]

devicepath is the DVD drive letter, followed by a colon
Simple DVD (no menus) [dvdsimple://][devicepath]

devicepath is the DVD drive letter, followed by a colon

 21

VCD [vcd://][devicepath]
devicepath is the CD drive letter, followed by a colon

Audio CD [cdda://][devicepath]
devicepath is the CD drive letter, followed by a colon

UDP stream udp:[[<source address>]@[<bind address>][:<bind port>]]
[4]

5.3.5 Module Selection

For the additional modules, VLC will usually choose the most appropriate option
available. To force a specific choice, use the following syntax.

 --intf module

This option selects the interface module that will be launched as the main interface.

 --extraintf module

This option selects select extra interface module that will be launched in addition to the
main interface. This is useful for accessing VLC’s control interfaces.

 --aout module

This option selects the audio output module.

 --vout module
 --V module

Both of these options (alternative syntax) select the video output module. [2]

In the following chapter, specific command line input examples for various combinations
of input and output types will be given to demonstrate the correctness of the syntax given
in this chapter. They will also serve as more concrete examples to give a better
understanding of using VLC’s command line interface.

 22

Chapter 6: Implementation
The exact commands used to test and demonstrate VLC’s modules will now be detailed,
along with the precise specifications required to reproduce all of these test cases.

6.1 Environment Specifications
The following details the specifications of the systems used as client and server, and their
connection.

Client Computer
Operations System: Windows XP Professional SP3
Processor: AMD Athlon Processor, 1.00 GHz
Memory: 1 GB of RAM
VLC Release: 0.8.6a

Server Computer
Operating System: Windows XP Professional SP2
Processor: AMD Athlon 64 Processor, 1.81 GHz
Memory: 512 MB of RAM
VLC Release: 0.8.6a

Network Connection
A local area network connected through a 100 megabit full duplex unmonitored switch

To test the output of transcoding operations, the open source program MediaInfo
(v0.7.4.5) was used. It displays container and codec information for each audio and
video stream, along with specifics of each audio and video stream and is available here:
http://mediainfo.sourceforge.net/en

The specifications of the input files (as provided by MediaInfo) are available in Appendix
C.

6.2 Test Cases
The test cases have been grouped by input and output methods. The three standard input
and output methods are file, device, and network. The test cases cover all combinations
of these three methods that VLC supports.

A brief description of the intended purpose of each command is given, then the exact
command is given as it was input, and finally a description of the results, including a
general description of the output (only applicable if the output device is the screen), any
error messages produced by VLC, specifications of the output as determined by

http://mediainfo.sourceforge.net/en

 23

MediaInfo (only applicable if the output method is file), and an overall decision of
whether or not is was successful.

Though it is not shown for each command, the option

 -vvv

is added to the beginning of each command that was input to increase the verbosity of
VLC’s messages.

6.2.1 File to Screen

General syntax form:

 vlc my_file

VLC recognizes the file type automatically and opens the file. If it does not recognize
your file type, you can tell VLC what codec to use in priority with the

 --codec codec_module

option. For example, to play an avi file, use:

 vlc --codec avi C:\VLCTest\Sliders4.avi

However, even if the codec you specify is wrong, VLC will check that codec first and
then find the proper one, so it can still open the file. Therefore, the syntax:

 vlc --codec ffmpeg C:\VLCTest\Sliders4.avi

will still open the file and play it correctly.

6.2.2 Device (DVD) to Screen

General syntax:

 vlc dvd://[device]
 vlc dvdsimple://[device]

If your DVD drive uses the default path (/dev/dvd on GNU/Linux operating system or D:
on Windows operating system) it is not necessary to specify it.

To open a DVD with menus:

 vlc dvd://

 vlc dvd://D:

 24

Both of these commands open the DVD to the main menu.

To open a DVD without menus (begin playing the DVD immediately):

 vlc dvdsimple://

 vlc dvdsimple://D:

Both of these commands begin playing the content of the DVD automatically without
recognizing any menus.

6.2.3 File to File (transcoding)

General syntax:

 vlc input_stream --
 sout=#transcode{vcodec=<string>,vb=<string>,acodec=<string>,ab=<s
 tring>}:duplicate{dst=std{access=file,mux=<string>,dst=<string>}}

 vlc input_stream --
 sout=#transcode{vcodec=<string>,vb=<string>,acodec=<string>,ab=<s
 tring>,access=<string>,dst=<string>}

There are additional options available for this module, but these are the most commonly
used.

This is the exact syntax given in VLC’s documentation to transcode a file to an example
format [1]:

 vlc input_stream --sout
 '#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128,deinterlace}’

This was testing using the DVD drive as the input stream as follows:

 vlc dvdsimple://D: --sout
 '#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128,deinterlace}’

The layout of this syntax is incorrect (the single quotes are unnecessary, an equals sign is
missing between sout and #transcode, and no destination is specified) and the following
error message was produced:

stream_out_standard error: no access _and_ no muxer (fatal error)
main error: stream chain failed for
`std{mux="",access="",dst="'#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128,deinterlace}'"}'
main error: cannot start stream output instance, aborting

In the following properly formatted example, input is taken from the DVD drive and
output to a file. A random file extension “.xyz” is used to test whether the file extension

 25

needs to be in agreement with the container format indicated by the multiplexer (the mux
option), as specified in VLC’s official documentation. [4]

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=mp4v,vb=1024,acodec=mpga,ab=192}:duplicate
 {dst=std{access=file,mux=ts,dst="C:\KATETEST.xyz"}}

The output was saved to the proper file. The file extension is not required to match the
container format as VLC was still able to play this file properly as is. This is the output
of MediaInfo for the newly transcoded file. All specifications are in agreement with the
given transcoded file, except for a slight adjustment in the video bit rate. The desired bit
rate was 1024 but is reported as being 934.

 General
 Complete name : C:\VLCTest\KATETEST.xyz
 Format : MPEG-4 Transport
 Format/Family : MPEG-4
 File size : 11.3 MiB
 PlayTime : 1mn 22s

Bit rate : 1148 Kbps

 Video
 Codec : MPEG-4 Video
 PlayTime : 1mn 22s
 Bit rate : 934 Kbps
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 4/3
 Standard : NTSC
 Resolution : 8 bits
 Interlacement : Progressive

 Audio #0
 Codec : MPEG-1 Audio layer 2
 PlayTime : 1mn 22s
 Bit rate : 192 Kbps
 Bit rate mode : CBR
 Channel(s) : 2 channels
 Sampling rate : 48 KHz
 Resolution : 16 bits

Video0 delay : -33ms

After executing the exact same statement, but changing the video bit rate to 800
(vb=800), this is the output of MediaInfo for the newly transcoded file. Again, all
specifications are in agreement with the given transcoded file, except for a slight
adjustment in the video bit rate. The desired video bit rate was 800 but is reported as
being 742. This suggests that there are certain bit rates that are standard, and VLC
adjusts the input bit rate to correspond to the closest standard bit rate.

General #0
 Complete name : C:\VLCTest\KATETEST.xyz
 Format : MPEG-4 Transport
 Format/Family : MPEG-4

 26

 File size : 9.36 MiB
 PlayTime : 1mn 22s
 Bit rate : 952 Kbps

Video #0
 Codec : MPEG-4 Video
 PlayTime : 1mn 22s
 Bit rate : 742 Kbps
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 4/3
 Standard : NTSC
 Resolution : 8 bits

Interlacement : Progressive

Audio #0
 Codec : MPEG-1 Audio layer 2
 PlayTime : 1mn 22s
 Bit rate : 192 Kbps
 Bit rate mode : CBR
 Channel(s) : 2 channels
 Sampling rate : 48 KHz
 Resolution : 16 bits

Video0 delay : -33ms

The following transcoding example is using a video codec that is incompatible with the
container format, as shown on the VideoLAN Streaming Features website [5]. This file
should not transcode properly, or at least the video should not transcode properly. The
following command was input:

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=h264,vb=512,acodec=mp3,ab=250}:duplicate{d
 st=std{access=file,mux=ogg,dst="C:\VLCTest\KATETESTogg.xyz"}}

The file was saved to the proper location and did play in VLC. The correct audio was
output but no video was displayed. This error message was output during transcoding:

main error: cannot add this stream
stream_out_transcode error: cannot add this stream

This is the output of MediaInfo for the newly transcoded file. Note that the audio and
general information are all as specified for the transcoded file:

General #0
 Complete name : C:\VLCTest\KATETESTogg.xyz
 Format : Ogg
 File size : 2.58 MiB
 PlayTime : 1mn 24s
 Bit rate : 256 Kbps

Audio #0
 Codec : MPEG-1/2 L3
 Codec/Family : MPEG-1
 Codec/Info : MPEG-1 or 2 layer 3
 Bit rate : 256 Kbps

 27

 Channel(s) : 2 channels
 Sampling rate : 48 KHz

The following transcoding example uses compatible codecs and container format and
should transcode without and errors. The following command was input:

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=theo,vb=512,acodec=mp3,ab=192}:duplicate{d
 st=std{access=file,mux=ogg,dst="C:\VLCTest\KATETESTogg2.xyz"}}

The file was saved to the proper location, though transcoding was significantly slower
than in previous tests. The newly transcoded file plays properly in VLC (both video and
audio). This is the output of MediaInfo for the newly transcoded file and corresponds
correctly to the specifications given for the transcoded file:

General #0
 Complete name : C:\VLCTest\KATETESTogg2.xyz
 Format : Ogg
 File size : 6.61 MiB

Video #0
 Codec : Theora
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 4/3
 Frame rate : 29.970 fps
 Standard : NTSC

Audio #0
 Codec : MPEG-1/2 L3
 Codec/Family : MPEG-1
 Codec/Info : MPEG-1 or 2 layer 3
 Bit rate : 192 Kbps
 Channel(s) : 2 channels
 Sampling rate : 48 KHz

The following three commands were input separately in an attempt to test the alternative
syntax method described in VLC’s official documentation [1]. All three commands are
meant to transcode the DVD input stream and save it to a file. Each command has slight
variations in an attempt to tweak it to receive the proper results.

 vlc dvdsimple://D: --sout-transcode-vcodec=mp4v --sout-
 transcode-vb=1024 --sout-transcode-acodec=mpga --sout-transcode-
ab=192 --sout-standard-access=file --sout-standard-mux=ts --
sout-standard-dst=”C:\KATETEST2.xyz”

 vlc dvdsimple://D: :sout-transcode-vcodec=mp4v :sout- transcode-
vb=1024 :sout-transcode-acodec=mpga :sout-transcode-ab=192
:sout-standard-access=file :sout-standard-mux=ts :sout-standard-
dst=”C:\KATETEST2.xyz”

 28

 vlc dvdsimple://D: :sout-transcode-ab=192 :sout-standard-
access=file :sout-standard-mux=ts :sout-standard-
dst=”C:\KATETEST2.xyz” :sout-transcode-vcodec=mp4v :sout-
transcode-vb=1024 :sout-transcode-acodec=mpga

All of these commands produce the same incorrect effect. The stream is not output to a
file, but displayed to the screen. No messages are displayed by VLC in the message log
despite including the option for increased verbosity.

Files can be transcoded and displayed locally, though this has no real use and the output
cannot be tested. The following command transcodes a DVD input stream and displays it
to the screen.

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=mp4v,vb=1024,acodec=mpga,ab=192
 }:duplicate{dst=display}

A file can also be transcoded and sent to the network. In the following example, a DVD
input stream is transcoded and sent to a unicast UDP address.

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=h264,vb=1024,acodec=a52,ab=192}:duplicate{
 dst=display,dst=std{access=udp,mux=ts,dst=192.168.2.4}}

To test the transcoded file, the stream was received on the client side, displayed, and
saved to a file using the following command.

 vlc udp:
 :sout=#duplicate{dst=display,dst=std{access=file,mux=ts,dst="C:\
 KateLovesVLC.xyz"}}

This produces a file that is recognized and played correctly by VLC, both audio and
video. However, for an unknown reason, MediaInfo does not recognize the video stream.
It is possible that this video codec (H264) is not recognized by MediaInfo. This codec is
compatible with the container format based on the compatibility tables given in
VideoLAN’s Streaming Features website [5]. The container format and audio
information are all as specified. This is the MediaInfo output for the file:

General #0
 Complete name : G:\KateLovesVLC.xyz
 Format : MPEG-1 Transport
 Format/Family : MPEG-1
 File size : 3.28 MiB
 PlayTime : 1s 935ms
 Bit rate : 14 Mbps

Audio #0
 Codec : AC3
 PlayTime : 1s 935ms
 Bit rate : 192 Kbps
 Bit rate mode : CBR
 Channel(s) : 2 channels
 Sampling rate : 48 KHz

 29

 ChannelPositions : L R

This example demonstrates the compact syntax for the transcode module. The following
command should transcode the DVD input stream into MP4.

 vlc dvdsimple://D:
 :sout=#transcode:std{access=file,acodec=mp4a,vcodec=mp4v,mux=mp4,
 dst=“C:\VLCTest\transcodeTest.abc”}

The syntax was modified slightly (url option was changed to dst) to test the transcode
module’s options.

 vlc dvdsimple://D:
 :sout=#transcode:std{access=file,acodec=mp4a,vcodec=mp4v,mux=mp4,
 url=“C:\VLCTest\transcodeTest.abc”}

Both commands did not produce any output and VLC gave this error message:

access_output_file error: cannot open `“F:\VLCTest\transcodeTest.abc”' (Invalid argument)
stream_out_standard error: no suitable sout access module for `file/mp4://“F:\VLCTest\transcodeTest.abc”'
stream_out_transcode error: cannot create chain
main error: stream chain failed for
`transcode:std{access=file,acodec=mp4a,vcodec=mp4v,mux=mp4,dst=“F:\VLCTest\transcodeTest.abc”}'
main error: cannot start stream output instance, aborting

6.2.4 File to Network (UDP)

General syntax:

 vlc input_stream --sout udp:ip_address

 vlc input_stream --sout=std{access=udp,mux=mux_module,dst=ip_address}

Note that the ‘std’ module name is equivalent to ‘standard’ and can be used
interchangeably.

To stream a DVD to a unicast address:

 vlc dvd://D: --sout udp:192.168.2.4

A common option to add to this command is:

 vlc dvd://D: --sout udp:192.168.2.4 --ttl 12

to set the TTL (Time To Live).
Both of these commands properly streamed output to the client computer where it was
output for viewing to the screen.

 30

This is the exact syntax given in VLC’s documentation to stream to a UDP unicast
address [4]:

 vlc input_stream --sout
 '#standard{access=udp,mux=ts,dst=ip_address}'

This was testing using the DVD drive as the input and streaming to the same client using
the following command:

 vlc dvdsimple://D: --sout
 ‘#standard{access=udp,mux=avi,dst=192.168.2.4}’

However, this syntax is incorrect (the single quotes are unnecessary and an equals sign is
missing between sout and #standard) and produces the following error messages.

stream_out_standard error: no access _and_ no muxer (fatal error)
main error: stream chain failed for `std{mux="",access="",dst="'#standard{access=udp,mux=avi,dst=192.168.2.5}'"}'
main error: cannot start stream output instance, aborting

6.2.5 File to Network (HTTP)

General syntax:

 vlc input_stream --sout=std{access=http,mux=mux_module,dst=server_addr}

To stream a DVD using HTTP:

 vlc dvdsimple://D:
 --sout=#std{access=http,mux=ts,dst=192.168.2.10:8080}

The destination given here is actually the address of the server computer, where the client
listens to. The client computer was able to properly access and display the stream.

This is the exact syntax given in VLC’s documentation to stream to an HTTP address [4]:

 vlc input_stream --sout
 '#standard{access=http,mux=ogg,dst=server.example.org:8080}'

This was testing using the DVD drive as the input and streaming with the same server
address as used in the correct commands above, using the following command:

 vlc dvdsimple://D: --sout
 '#standard{access=http,mux=ogg,dst=192.168.2.10:8080}'

However, this syntax is incorrect (the single quotes are unnecessary and an equals sign is
missing between sout and #standard) and produces the following error messages.

stream_out_standard error: no access _and_ no muxer (fatal error)
main error: stream chain failed for `std{mux="",access="",dst="="}'
main error: cannot start stream output instance, aborting

 31

stream_out_standard error: no access _and_ no muxer (fatal error)
main error: stream chain failed for `std{mux="",access="",dst="="}'
main error: cannot start stream output instance, aborting

To transcode the input and stream using HTTP, the following command was used:

 vlc dvdsimple://D: --sout=
 #transcode{vcodec=mp4v,acodec=mpga,vb=1024,ab=128}:
 std{access=http,mux=asf,dst=192.168.2.10:8080}

The file was received on the client computer using the following command to save the
stream to a file:

 vlc http://192.168.2.5:8080 --sout=#std{acces
 s=file,mux=asf,dst="C:\VLCKateTest.abc"}

The file was transcoded correctly, as demonstrated by the output of MediaInfo when
compared to the specifications given for the transcoded file:

General #0
 Complete name : C:\VLCKateTest.abc
 Format : Windows Media
 File size : 3.96 MiB
 PlayTime : 241h 56mn
 Bit rate : 38 bps

Video #0
 Codec : MS MPEG-4 v3
 Codec/Info : Microsoft MPEG-4 (Windows Media 7.0)
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 1.500
 Standard : NTSC

Audio #0
 Codec : MPEG-1/2 L3
 Codec/Family : MPEG-1
 Codec/Info : MPEG-1 or 2 layer 3
 Bit rate : 128 Kbps
 Channel(s) : 2 channels
 Sampling rate : 48 KHz

This is the exact syntax given in VLC’s documentation to transcode the input and stream
using HTTP:

 vlc input_stream --sout
 '#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128}:
 standard{access=http,mux=ogg,dst=192.168.2.10:8080}'

This was testing using the DVD drive as the input and streaming with the same server
address as used in the correct commands above, using the following command [4]:

 32

 vlc dvdsimple://D: --sout
 '#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128}:
 standard{access=http,mux=ogg,dst=192.168.2.10:8080}'

This is the error message that was produced:

stream_out_standard error: no mux specified or found by extension
main error: stream chain failed for
`std{mux="",access="'#transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128}",dst="standard{access=http,mux=ogg
,dst=192.168.2.10}'"}'
main error: cannot start stream output instance, aborting

6.2.6 Network to Screen (UDP)

Receiving a network stream on the client computer:

Unicast UDP address:

 vlc udp:

The stream is received and displayed as expected.

Multicast UDP address:

 vlc udp:@192.168.2.4

The stream is received and displayed as expected.

6.2.7 Network to Screen (HTTP)

Receiving a network stream on the client computer, using the address of the server
computer:

 vlc http://192.168.2.10:8080

The stream is received and displayed as expected.

6.2.8 Network to File (any network type)

To save a network stream being received to a file, add this option to the input command:

--sout=std{access=file,mux=muxstring,dst="path"}}

 33

A shortcut for this command is also available, though it is recommended to use the above
syntax:

--sout file/muxstring:path

These options were tested with the following commands:

 vlc http://192.168.2.10:8080 --sout=file/avi:C:\Test.avi

 vlc http://192.168.2.10:8080 --sout=file/avi:C:\Test.xyz

Each of these saves the stream to the destination file. The file extension is not important.

As a more complete example, the following stream is transcoded and sent to the client
computer:

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=mp4v,vb=512,acodec=mp3,ab=192}:duplicate{d
 st=std{access=udp,mux=ts,dst=192.168.2.4}

The stream is received with the following command:

 vlc udp: --
 sout=#std{access=file,mux=ts,dst="C:\VLCTranscodeTest.xyz"}

The stream is saved to the file as expected and all of its attributes correspond correctly to
those specified in the transcoding options. This is the MediaInfo output for the
transcoded file and corresponds correctly to the specifications of the transcoded stream:

General #0
 Complete name : C:\VLCTranscodeTest.xyz
 Format : MPEG-4 Transport
 Format/Family : MPEG-4
 File size : 3.69 MiB
 PlayTime : 59s 587ms
 Bit rate : 519 Kbps

Video #0
 Codec : MPEG-4 Video
 PlayTime : 59s 585ms
 Bit rate : 318 Kbps
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 4/3
 Standard : NTSC
 Resolution : 8 bits
 Interlacement : Progressive

Audio #0
 Codec : MPEG-1 Audio layer 3
 Codec profile : Joint stereo
 PlayTime : 59s 587ms
 Bit rate : 192 Kbps
 Bit rate mode : CBR

 34

 Channel(s) : 2 channels
 Sampling rate : 48 KHz
 Resolution : 16 bits
 Video0 delay : 18ms

6.2.9 Combinations

The following section gives various examples of more complex command chains,
including sending a stream to two different output locations using different access
methods and transcoding separate output streams differently depending on the
destination.

Display the stream and send it to two unicast IP addresses:

 vlc dvdsimple://D: --
 sout=#duplicate{dst=display,dst=standard{access=udp,mux=ts,dst=1
 92.168.2.5},dst=standard{access=udp,mux=ts,dst=192.168.2.4}}

The stream was received successfully by both client computers and displayed locally.

Send the original input stream to a unicast UDP address, then transcode the stream and
send it to another unicast UDP address:

 vlc dvdsimple://D: --
 sout=#duplicate{dst=standard{access=udp,mux=ts,dst=192.168.2.4},
 dst=transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128}:standard{ac
 cess=udp,mux=ts,dst=192.168.2.5}}

The first client computer received the stream and was able to display it locally. The
second client (receiving the transcoded stream) could not receive the stream at all. The
access method, container format, and codecs all are compatible as described by the
VideoLAN Streaming Features website [5] so it is unknown why the second client was
unable to receive the stream. No error messages were given.

This is the output of MediaInfo from the file received by the first client computer:

General
 Complete name : G:\twoComputers.xyz
 Format : MPEG-2 Transport
 Format/Family : MPEG-2
 File size : 74.7 MiB
 PlayTime : 2mn 14s
 Bit rate : 4652 Kbps

Video
 Codec : MPEG-2 Video
 PlayTime : 2mn 14s
 Bit rate : 7500 Kbps
 Bit rate mode : CBR
 Width : 720 pixels
 Height : 480 pixels

 35

 Aspect ratio : 4/3
 Frame rate : 29.970 fps
 Standard : NTSC
 Interlacement : Top Field First

Bits/(Pixel*Frame) : 0.724

Audio
 Codec : AC3
 PlayTime : 2mn 14s
 Bit rate : 192 Kbps
 Bit rate mode : CBR
 Channel(s) : 2 channels
 Sampling rate : 48 KHz
 Video0 delay : -103ms
 ChannelPositions : L R

The following command is almost exactly the same as the previous one, except that the
transcoded stream is now being sent to the first client, and the original stream is being
sent to the second client.

 vlc dvdsimple://D: --
 sout=#duplicate{dst=standard{access=udp,mux=ts,dst=192.168.2.4},
 dst=”transcode{vcodec=mp4v,acodec=mpga,vb=800,ab=128}:standard{a
 ccess=udp,mux=ts,dst=192.168.2.5}”}

The results are also similar. The client being sent the transcoded stream still could not
receive it, even to display it, and the client sent the original stream was able to receive
and display it. No error messages were produced.

This example should display the input stream locally, transcode it and send it to two
unicast UDP addresses:

 vlc dvdsimple://D: –-
 sout=#duplicate{dst=display,dst=transcode{vcodec=mp4v,acodec=mpg
 a,vb=800,ab=128}:duplicate{dst=standard{access=udp,mux=ts,dst=19
 2.168.2.4},dst=standard{access=udp,mux=ts,dst=192.168.2.5}}

However, the stream could not be received by either client, even to display it to the
screen. The stream was displayed locally as expected. No error messages were
produced.

The syntax was adjusted slightly (quotations were inserted around the parameters of the
duplicate module’s dst field) and re-entered:

 vlc dvdsimple://D: --
 sout=#duplicate{dst=display,dst="transcode{vcodec=mp4v,acodec=mp
 ga,vb=800,ab=128}:duplicate{dst=standard{access=udp,mux=ts,url=1
 92.168.2.4},dst=standard{access=udp,mux=ts,url=192.168.2.5}"}

This time, the stream did display locally on both clients and the server, but would not
save to a file. No error messages were produced.

 36

This next example is meant to display the stream, transcode it, and send it to a unicast
UDP address:

 vlc dvdsimple://D: –-
 sout=#duplicate{dst=display,dst=transcode{vcodec=mp4v,acodec=mpg
 a,vb=800,ab=128}:duplicate{dst=standard{access=udp,mux=ts,dst=19
 2.168.2.4}}

The stream cannot be received by the client computer at all, even when using the Wizard
to automate the process. No error messages were produced.

The syntax was adjusted slightly (the second duplicate chain is replaced with another dst
option) and re-entered:

 vlc dvdsimple://D: –-
 sout=#duplicate{dst=display,dst=transcode{vcodec=mp4v,acodec=mpg
 a,vb=800,ab=128,dst=standard{access=udp,mux=ts,dst=192.168.2.4}}

As with above, the stream cannot be received by the client computer at all.

In a final attempt, the syntax is adjusted to:

 vlc dvdsimple://D: --
 sout=#transcode{vcodec=mp4v,vb=512,acodec=mp3,ab=192}:duplicate{d
 st=std{access=udp,mux=ts,dst=192.168.2.4}

and received by the client using the command:

 vlc udp: -- sout=#std{access=file,mux=ts,dst="C:\VLCTest8.xyz"}

The output file has only audio, though the access method, container format, and codecs
are all compatible according to the VideoLAN Streaming Features website [5].

6.2.10 Video Filters

This section gives examples of applying video filters to an input stream. Video filters are
only applicable when displaying the input to the screen, as their effects cannot be
streamed (only displayed locally).

For example, the following command displays the input stream locally and streams it to a
client using UDP. Video filters are applied as a global option.

 vlc dvdsimple://D: --filter=invert --
 sout=#duplicate{dst=display,dst=std{access=udp,mux=ts,dst=192.16
 8.2.4}}

As expected, the video is displayed on the server with its colors inverted. On the client
computer, the video is displayed without any processing and the colors are normal. Filters

 37

are only post processing the output and do not get streamed. If the client receives the
stream from the network with the following command:

 vlc udp: --filter=invert

the video will be displayed with inverted colors.

Filters must be cascaded (multiple filters applied at once) using the following syntax:

 vlc input_stream --filter=filter1[:filter2]*

For example, to apply the motion blur effect and invert the video’s colors, the following
command is used:

 vlc dvdsimple://D: --filter=motionblur:invert

These commands will not work, only the filter specified last will be applied:

 vlc dvdsimple://D: --filter=motionblur --filter=invert

 vlc dvdsimple://D: --filter=invert --filter=motionblur

In the first example, only the video’s colors are inverted. In the second, only the motion
blur effect is applied.

The transform filter is special because it takes parameters. To use this filter the following
syntax is required:

 vlc dvdsimple://D: --vout-filter=transform --transform-type hflip

This command properly flips the video horizontally, even though VLC produces this
error message:

main error: option directx-hw-yuv does not exist
main error: option directx-device does not exist

Similarly, this command flips the video vertically:

 vlc dvdsimple://D: --vout-filter=transform --transform-type vflip

The following syntax is also given as a method of using the transform filter:

 vlc dvdsimple://D: --vout-filter=transform{type=hflip}

However, this simply generates and error message and causes no video to be output.

main error: no video filter module matched "transform{type=hflip}"
main error: no suitable vout module
main error: cannot delete object (303, (null)) with children
main error: failed to create video output

 38

To combine the transform filters, the following command attempts to cascade the
transform types. This command should flip the video vertically and then horizontally, as
if it was rotated 180 degrees.

 vlc dvdsimple://D: --vout-filter=transform --transform-type
 vflip:hflip

However, the video appears as if it has been rotated by only 90 degrees. Also, changing
the order of the transform filters, as in the following command:

 vlc dvdsimple://D: --vout-filter=transform --transform-type
 hflip:vflip

outputs the exact same video as the previous command, although intuitively it should also
output the video as if it was rotated 180 degrees.

Any additional cascades (adding any number of additional vertical or horizontal
transformation types) also results in the video being output in the same way, rotated by
90 degrees.

In the following chapter, the results of these tests will be examined and summarized to
provide an overview of what syntax works and what does not.

 39

Chapter 7: Evaluation of Results
Despite the many examples given in VLC’s documentation, all of these commands
completely failed, not only to produce the desired output, but to produce any output at all.
The only syntax format that actually works as expected is the one detailed in Chapter 5,
section 5.3.2, discovered through the trial and error of the test cases. Following this
format is the best way to guarantee consistent results. Actually, all of the syntax
guidelines presented in Chapter 5 were modeled after the test cases that worked as
expected and are the best summary of the results.

The problem with the command line examples as given exactly in VLC’s documentation
is that the command line interface is not actually operating system independent, despite
claims to the contrary. Each operating system parses command line parameters
differently, so while VLC may be receiving the exact same command from the operating
system, what is input by the user will vary. For example, when setting the value of an
option in Windows, often the argument must be placed in double quotation marks. This
is necessary to stop Windows from recognizing certain special characters that the user did
not intend (such as the backslashes used in a file name). In a Linux operating system, the
entire stream output chain must be placed in single quotes for the command to be
recognized. However, these single quotes are not necessary in Windows and change how
the command is parsed. The commands taken directly from VLC’s documentation are
meant for a Linux operating system and will not work if used directly under Windows.
This is likely the case for the other operating systems supported.

The most common transcoding and streaming problems arose from incompatibilities.
Each method of streaming to the network is very limited in the container formats that it
will support and the stream simply will not be sent if the format chosen is incompatible.
Similarly when transcoding, if the audio or video codec is not compatible with the
container format, that elementary stream will not be transcoded. It is safer to always
double check these selections against the VideoLAN Streaming Features website. [5]

Most container formats have a standard file extension that they are associated with, but
file extensions do not need to be consistent with their container format when saving a
stream to a file. This was expressed as necessary in the documentation but is not
required. [1] VLC will still recognize the file properly.

As there was very limited success in chaining the modules to perform more complex
actions (as described in the Combinations section 6.2.9 of the previous chapter) it is a
better idea, for now, to simply open multiple instances of VLC to perform multiple tasks
simultaneously.

 40

Chapter 8: Conclusions and Future Work
In this thesis, I have examined the state of open source documentation and the problems
that inherently arise from a large scale volunteer project. There is always the need for
more, better documentation and open source projects need to look into recruiting capable
writers or limiting volunteers to programmers who are willing to document their work.
While this would likely discourage many programmers from contributing, it will lead to a
product that is more reliable, maintainable, and useable. No matter how incredible a
program may be, it is no good to anyone if it cannot be used easily and effectively.

This thesis tests the content of VLC’s official documentation and combines much of the
correct, complete, and up-to-date documentation together into a single document. New
findings as to proper ways to use VLC and formulate proper syntax using its command
line interface have also been added. However, this document is far from complete.
These findings are not tested on previous versions of VLC to confirm whether the syntax
has changed between recent versions. This would also likely be of benefit to users,
especially those who find that a specific version performs better for their needs. The
VideoLAN website provides a table of compatibilities between container formats, codecs,
and output methods, but it would be worthwhile to thoroughly test these and confirm
their correctness. This thesis is also limited to the command line interface, but VLC
provides eight different specialty interfaces that have no documentation whatsoever,
aside from a few paragraphs on the HTTP interface. Each interface should have its own
documentation. There is plenty of room for future investigations as the VideoLAN
project evolves.

 41

Bibliography
[1] A. de Lattre et al., “VideoLAN Streaming Howto,” 2005. [Online].
 <http://www.videolan.org/doc/streaming-howto/en/index.html> [cited
 March 6, 2007]

[2] A. de Lattre et al., “VLC Play Howto,” 2006. [Online].
 <http://www.videolan.org/doc/play-howto/en/play-howto-en.html> [cited
 March 6, 2007]

[3] H. Fallon et al., “VLC User Guide,” 2003. [Online].
 <http://tldp.paracoda.com/REF/VLC-User-Guide/index.html> [cited
 March 6, 2007]

[4] VideoLAN Team, “VideoLAN FAQ,” 2006. [Online].
 <http://www.videolan.org/doc/faq/en/videolan-faq-en.html> [cited March
 6, 2007]

[5] VideoLAN Team, “VideoLAN Streaming Features List,” 2006. [Online].
 <http://www.videolan.org/streaming-features.html> [cited March 6, 2007]

[6] VideoLAN Wiki, “Codec,” January 2007. [Online]
 <http://wiki.videolan.org/index.php/Codec> [cited March 6, 2007]

[7] VideoLAN Wiki, “Knowledge Base,” December 2006. [Online]
 <http://wiki.videolan.org/index.php/Knowledge_Base> [cited March 6,
 2007]

 42

Appendix A: Annotated Bibliography
VLC Streaming How-To
A. de Lattre et al., “VideoLAN Streaming Howto,” 2005. [Online].
 <http://www.videolan.org/doc/streaming-howto/en/index.html> [cited March 6,
 2007]

VideoLAN Streaming Features List
VideoLAN Team, “VideoLAN Streaming Features List,” 2006. [Online].
 <http://www.videolan.org/streaming-features.html> [cited March 6, 2007]

VLC User Guide
H. Fallon et al., “VLC User Guide,” 2003. [Online].
 <http://tldp.paracoda.com/REF/VLC-User-Guide/index.html> [cited March 6,
 2007]

VLC Updates
VideoLAN Team, “News”. [Online] <http://developers.videolan.org/vlc/NEWS> [cited
 March 6, 2007]

VideoLAN Wiki Pages
VideoLAN Wiki, “Documentation:Documentation,” November 2006. [Online]
 <http://wiki.videolan.org/Documentation:Documentation> [cited March 6, 2007]

VLC Knowledge Base (from the VideoLAN Wiki)
VideoLAN Wiki, “Knowledge Base,” December 2006. [Online]
 <http://wiki.videolan.org/index.php/Knowledge_Base> [cited March 6, 2007]

VLC Command Line Help (from the VideoLAN Wiki)
VideoLAN Wiki, “VLC Command Line Help,” January 2007. [Online]
 <http://wiki.videolan.org/index.php/VLC_command-line_help> [cited March 6,
 2007]

VLC Play How-To
A. de Lattre et al., “VLC Play Howto,” 2006. [Online].
 <http://www.videolan.org/doc/play-howto/en/play-howto-en.html> [cited March
 6, 2007]

VLC API Documentation
C. Massiot et al., “VLC media player API Documentation,” 2001. [Online].
 <http://www.videolan.org/developers/vlc/doc/developer/html/> [cited March 6,
 2007]

VLC Frequently Asked Questions
VideoLAN Team, “VideoLAN FAQ,” 2006. [Online].

 43

 <http://www.videolan.org/doc/faq/en/videolan-faq-en.html> [cited March 6,
 2007]

VideoLAN Play How-To/Advanced Use of VLC (from VideoLAN Wiki)
VideoLAN Wiki, “Documentation:Play HowTo/Advanced Use of VLC,” February 2007.
 [Online].
 <http://wiki.videolan.org/Documentation:Play_HowTo/Advanced_Use_of_VLC>
 [cited March 6, 2007]

VLC Doxygen Documentation
Doxygen, “VLC Documentation,” March 6, 2007. [Online].
 <http://www.videolan.org/developers/vlc/doc/doxygen/html/> [cited March 6,
 2007]

VLC Linux How-To Guide
A. de Lattre et al., “VideoLAN HOWTO,” 2003. [Online]
 <http://www.linux.org/docs/ldp/howto/VideoLAN-HOWTO/index.html> [cited
 March 6, 2007]

 44

Appendix B: Glossary of Terms

Codec A program capable of encoding or decoding a data stream

(specifically a video or audio stream). [7]
Container format A file format that can contain multiple types of elementary streams

(usually one for audio and one for video). These streams have
already been encoded. Unfortunately, container formats are only
compatible with certain codecs. [1]

Decoder Program that uses mathematical processing to decompress the
elementary stream. [3]

Demultiplexer Reads the container format and separates the data streams contained
within into separate files. Audio, video, and subtitle elementary
streams are separated so they can be decoded.[3]

Elementary stream A stream containing only one type of data (in this case, either
audio, video, or subtitle)

Encoder A compression algorithm used to reduce the size of an elementary
stream. [3]

HTTP Hypertext Transfer Protocol. Used to convey information over the
world wide web. [7]

MMS Stream using the Microsoft Media Server (MMS) protocol to
transfer unicast data. MMS can be transported via UDP or TCP. [7]

Multicast The delivery of information to a group of destinations
simultaneously using the most efficient strategy to deliver the
messages over each link of the network only once, creating copies
only when the links to the destinations split. [7]

Multiplexer Used to combine the elementary data streams (audio and video) into
one file, a container format [1]

RTP Real Time Transport Protocol. A standardized packet format for
delivering audio and video over the Internet. Applications using
RTP are less sensitive to packet loss, but typically very sensitive to
delays. [7] This protocol is used for unreliable delivery of Real
Time data that is layered on top of UDP (and thus can make use of
multicast). It is used mainly for streaming audio and video often
controlled by an RTSP session. [7]

RTSP Real Time Streaming Protocol. A client-server multimedia
presentation control protocol which allows a client to remotely
control a streaming media server, allowing time-based access to
files on a server. [7]

SAP Session Announcement Protocol. A protocol for broadcasting
multicast session information. [7]

TTL Time To Live, the number of routers your stream will be able to
cross. [1]

UDP User Datagram Protocol, known as the “send and pray” protocol.
Data is passed over the network in fixed-size packets but does not

 45

guarantee that all packets will reach the destination, or that they
will reach it in the right order. Because it will not resend packets, it
is very fast and efficient, but also unreliable. However, for
streaming video this is not usually an issue, making UDP very
suitable for this type of transmission. [7]

Unicast Sending of information packets to a single destination over a
network.

 46

Appendix C: Test File Specifications
This appendix includes the MediaInfo output for each of the original files used in the test
cases. Some of the irrelevant information from the output has been removed as it is
unnecessary for this project.

General
 Complete name : C:\VLCTest\Sliders4.avi
 Format : AVI
 Format/Family : RIFF
 File size : 120 MiB
 PlayTime : 43mn 47s
 Bit rate : 377 Kbps

Video
 Codec : XviD
 Codec/Family : MPEG-4
 Codec/Info : XviD project
 PlayTime : 43mn 47s
 Bit rate : 316 Kbps
 Width : 576 pixels
 Height : 432 pixels
 Aspect ratio : 4/3
 Frame rate : 23.976 fps
 Resolution : 8 bits
 Chroma : 4:2:0
 Interlacement : Progressive
 Bits/(Pixel*Frame) : 0.053

Audio
 Codec : MPEG-2 Audio layer 3
 Codec profile : Joint stereo
 PlayTime : 43mn 47s
 Bit rate : 48 Kbps
 Bit rate mode : CBR
 Channel(s) : 2 channels
 Sampling rate : 24 KHz
 Resolution : 16 bits

DVD Drive (Todd McFarlane’s Spawn, animated)
General
 Complete name : D:
 Format : MPEG-2 Program
 Format/Family : MPEG-2

 47

 File size : 80.5 MiB
 PlayTime : 1mn 55s
 Bit rate : 5826 Kbps

Video
 Codec : MPEG-2 Video
 PlayTime : 1mn 53s
 Bit rate : 7500 Kbps
 Bit rate mode : CBR
 Width : 720 pixels
 Height : 480 pixels
 Aspect ratio : 4/3
 Frame rate : 29.970 fps
 Standard : NTSC
 Chroma : 4:2:0
 Interlacement : Top Field First
 Bits/(Pixel*Frame) : 0.724

Audio
 Codec : AC3
 PlayTime : 1mn 55s
 Bit rate : 384 Kbps
 Bit rate mode : CBR
 Channel(s) : 6 channels
 Sampling rate : 48 KHz
 Video0 delay : -88ms
 ChannelPositions : Front: L C R, Rear: L R, Subwoofer

 48

Appendix D: VLC Keywords
The following lists are the VLC keywords that are used as options in the transcoding and
standard modules. These lists are taken from the VideoLAN Wiki pages [6]. This is not
official VideoLAN documentation and all of the following commands have not been
properly tested, so there is no guarantee that they are all correct. Also, the keywords do
not seem to be case sensitive.

Demultiplexers
A demultiplexer can be forced in priority by adding the following command line
argument:

 --demux demux_module

where demux_module is one of the keywords listed below.

Name Description
avi This module allows VLC to read .avi files and is always enabled.
asf This module allows VLC to read .asf files and is always enabled.
aac This module allows VLC to read AAC files and is always enabled.
ogg This module allows VLC to read .ogg files and is enabled by default.
rawdv This module allows VLC to read DV files and is always enabled.

dvbpsi This module allows VLC to read streams from a satellite card and is
enabled by default.

mp4 This module allows VLC to read .mp4 files and is always enabled.

mkv This module allows VLC to read files that use the Matroska free format and
is enabled by default.

ps This module allows VLC to read MPEG2 Program Stream files and is
always enabled.

ts This module allows VLC to read MPEG2 Transport Stream files and is
always enabled.

id3, m3u This module allows VLC to read M3U, B4S, PLS, and ASX playlists, and
ID3 tags and is always enabled.

[3]

Video Codecs
A codec can be forced in priority by adding the following command line argument:

 --codec codec_module

 49

where codec_module is one of the keywords listed below.

Use the "Name" column in your vcodec=<string> commands when transcoding a file.

Name Description
mp1v MPEG-1 Video - recommended for portability
mp2v MPEG-2 Video - used in DVDs
mp4v MPEG-4 Video
SVQ1 Sorenson Video v1
SVQ3 Sorenson Video v3
WMV1 Windows Media Video v1
WMV2 Windows Media Video v2
WMV3 Windows Media Video v3, also called Windows Media 9 (unsupported)
DVSD Digital Video
MJPG MJPEG
H263 H263
h264 H264
theo Theora
IV20 Indeo Video
IV40 Indeo Video version 4 or later (unsupported)
RV10 Real Media Video
cvid Cinepak
VP31 On2 VP
FLV1 Flash Video
CYUV Creative YUV
HFYU Huffman YUV
MSVC Microsoft Video v1
MRLE Microsoft RLE Video
AASC Autodesc RLE Video
FLIC FLIC video
QPEG QPEG Video
[6]

Audio Codecs
A codec can be forced in priority by adding the following command line argument:

 --codec codec_module

where codec_module is one of the keywords listed below.

 50

Use the "Name" column in your acodec=<string> commands when transcoding a file.

Name Description
mpga MPEG audio (recommended for portability)
mp3 MPEG Layer 3 audio
mp4a MP4 audio
a52 Dolby Digital (A52 or AC3)
vorb Vorbis
spx Speex
flac or fl32 FLAC
[6]

Muxers
Use the "Name" column in you mux=<string> commands when streaming a file.

Name Description

mpeg1
MPEG-1 multiplexing - recommended for portability. This muxer should be
used instead of ps with MPEG 1 video streams, when saved to a file or
streamed over HTTP. Supported codecs are MPEG 1 and MPEG audio.

ts

MPEG Transport Stream, primarily used for streaming MPEG. Also used in
DVDs. This the standard muxer used to stream MPEG 2. This muxer can
be used with any access method. Supported codecs are MPEG 1/2/4,
MJPEG, H263, H264, I263, WMV 1/2 and theora for video, MPEG audio,
AAC and a52 for the audio stream. [1]

ps

MPEG Program Stream. This the standard muxer for MPEG 2 files(.mpg).
It can be used with the file and http output methods. Supported codecs are
MPEG 1/2 and MJPEG for video, MPEG audio and a52 for audio streams.
The only available item option is dst-delay=<delay in ms>. It allows the
user to delay PTS (Presentation Time Stamps) from the DTS (Decoding
Time Stamp) from the given time.

mp4 MPEG-4 mux format, used only for MPEG-4 video and MPEG audio.

avi

The Microsoft AVI muxer. This is very common encapsulation format for
MPEG 4 files. The only supported output method is file. Supported codecs
are MPEG 1/2/4, H263, H264 and I263 for video, MPEG audio and a52 for
audio streams. There are no item options for this muxer. [1]

asf

The Microsoft ASF muxer. This is the standard muxer used for streaming
by Microsoft's software. Is also used as container for WMA audio files. This
muxer can be used with the file and HTTP output methods. Supported
codecs are MPEG 4, MJPEG, WMV 1/2 for video, MPEG audio, a52 for
audio streams. [1]

asfh This is a special version of the ASF muxer, that should be used for MMSH

 51

streaming. MMSH is the only supported output method. Supported codecs
are the same as for ASF. [1]

dummy dummy output, can be used in creation of MP3 files.

ogg

The ogg muxer. This is the muxer from the Xiph project. It can be used with
the HTTP and file output methods. Supported codecs are MPEG 1/2/4,
MJPEG WMV 1/2 and Theora, audio streams can be vorbis, flac, speex, a52
or MPEG audio. There are no item options for this muxer. [1]

mpjpeg

The multipart jpeg muxer. This encapsulation format is mostly used on
surveillance video cameras with an integrated web-server. Such streams are
usually embedded in web-pages and seen with standard Internet browsers,
as they are seen as a succession of jpeg images. The only supported output
method is HTTP. The only usable codec is MJPEG. No sound track can be
muxed in such streams. No item options are available for this muxer. [1]

[6]

Video Filters
These filters allow modifications to the rendered image. Note that these filters only apply
to the on screen display and thus cannot be streamed. They just format how your video is
displayed once VLC receives it [2]. In order for filters to take effect on the client
machine, they would have to be set on the client machine. All of these filters are always
enabled, so they do not require any special configurations to be used.

Filters are applied by adding one of the following equivalent command line arguments:

 --filter=filter_name1[:filter_name2]*

 --vout-filter=filter_name1[:filter_name2]*

where filter_nameX is one of the filter keywords listed below. This is a complete list of
all filters as described in the VLC User Guide [3]. The descriptions have been elaborated
on where possible.

Name Description
deinterlace This filter deinterlaces video. It is useful with streams coming from a

digital satellite channel or digital terrestrial television channels.
wall This filter allows you to have the video cut in pieces in several windows,

which you can order as you wish. It can be used to generate image walls
with several sources.

distort This filter adds a distortion effect to the video.
transform This filter allows you to rotate the video in several ways, as well as flip

the video horizontally or vertically. This filter requires parameters
(either the angle of rotation or the type of flipping).

invert This filter inverts all colors.
adjust This filter allows you to set image contrast, hue, saturation and

 52

brightness.
clone This filter allows you to duplicate the image and display it in more than

one window.
crop This filter allows you to crop parts of the image.
motionblur This filter adds a "motion blur" effect to the image. I tried applying this

filter to all of the test input files and did not notice any difference from
when I had not applied any filter, though the user interface informed me
that the filter was in effect.

[3]

 53

Appendix E: Command Line Options
This is a small reference of common command line options and parameters that are likely
to be the most useful. Similar options are grouped under common headings and, where
possible, the explanation given by the original help file has been elaborated on.

To get the full command line help document, use the following command:

vlc --longhelp --advanced --help-verbose

The full help listing will be dumped to a file in your installation folder.

Video
-V, --vout=<string>
 Video output module

This is the video output method used by VLC. The default
behavior is to automatically select the best method available.

--video-filter=<string>
 Video filter module

This adds post-processing filters to enhance the picture
quality, for instance deinterlacing, or distort the video.
<string> can be substituted for any of the options described in
the Video Filters section of Appendix D

--vout-filter=<string>
 Video filter module alternative syntax
--filter=<string>
 Video filter module alternative syntax

Miscellaneous
--server-port=<integer>
 UDP port
 This is the default port used for UDP streams. Default is 1234.
--mtu=<integer>
 MTU of the network interface

 This is the maximum packet size that can be transmitted over the
network interface. On Ethernet it is usually 1500 bytes.

--clock-synchro={-1 (Default), 0 (Disable), 1 (Enable)}
 Clock synchronization

It is possible to disable the input clock synchronization for
real-time sources. Use this if you experience jerky playback of
network streams.

--network-synchronisation, --no-network-synchronisation
 Network synchronization (default disabled)

 This allows you to remotely synchronize clocks for server and
client. The detailed settings are available in Advanced /
Network Sync. (Command is valid as shown even though
“synchronization” is misspelled)

 54

--plugin-path=<string>
 Modules search path
 Additional path for VLC to look for its modules.
--high-priority, --no-high-priority
 Increase the priority of the process (default disabled)

 Increasing the priority of the process will very likely improve
your playing experience as it allows VLC not to be disturbed by
other applications that could otherwise take too much processor
time. However be advised that in certain circumstances (bugs)
VLC could take all the processor time and render the whole
system unresponsive which might require a reboot of your
machine.

-v, --verbose=<integer>
 Verbosity (0,1,2)

 This is the verbosity level (0=only errors and standard
messages, 1=warnings, 2=debug).

--file-logging, --no-file-logging
 Log to file (default disabled)
 Log all VLC messages to a text file.
--stats, --no-stats
 Collect statistics (default enabled)
 Collect miscellaneous statistics.

CPU
--fpu, --no-fpu
 Enable FPU support (default enabled)
 If your processor has a floating point calculation unit, VLC can
 take advantage of it.
--mmx, --no-mmx
 Enable CPU MMX support (default enabled)
 If your processor supports the MMX instructions set, VLC can
 take advantage of them.
--3dn, --no-3dn
 Enable CPU 3D Now! support (default enabled)
 If your processor supports the 3D Now! instructions set, VLC can
 take advantage of them.
--mmxext, --no-mmxext
 Enable CPU MMX EXT support (default enabled)
 If your processor supports the MMX EXT instructions set, VLC can
 take advantage of them.
--sse, --no-sse
 Enable CPU SSE support (default enabled)
 If your processor supports the SSE instructions set, VLC can
 take advantage of them.
--sse2, --no-sse2
 Enable CPU SSE2 support (default enabled)

 If your processor supports the SSE2 instructions set, VLC can
take advantage of them.

Decoders

 55

--codec=<string>
 Preferred decoders list

 List of codecs that VLC will use in priority. For instance,
'dummy,a52' will try the dummy and a52 codecs before trying the
other ones. Only advanced users should alter this option as it
can break playback of all your streams.

--encoder=<string>
 Preferred encoders list

 This allows you to select a list of encoders that VLC will use
in priority.

Input
--access=<string>
 Access module

 This allows you to force an access module. You can use it if the
correct access is not automatically detected. You should not set
this as a global option unless you really know what you are
doing.

--access-filter=<string>
 Access filter module

 Access filters are used to modify the stream that is being read.
This is used for instance for timeshifting.

--demux=<string>
 Demux module

 Demultiplexers are used to separate the "elementary" streams
(like audio and video streams). You can use it if the correct
demuxer is not automatically detected. You should not set this
as a global option unless you really know what you are doing.

Stream output
--sout=<string>
 Default stream output chain

 You can enter here a default stream output chain. Refer to the
documentation to learn how to build such chains. Warning: this
chain will be enabled for all streams.

--sout-keep, --no-sout-keep
 Keep stream output open (default disabled)

 This allows you to keep a unique stream output instance across
multiple playlist item (automatically insert the gather stream
output if not specified).

--sout-all, --no-sout-all
 Enable streaming of all ES (default disabled)
 Stream all elementary streams (video, audio and subtitles)
--sout-audio, --no-sout-audio
 Enable audio stream output (default enabled)

 Choose whether the audio stream should be redirected to the
stream output facility when this last one is enabled.

--sout-video, --no-sout-video
 Enable video stream output (default enabled)

 56

 Choose whether the video stream should be redirected to the
stream output facility when this last one is enabled.

File input
--file-caching=<integer>
 Caching value in ms

 Caching value for files. This value should be set in
milliseconds.

FTP input
--ftp-caching=<integer>
 Caching value in ms

 Caching value for FTP streams. This value should be set in
milliseconds.

--ftp-user=<string>
 FTP user name
 User name that will be used for the connection.
--ftp-pwd=<string>
 FTP password
 Password that will be used for the connection.
--ftp-account=<string>
 FTP account
 Account that will be used for the connection.

HTTP input
--http-proxy=<string>
 HTTP proxy
 HTTP proxy to be used. It must be of the form
 http://[user[:pass]@]myproxy.mydomain:myport/
 If empty, the http_proxy environment variable will be tried.
--http-caching=<integer>
 Caching value in ms

 Caching value for HTTP streams. This value should be set in
milliseconds.

--http-user-agent=<string>
 HTTP user agent
 User agent that will be used for the connection.
--http-reconnect, --no-http-reconnect
 Auto re-connect (default disabled)

 Automatically try to reconnect to the stream in case of a sudden
disconnect.

TCP input
--tcp-caching=<integer>

 57

 Caching value in ms
 Caching value for TCP streams. This value should be set in
milliseconds.

UDP/RTP input
--udp-caching=<integer>
 Caching value in ms

 Caching value for UDP streams. This value should be set in
milliseconds.

--rtp-late=<integer>
 RTP reordering timeout in ms

 VLC reorders RTP packets. The input will wait for late packets
at most the time specified here (in milliseconds).

--udp-auto-mtu, --no-udp-auto-mtu
 Autodetection of MTU (default enabled)

 Automatically detect the line's MTU. This will increase the size
if truncated packets are found.

AVI demuxer
--avi-interleaved, --no-avi-interleaved
 Force interleaved method (default disabled)
--avi-index={0 (Ask), 1 (Always fix), 2 (Never fix)}
 Force index creation

 Recreate an index for the AVI file. Use this if your AVI file is
damaged or incomplete (not seekable).

 Clone video filter
--clone-count=<integer>
 Number of clones
 Number of video windows in which to clone the video.
--clone-vout-list=<string>
 Video output modules

 You can use specific video output modules for the clones. Use a
comma-separated list of modules.

FFmpeg audio/video decoder/encoder
((MS)MPEG4,SVQ1,H263,WMV,WMA)
--ffmpeg-dr, --no-ffmpeg-dr
 Direct rendering (default enabled)
--ffmpeg-hurry-up, --no-ffmpeg-hurry-up
 Hurry up (default disabled)

 58

 The decoder can partially decode or skip frame(s) when there is
not enough time. It's useful with low CPU power but it can
produce distorted pictures.

--ffmpeg-lowres=<integer>
 Low resolution decoding

 Only decode a low resolution version of the video. This requires
less processing power definition streams.

--ffmpeg-pp-q=<integer>
 Post processing quality

 Quality of post processing. Valid range is 0 to 6. Higher levels
require considerable more CPU power, but produce better looking
pictures.

--sout-ffmpeg-hq={rd,bits,simple}
 Quality level

 Quality level for the encoding of motions vectors (this can slow
down the encoding very much).

--sout-ffmpeg-hurry-up, --no-sout-ffmpeg-hurry-up
 Hurry up (default disabled)

 The encoder can make on-the-fly quality tradeoffs if your CPU
can't keep up with the encoding rate. It will disable trellis
quantization, then the rate distortion of motion vectors (hq),
and raise the noise reduction threshold to ease the encoder's
task.

 RTP/RTSP/SDP demuxer (using Live555)
--rtsp-tcp, --no-rtsp-tcp
 Use RTP over RTSP (TCP) (default disabled)
--rtp-client-port=<integer>
 Client port
 Port to use for the RTP source of the session
--rtsp-caching=<integer>
 Caching value (ms)

 Allows you to modify the default caching value for RTSP streams.
This value should be set in millisecond units.

--rtsp-user=<string>
 RTSP user name

 Allows you to modify the user name that will be used for
authenticating the connection.

--rtsp-pwd=<string>
 RTSP password

 Allows you to modify the password that will be used for the
connection.

ASF muxer
--sout-asf-packet-size=<integer>
 Packet Size
 ASF packet size -- default is 4096 bytes

 59

 MP4/MOV muxer
--sout-mp4-faststart, --no-sout-mp4-faststart
 Create "Fast Start" files (default enabled)

 "Fast Start" files are optimized for downloads and allow the
user to start previewing the file while it is downloading.

MPEG Transport Stream demuxer
--ts-out=<string>
 Fast udp streaming

 Sends TS to specific ip:port by udp (you must know what you are
doing).

--ts-out-mtu=<integer>
 MTU

 The size of the largest packet that a network protocol can
transmit for out mode

--ts-csa-pkt=<integer>
 Packet size in bytes to decrypt

 Specify the size of the TS packet to decrypt. The decryption
routines subtract the TS-header from the value before
decrypting.

 60

Appendix F: CS4997 Summary Sheet
UNIVERSITY OF NEW BRUNSWICK
FACULTY OF COMPUTER SCIENCE
Fall 2006

STUDENT NAME: _____Kate Kinnear________________________ _____

STUDENT SIGNATURE: ___

STUDENT ID #: ___3165595________

E-MAIL: ____r5f67________ _ @ unb.ca

PHONE: (_506_) __474__ - __0734_

THESIS TITLE: ________Investigation of the Functionality of VLC_________

SUPERVISOR: _________John DeDourek _________________________________
(please print name)

DATE SUBMITTED: March 29, 2007__________________________________

PHASE TITLE ESTIMATE ACTUAL
 PERSON-

HOURS
COMPLETION

DATE
PERSON-
HOURS

COMPLETION
DATE

Annotated Bibliography 10 Dec 18, 2006 8 Dec 9, 2006

Choose Functions 15 Jan 12, 2007 22 Jan 19, 2007

Investigation 60 Mar 2, 2007 48 Mar 3, 2007

Test Case 15 Mar 2, 2007 20 Mar 3, 2007

Prediction 10 Mar 2, 2007 6 Mar 3, 2007

Testing 5 Mar 2, 2007 23 Mar 3, 2007

Analysis of Results 5 Mar 2, 2007 8 Mar 3, 2007

Thesis draft 15 Mar 8, 2007 24 Mar 6, 2007

Thesis 5 Mar 29, 2007 2 Mar 28, 2007

Presentation 5 Mar 21, 2007 6 Mar 21, 2007

 Total: 145 Total: 167

	Chapter 1: Introduction
	1.1 Motivation and Objectives
	1.2 Outline
	Chapter 2: A Look at Open Source Documentation
	2.1 Introduction
	2.2 Survey of Literature
	2.2.1 VLC Streaming How-To
	2.2.2 VideoLAN Streaming Features List
	2.2.3 VLC User guide
	2.2.4 VLC Updates
	2.2.5 VideoLAN Wiki pages
	2.2.6 VLC Knowledge Base (from the VideoLAN Wiki)
	2.2.7 VLC Command Line Help (from the VideoLAN Wiki)
	2.2.8 VLC Play How-To
	2.2.9 VLC API Documentation
	2.2.10 VLC Frequently Asked Questions
	2.2.11 VideoLAN Play How-To/Advanced Use of VLC (from VideoLAN Wiki)
	2.2.12 VLC Doxygen Documentation
	2.2.13 VLC Linux How-To Guide

	Chapter 3: The Structure of VLC
	3.1 Output Modules
	3.2 Video Filter Modules
	3.3 Input Modules
	3.4 Codec Modules
	3.5 Demultiplexer Modules
	3.6 User Interface Modules
	3.7 Stream Output Modules
	3.7.1 Display Module
	3.7.2 Standard Module
	3.7.3 Transcode Module
	3.7.4 RTP Module
	3.7.5 Elementary Stream Module
	3.7.6 Duplicate Module

	Chapter 4: Customization
	4.1 Default Settings and Actions of VLC
	4.2 Why customize VLC?

	Chapter 5: General Syntax Guide
	5.1 Introduction
	5.2 General Advice
	5.2.1 Troubleshooting
	5.2.2 Operating System-Specific Advice
	5.2.3 Video Output

	5.3 Syntax
	5.3.1 Notation Conventions
	5.3.2 All Purpose Command Template
	5.3.3 Global Versus Item Specific Options
	5.3.4 Input Stream
	5.3.5 Module Selection

	Chapter 6: Implementation
	6.1 Environment Specifications
	6.2 Test Cases
	6.2.1 File to Screen
	6.2.2 Device (DVD) to Screen
	6.2.3 File to File (transcoding)
	6.2.4 File to Network (UDP)
	6.2.5 File to Network (HTTP)
	6.2.6 Network to Screen (UDP)
	6.2.7 Network to Screen (HTTP)
	6.2.8 Network to File (any network type)
	6.2.9 Combinations
	6.2.10 Video Filters

	Chapter 7: Evaluation of Results
	Chapter 8: Conclusions and Future Work
	Bibliography
	Appendix A: Annotated Bibliography
	Appendix B: Glossary of Terms
	Appendix C: Test File Specifications
	Appendix D: VLC Keywords
	Demultiplexers
	Video Codecs
	Audio Codecs
	Muxers
	Video Filters

	Appendix E: Command Line Options
	Video
	Miscellaneous
	CPU
	Decoders
	Input
	Stream output
	File input
	FTP input
	HTTP input
	TCP input
	UDP/RTP input
	AVI demuxer
	 Clone video filter
	FFmpeg audio/video decoder/encoder ((MS)MPEG4,SVQ1,H263,WMV,WMA)
	 RTP/RTSP/SDP demuxer (using Live555)
	ASF muxer
	 MP4/MOV muxer
	MPEG Transport Stream demuxer

	Appendix F: CS4997 Summary Sheet

