
Table of Contents

Table of Contents 1

Abstract 2

1 Introduction 3
1.1 Background . 3
1.2 Heuristic Algorithm . 5
1.3 Motivation and Goals . 6
1.4 Approach . 6

2 Theory 7
2.1 System Model and Problem Definition . 7
2.2 ITERLP Algorithm . 10
2.3 ITERLP2 Algorithm . 11

3 Experiments 13
3.1 Simulations with random parameters . 13
3.2 Clusters . 14

4 Results 16
4.1 Simulations with random parameters . 16
4.2 Clusters . 21

5 Conclusion 25
5.1 Contributions . 25
5.2 Future Work . 25

Bibliography 27

1

Abstract

Divisible Load Theory (DLT) is an effective tool for blueprinting data-intensive computational

problems; it is a mathematical framework that is applied using Divisible Load Scheduling (DLS)

algorithms, but has yet to be proved optimal in all cases. A heuristic algorithm known as ITERLP

rapidly produces near-optimal divisible load schedules with result collection. Though the results

are near-optimal, there are some underlying issues that did not get addressed. These issues include:

scheduling divisible loads on cluster networks that share identical network bandwidth speeds, and

neglecting the cost of latency. ITERLP performs well when processor nodes have varying network

bandwidth; however, it may pose a problem when each processor node shares the same bandwidth

speed but vary in computation speed. The second problem is that ITERLP does not factor in the

cost of latency; by taking the solution time calculated using ITERLP and factoring in latency, it

is shown that the time is adversely worsened in all cases. In this thesis, a few modifications are

made to the ITERLP algorithm, followed by numerous tests to further investigate more realistic

cases. These modifications involve factoring in latency as well as trying different sorting algorithms

for communication, computation and latency parameters. It is shown when latency is factored in

that ITERLP2 produces near-optimal times and outperforms ITERLP in all realistic cases. It is

also shown that some sorting algorithms perform better than others in certain cases; however, no

sorting algorithm is best suited for all cases.

2

Chapter 1

Introduction

1.1 Background

A divisible load is a computable entity that can be arbitrarily partitioned into an infinite number

of independent load fractions. Once partitioned, load fractions may then be allocated to a set of

computer processor nodes to be computed and then collected back. A few applications that fulfill

the divisibility property include: simulations, matrix computations, database searching, Kalman

filtering, as well as dataset, image, and signal processing [1, 2, 3, 4, 5]. Loads that are randomly or

arbitrarily partitioned do not always achieve the optimal solution and may, by consequence, result

in a worse time than that of a single processor node alone; so to properly partition a divisible load,

there needs to be a Divisible Load Schedule (DLS) to ensure that tasks can be run as efficiently

as possible in parallel on the given resources. Divisible Load Theory (DLT) is an effective tool for

blueprinting data-intensive computational problems; it is a mathematical framework that is applied

using Divisible Load Scheduling (DLS) algorithms, but has yet to be proved optimal in all cases

[1, 4, 5].

DLT has been becoming more popular in recent years through the use of volunteer computing;

users may volunteer their PC’s computational power to help form a grid network used to perform

numerous calculations in parallel [4]. SETI (Search for Extraterrestrial Intelligence) has a volunteer

computing network named SETI@home that is used for processing enormous amounts of signal

data. Initially, SETI did not possess the resources to build or buy a computer powerful enough

to process the signal data, so they compromised the fact that there was no convenient access to a

supercomputer and established a volunteer computing network to allow users to enlist their home

computers to do the job [6].

3

On the other side of the parallel computing spectrum, UNB Fredericton, as well as eight other

Atlantic Canadian universities are members of the Atlantic Computational Excellence Network

(ACEnet); this network provides multiple clusters for the purpose of High Performance Computing

(HPC) and research [7]. Cluster networks are generally used as a resource of computer processors

designed for parallel processing. A reasonable assumption is that bandwidth and latency are con-

stant between all processors in a given cluster, however, computational power of each processor

may vary.

The simplest network model used in DLT is the star network model with one-port communica-

tion; it has a master processor in the center with the load to be distributed, and a set of worker

processors connected via the points. One-port communication enforces that only one transmission

is allowed at a given time between the master and any of the associated worker processors [1].

This ensures that no overlapping of communication occurs in either the allocation of load, or the

collection of results; however, when two or more worker processors have already received their al-

located loads, they may compute them independently in parallel. Another simplification applied is

the one-round approach; although the multi-round approach allows for pipelining multiple sets of

smaller messages, the cost of latency would be too great [8, 9]. The one-round approach ensures

that a divisible load is split up only once and that latency occurs only twice for each load fraction,

once for allocation, and once for result collection.

All nodes Finish Simultaneously (AFS) is a policy that assumes no idle times occur and all

processor nodes participate in the optimal solution [1, 4, 5, 8, 9, 10]. The AFS policy cannot be

applied because it is unrealistic and oversimplified; though it would be simple to assume that all

processor nodes finish simultaneously, it is more important for them to finish at various time slices

to ensure that the idle time between communication of results is minimized, and that collection

can actually occur. A few papers that do assume the AFS policy use it to help simplify describing

DLT and conducting proofs [9, 10, 11].

Existing algorithms for scheduling divisible loads with result collection in this model include

FIFO (First In First Out), LIFO (Last In First Out), and OPT (Optimal Solution). Each algorithm

uses a linear program for a given allocation and collection order to solve a minimization problem with

several constraints. The solution to the linear program gives all load fractions for each processor

node considered, as well as the optimal time [1, 4, 5]. The FIFO algorithm uses the same order for

both allocation and collection, whereas the LIFO algorithm has the collection in reverse order of the

allocation. The OPT algorithm finds the optimal solution by permuting all possible combinations of

allocation and collection for m processor nodes. By solving a linear program for each permutation,

4

the optimal load fractions and times are found. In most cases the optimal solution is not always

attainable in practice, knowing that for m processor nodes, there would be a possible (m!)2 linear

programs to be solved [1, 5, 8]. So to alleviate the time taken to find the optimal solution, heuristic

algorithms have been proposed [1, 4, 5, 8, 9].

A recent DLS heuristic algorithm known as ITERLP was proposed in [1], April, 2008. It rapidly

produces near-optimal divisible load schedules including result collection. Many simulations were

performed to compare ITERLP, FIFO, and LIFO to the optimal solution. It was found that

ITERLP invariably produces nearest-optimal performance no matter the level of heterogeneity of

the system, the amount of processor nodes, or the size of the allocated and collected data [1].

Though the results are near-optimal, there are some underlying issues that did not get addressed.

These issues include: scheduling divisible loads on cluster networks that share identical network

bandwidth speeds, and neglecting the cost of latency. ITERLP performs well when processor nodes

have varying network bandwidth; however, it may pose a problem when each processor node shares

the same bandwidth speed but vary in computation speed. The second problem is that ITERLP

does not factor in the cost of latency; by taking the solution time calculated using ITERLP and

factoring in latency, it is shown that the time is adversely worsened in all cases. Another recent

heuristic algorithm known as SPORT was proposed in [5], August, 2008.

1.2 Heuristic Algorithm

A heuristic algorithm known as ITERLP was used in [1] to quickly calculate near-optimal

divisible load schedules with result collection. ITERLP is heuristic in manner since it often leads

to a near-optimal solution and computes much more quickly than OPT. Although the solution

from ITERLP is not strictly optimal, it occasionally finds the optimal solution. To compare the

performance of ITERLP to OPT, ITERLP only requires solving up to m2 linear programs in a given

iteration, as opposed to the OPT which solves (m!)2, when given m processor nodes. Although

ITERLP is able to produce near-optimal divisible load schedules, there are some underlying issues

that did not get addressed. These issues include: limitations of sorting processor nodes only

by communication parameters, and neglecting the cost of latency. ITERLP performs well when

processor nodes vary in communication parameters; however, it may pose a problem with cluster

networks that have processor nodes sharing identical communication parameters. ITERLP does

not factor in the cost of latency because divisible loads are assumed to be sufficiently large enough

to ignore it in [1, 4]. Experimental results from taking the optimal time calculated by ITERLP

5

then factoring in the cost due to latency will show that the solution is adversely worsened and not

always near-optimal.

1.3 Motivation and Goals

The last paragraph from [1] mentions future work to create an algorithm with similar perfor-

mance, but with better cost characteristics than ITERLP. This thesis investigates improving the

ITERLP algorithm by adding latency parameters as well as trying different methods for sorting

processor nodes in a new heuristic algorithm named ITERLP2. The limitations of ITERLP are

shown when latency is factored in, and when communication parameters are the same for all pro-

cessor nodes. Multiple scenerios with cluster experiments will show different cases where some

sorting algorithms are best suited. Finally, results from experimentation are expected to show that

ITERLP2 outperforms ITERLP in all realistic cases.

1.4 Approach

The ITERLP algorithm was implemented using C++ and a linear program solver (COIN-Clp)

[12]. The algorithm was modified to accomodate latency using two different methods, one that adds

latency into the equations to be solved in the linear program, and another that factors in latency

after the linear programs have been solved. Rather than sorting only by communication parame-

ters, other sorting algorithms for computation, communication then computation, and latency were

implemented. Experiments with the new algorithm ITERLP2 were applied using different config-

urations and orderings for communication, computation, and latency parameters to show that the

goals are met.

6

Chapter 2

Theory

2.1 System Model and Problem Definition

Figure 2.1: Heterogeneous star network H.

Consider the divisible load J to be allocated, computed and collected on a heterogeneous star

network H = (P, I, E , C,L) illustrated in Fig. 2.1. The set of m + 1 processors is denoted by

P = {p0, ..., pm}, and the set of m network links denoted by I = {i1, ..., im}; the links stem from

the master processor p0 to the worker processors p1, ..., pm. The set of computational parameters

for each of the worker processors is E = {E1, ..., Em}, and the set of communicational parameters

for each of the network links is C = {C1, ..., Cm}. The new parameter for the latency on each of

7

the network links is L = {L1, ..., Lm}. The value for Ck is the reciprocal of the bandwidth speed

of network link ik, and Ek is the reciprocal of the processor speed of processor pk. The values

for Ek and Ck are measured in time units per unit load; Ek represents the time to process a unit

load, and Ck represents the time to transmit a unit load from p0 to pk over network link ik. The

value for Lk measures the latency (total time taken in time units to initiate a connection) between

processor p0 to pk over network link ik. For non-negativity, it is assumed that ∀k ∈ {1, ...,m} that

Ek > 0, Ck > 0, and lk ≥ 0. This new system model is based upon the model from [1].

The values of C and E are already known ahead of time by the master processor p0. Using these

known values, processor p0 calculates and divides up the entire load J into a set of load fractions

α1, ..., αm; once divided, processor p0 allocates the load fractions α1, ..., αm to the respective worker

processors p1, ..., pm to be computed.

Figure 2.2: Divisible load schedule for m = 3, σa = {2, 1, 3}, σc = {1, 3, 2}.

Each of the worker processors goes through three discrete phases: allocation, computation, and

collection. To begin, the allocation phase involves the master processor p0 sending load fractions

to a worker processor; the computation phase commences when the entire load fraction has been

allocated to a worker processor. After having finished computing, the collection phase has worker

processors send results back. Whether it is the allocation or collection phase, the master processor

p0 can only communicate to one processor at a time, and result collection can occur only after the

entire load has been allocated; however, any number of worker processors that have already received

load may compute in parallel [1]. The magnitude of data in the results to be returned is considered

proportional to the size of the load initially allocated. This assumption is only made when dealing

8

with image and video processing, matrix manipulation, or any computation that incorporates the

use of linear transformations [1, 2, 4, 5]. So given a load fraction αk, the associated returned result is

equal to δαk, where 0 ≤ δ ≤ 1. The constant value for δ is application dependent and all processors

share that value for a given load J . Given a load fraction αk, the time to transmit from p0 to pk is

equal to αkCk plus the cost of latency Lk, the computation time on worker processor pk is equal to

αkCk, and finally the time to transmit the results back from pk to p0 is equal to δαkCk plus the cost

of latency Lk. For a given load fraction αk to go through all three phases: allocation, computation,

and collection, there is the associated cost of latency on both the allocation and collection phases,

due to the master processor p0 only being able to establish one communication at a time between

itself and any given worker processor.

Fig. 2.2 illustrates a simple example of a divisible load schedule with 3 processors showing all

3 phases; the x values represent the idle time between when a processor pk finishes computing, to

when it begins transferring the result, and the y value represents idle time between the point when

the last load fraction finished allocating to when the first result begins transferring.

Allocation and collection order are denoted by the permuted sets σa and σc respectively. σa[k]

and σa[k] respresent the processor number at index k ∈ {1, ...,m}. To find the index of a given

processor, σa(l) and σc(l) are two functions that are given a processor number and return the index.

Fig. 2.2 shows an example load schedule with an order of allocation σa = {2, 1, 3} and order of

collection σc = {1, 3, 2}.
The ITERLP uses a linear cost model for finding a solution using only the parameters for

communication and processing speed with respect to load fractions; however, for ITERLP2 to

accomodate the cost of latency, the linear model must factor in a fixed cost for the time to initiate

a connection, thus forming an affine cost model. The linear program below is a modified version

from [1, 4, 5] that accomodates the cost of latency using an affine cost model.

Given a divisible load J and a heterogeneous star networkH = (P, I, E , C,L), the allocation and

collection orders (σa,σc) are tried by the linear program below and solved to find the optimal load

fractions α = {α1, ..., αm}, and associated time T . Divisible load scheduling on a heterogeneous

star network is characterized by the linear program as below:

9

Minimize ζ = 0α1 + ... + 0αm + T

Subject To:

[σa(k)∑

j=1

ασa[j]Cσa[j] + Lσa[j]

]
+ αkEk +

[m∑

j=σc(k)

δασc[j]Cσc[j] + Lσc[j]

]
≤ T k = 1, ..., m (2.1)

[m∑

j=1

ασa[j]Cσa[j] + Lσa[j]

]
+

[m∑

j=1

δασc[j]Cσc[j] + Lσc[j]

]
≤ T (2.2)

m∑

j=1

αj = J (2.3)

T ≥ 0, αk ≥ 0 k = 1, ...,m (2.4)

The LHS (left hand side) of constraint 2.1 is comprised of the total time spent in transmitting

all load fractions to processors that will receive load before processor pk, the computational time

for processor pk, and the total time spent in transmitting all tasks back from processors that finish

computing after processor pk. The no-overlap model is satisfied if the processing time T is greater

than or equal to the time given on the LHS for all m processors. The one-port model is enforced

by constraint 2.2 with the LHS consisting of the lower bound of communicational time and latency

cost for both allocation and collection. The LHS of constraint 2.3 ensures that the entire load is

distributed amongst the processors. Non-negativity of objective variables is ensured by constraint

2.4 [1].

2.2 ITERLP Algorithm

The heuristic algorithm ITERLP finds a solution by iteratively solving linear programs. To

begin, the processors are first sorted by communication parameters Ck. Starting with the first

two processors, all four permutations of σa and σc are passed into the linear program, defined by

constraints 2.1 through 2.4, and solved. After solving for the first two processors, the next processor

is added to the optimal sequence and the linear program is solved again; additional processors are

arranged in any position in the optimal sequence of σa and σc from the last iteration. When

solving the linear program, ITERLP ignores latency and keeps track of times before latency is

added; however, when ITERLP is finished computing, the solution time is adjusted for latency.

The algorithm requires at most k2 linear programs solved in a given iteration with k processors.

10

Using the summation below, the total complexity of ITERLP, in the worst case, is calculated to be

O(m3) for m processor nodes. OPT permutes all possible combinations of allocation and collection

for k processors, solving (k!)2 linear programs. ITERLP will halt execution will halt and not

proceed to the next iteration if, in any given iteration, processor k is allocated zero load.

m∑

k=2

k2 =
1
6
k(k + 1)(2k + 1)− 1 = O(m3) (2.5)

2.3 ITERLP2 Algorithm

Similarly to the heuristic algorithm ITERLP, ITERLP2 finds a solution by iteratively solving

linear programs. The complexity of ITERLP2 is the same as ITERLP, O(m3). To begin, processors

are first shuffled in random order to ensure that parameters are sorted fairly. ITERLP2 uses three

new sorting configurations as well as sorting by increasing value of Ck (increasing time needed to

transfer a load fraction); these new sort methods are used for showing the limitation of ITERLP

sorting only by Ck and for comparing to see where each is best suited. The new methods include:

sorting by increasing value of Ck then increasing value of Ek (increasing time needed to compute),

sorting by increasing value of Ek, and sorting by increasing value of Lk (increasing time needed to

establish a connection). After solving for the first two processors, the next processor is added to

the optimal sequence and the linear program is solved again; additional processors are arranged in

any position in the optimal sequence of σa and σc from the last iteration. There are two separate

solution times tracked, one representing the best time for the current iteration, and another for

the best time overall. ITERLP2 has two different configurations for latency; the first, ITERLP2A,

uses latency in the constraint equations of the linear program prior to solving, tracking times after

the fact and the second, ITERLP2B, ignores latency when solving the linear program, but after

each linear program is solved, latency is factored in and the adjusted times are tracked. It might

be interesting to see whether one approach performs better than the other.

After the addition of latency, it is shown in results from Chapter 4 that, in some cases, ITERLP2

may produce better solution times with fewer processors. For example, ITERLP2 finds the solution

time for four processors, and then a fifth processor with much higher latency cost is added; since the

fifth processor has such high latency, it is given a very small fraction of the load and consequentially

produces a solution time worse than with four processors. So no matter the load fraction size given

to a processor, the magnitude of latency is a fixed cost that is applied regardless of there being zero

11

load.

For example, given the optimal sequences σ1
a = {2, 1} and σ1

c = {1, 2}, after the first it-

eration, the third processor would be added to the sequences in the following manner: Σ2
a =

{{3, 2, 1}, {2, 3, 1}, {2, 1, 3}} and Σ2
c = {{3, 1, 2}, {1, 3, 2}, {1, 2, 3}}. In the second iteration, Σ2

a and

Σ2
c represent all possible sequences for allocation and collection respectively.

Table 2.1: Results for 3 processors sorting by communication parameter C with C =
{100, 125, 150}, E = {1000, 700, 850},L = {10, 7, 9}, δ = 0.5, rounded to 3 decimal places

Algorithm σa σc α T

OPT {1, 2, 3} {1, 3, 2} {0.430, 0.263, 0.307} 436.033
ITERLP {1, 2, 3} {2, 1, 3} {0.330, 0.371, 0.299} 444.258

ITERLP2A {1, 2, 3} {1, 3, 2} {0.430, 0.263, 0.307} 436.033
ITERLP2B {1, 2, 3} {1, 2, 3} {0.308, 0.392, 0.299} 437.559

Tables 2.1 and 2.2 show the results for iterations 2 and 3 respectively of an example with the

following parameters: C = {100, 125, 150, 175}, E = {1000, 700, 850}, L = {10, 7, 9}, and δ = 0.5.

ITERLP2A finds the optimal sequence in both iterations, and the remaining algorithms are near-

optimal. Though it appears that ITERLP is performing near-optimal, adding more processors

results in a solution time that deviates further and further from the optimal time; this is confirmed

in the experimental results in Chapter. 4.

Table 2.2: Results for 4 processors sorting by communication parameter C with C =
{100, 125, 150, 175}, E = {1000, 700, 850, 500},L = {10, 7, 9, 8}, δ = 0.5, rounded to 3 decimal
places

Algorithm σa σc α T

OPT {1, 2, 3, 4} {1, 3, 2, 4} {0.217, 0.308, 0.184, 0.292} 352.196
ITERLP {1, 2, 4, 3} {4, 2, 1, 3} {0.257, 0.290, 0.187, 0.266} 368.724

ITERLP2A {1, 2, 3, 4} {1, 3, 2, 4} {0.217, 0.308, 0.184, 0.292} 352.196
ITERLP2B {1, 2, 3, 4} {1, 2, 3, 4} {0.219, 0.278, 0.212, 0.291} 354.228

12

Chapter 3

Experiments

3.1 Simulations with random parameters

Prior to experimentation, a few preliminary tests were conducted to find a good balance for the

system parameters. The values chosen for C and E in Tables. 3.1 and 3.2 are based on the values

chosen from experiments in [1] with the addition of the latency L values; the values in the ranges

are randomly chosen, but are also based on actual values for current processors and networks to

handle arbitrarily large divisible loads.

Table 3.1: Parameters for simulation using 5 processors with δ = 0.5

Case C values E values L values
1 [1, 100] [100, 1000] [0.01, 10]
2 [1, 100] [100, 1000] [0.1, 10]
3 [1, 100] [100, 1000] [1, 10]
4 [1, 100] [100, 1000] [1, 100]
5 [1, 100] [1000, 10000] [0.01, 10]
6 [1, 100] [1000, 10000] [0.1, 10]
7 [1, 100] [1000, 10000] [1, 10]
8 [1, 100] [1000, 10000] [1, 100]
9 [10, 1000] [100, 1000] [0.01, 10]
10 [10, 1000] [100, 1000] [0.1, 10]
11 [10, 1000] [100, 1000] [1, 10]
12 [10, 1000] [100, 1000] [1, 100]
13 [1, 100] [1, 1000] [0.01, 10]
14 [1, 100] [1, 1000] [0.1, 10]
15 [1, 100] [1, 1000] [1, 10]
16 [1, 100] [1, 1000] [1, 100]

13

The experiments from Table. 3.1 include the optimal solution OPT for comparing to ITERLP

and ITERLP2 with 5 processors; however, the experiments from Table. 3.2 do not include the

optimal solution, due to the time requirements to solve (16!)2 = 4.4 · 1026 and (32!)2 = 6.9 · 1070

linear programs for 16 and 32 processors respectively. Each case includes 100 simulation runs, with

each run being done 4 times to cover all sorting algorithms (by C, by E , by C then E , and by L)

for both ITERLP2 A and B; ITERLP is only used once per run, sorting by C. It is expected that

results will reveal that ITERLP2 A and B outperform ITERLP in all cases.

Table 3.2: Parameters for simulation using 16 and 32 processors with δ = 0.5

Case # Processors C values E values L values
17 16 [1, 100] [100, 1000] [0.01, 10]
18 16 [1, 100] [100, 1000] [1, 10]
19 16 [1, 100] [1000, 10000] [0.01, 10]
20 16 [1, 100] [1000, 10000] [1, 10]
21 16 [10, 1000] [100, 1000] [0.01, 10]
22 16 [10, 1000] [100, 1000] [1, 10]
23 16 [1, 100] [1, 1000] [0.01, 10]
24 16 [1, 100] [1, 1000] [1, 10]
25 32 [1, 100] [100, 1000] [0.01, 10]
26 32 [1, 100] [100, 1000] [1, 10]
27 32 [1, 100] [1000, 10000] [0.01, 10]
28 32 [1, 100] [1000, 10000] [1, 10]
29 32 [10, 1000] [100, 1000] [0.01, 10]
30 32 [10, 1000] [100, 1000] [1, 10]
31 32 [1, 100] [1, 1000] [0.01, 10]
32 32 [1, 100] [1, 1000] [1, 10]

3.2 Clusters

Experiments with clusters are done with 2, 4, and 8 clusters. Each cluster Uk has a range of

processor nodes that start from 2 to a possible 32 processor nodes per cluster. The total number of

processor nodes is restricted to a maximum of 64 to allow experiments to complete under realistic

time constraints. Values for C, E , and L defined to be the same for all processor nodes in a given

cluster; the goal is to simulate realistic grids of clusters for load schedules to be calculated. Table

3.3 lists 5 different cases with a total of 16 subcases amongst them. Each case should pose a problem

for ITERLP, due to the fact that it just sorts by C, and ignores latency; results are expected to

show that ITERLP2 A and B outperform ITERLP due to its limitations.

The following conjectures can be made about the five cases. Case 1 will cause ITERLP to choose

14

Table 3.3: Cluster experiments with δ = 0.5

Case # Clusters Uk # Nodes/Cluster U1 U2 U3 U4 U5 U6 U7 U8

1
C = 150 C = 100

2 4, 8 E = 300 E = 1000
L = 2 L = 25

2
C = 150 C = 100

2 8, 16 E = 800 E = 2000
L = 5 L = 5

3
C = 100 C = 100 C = 100 C = 100

4 4, 8 E = 800 E = 2000 E = 1500 E = 3000
L = 5 L = 15 L = 10 L = 20

4
C = 150 C = 100 C = 150 C = 100

4 8, 16 E = 300 E = 3000 E = 1000 E = 2000
L = 5 L = 5 L = 5 L = 5

5
C = 110 C = 100 C = 110 C = 100 C = 110 C = 100 C = 110 C = 100

8 4, 8 E = 400 E = 500 E = 450 E = 1000 E = 1000 E = 500 E = 500 E = 1000
L = 5 L = 5 L = 5 L = 5 L = 2 L = 10 L = 2 L = 10

a very distant cluster with better bandwidth, although the slower bandwidth cluster is much closer

and has faster processors. Case 2 will make ITERLP choose a cluster with better bandwidth, but

with slower processors, in the same network. Case 3 gives an example that will show the limitations

of sorting only by communication parameters where bandwidth is the same for all processor nodes.

Case 4 is just an extended version of case 2 with two additional clusters. Case 5 gives a wide range

of parameters and should give some varying results.

15

Chapter 4

Results

4.1 Simulations with random parameters

Simulations with ranges of randomly generated system parameters were conducted for m =

5, 16, 32, and δ = 0.5. The following are algorithms used when simulating with m = 5: OPT,

ITERLP, ITERLP2A, and ITERLP2B. The ITERLP2 algorithms were sorted in four different

configurations (by C, by C then E , by E , and by L). When m = 16 or m = 32, the time taken

to calculate OPT would be unrealistic, so only the ITERLP, ITERLP2A, and ITERLP2B were

used. There were 32 cases in total with 100 simulation runs for each configuration of algorithm and

sorting order.

Average percent deviation for each algorithm TV ARIANT is represented by ∆TV ARIANT in the

calculation as below:

∆TV ARIANT =
Mean(TV ARIANT)−Mean(TOPT)

Mean(TOPT)
∗ 100% (4.1)

16

(a) (b)

Figure 4.1: Simulation results.

The results for the first 16 cases are depicted in Fig. 4.1. The graph shows the average percent

deviation ∆TV ARIANT that the variant algorithms ITERLP, ITERLP2A, and ITERLP2B make

from OPT. ITERLP is compared to both ITERLP2 algorithms sorting by C, and by E in the

left and right graphs respectively. Cases 4, 8, 12, and 16 all show anomalous points where both

ITERLP2 algorithms produce solution times lower than OPT; this was due to the values for L being

too high in relation to C and E . The problem was with OPT permuting all possible combinations

of 5 processors; some of them were being allocated zero load, but still assigned the cost of latency.

This made ITERLP2A and ITERLP2B produce much better schedules than OPT, only because

they were able to terminate early with fewer processors when zero load was allocated. Figure.

4.2 on page 18 illustrates a simulation run from case 8; it shows that OPT schedules load to 2

processors, but incurs the burden of latency from 5 processors, regardless of the fact that 3 of them

are allocated zero load.

Another anomaly can be seen in cases 9, 10, and 11. Since these cases have similar results,

one graph is shown for case 11 in Fig. 4.6. It appears that ITERLP is outperforming both of the

ITERLP2 algorithms that sort by E , or by L. These cases show that when values for communication

parameters are too high in relation to the computational parameters, that sorting by E , or by L is

not suitable. Though the results in this case are near-optimal for both ITERLP2 algorithms when

sorting by C or by C then E , in realistic cases, ITERLP should not be outperforming both ITERLP2

algorithms that sort by E , or by L. The reason is that ITERLP2 algorithms are designed to find

the best solution times with latency cost factored in, and adjusting for latency with ITERLP is

expected to fail.

The remainder of the results in cases 1, 2, 3, 5, 6, 7, 13, 14, and 15 show the limitations that

17

Figure 4.2: Anomalous Results

ITERLP has when latency is ignored. They also show that ITERLP2A and ITERLP2B both

outperform ITERLP in all realistic cases. Overall ITERLP2A performed best with the nearest-

optimal times.

All even-numbered cases from cases 17 through 32 are shown in Figures 4.3, 4.4, 4.5, and 4.7.

For trending purposes, each figure has two graphs that show the effects of increasing the number

of processor nodes from 16 to 32. Each graph uses a boxplot; each box has a whisker coming from

the top representing the max value, a whisker coming from the bottom representing the min value,

and a line passing left-to-right through the box representing the mean value.

The performance of ITERLP in Figures 4.3, 4.4, and 4.7 appears to be following the same

decremental trend when the number of processor nodes is increased from 16 to 32. The results from

case 26 in Fig. 4.3 show that ITERLP produced a median optimal time that is almost 3 times that

of the worst optimal times that both ITERLP2 algorithms have produced. It is unquestionable that

ITERLP fails to perform near-optimal and is, by far, outperformed by ITERLP2A and ITERLP2B

in these cases. Both ITERLP2 algorithms perform well in all six graphs, but though the performance

does improve, the solution time is not reduced by half when the number of processor nodes is

doubled to 32. No matter what sorting method the ITERLP2 algorithms use, performance stays

pretty consistent with median values that vary no more than 30 time units.

18

(a) Case 18: 16 processors. (b) Case 26: 32 processors.

Figure 4.3: Simulation results.

(a) Case 20: 16 processors. (b) Case 28: 32 processors.

Figure 4.4: Simulation results.

(a) Case 22: 16 processors. (b) Case 30: 32 processors.

Figure 4.5: Simulation results.

19

Figure 4.6: Case 11 results.

Fig. 4.5 shows results for cases 24 and 32

which follow a similar trend to what is seen in

cases 9, 10, and 11; they also share the same

parameters as case 11 for C, E , and L. Results

for case 11 are shown in Fig. 4.6 for comparing

to Fig. 4.5. The results for both ITERLP2 al-

gorithms show again that when values for com-

munication parameters are too high in relation

to the computational parameters, that sorting

by E , or by L is not suitable. Again it is un-

realistic that ITERLP have better performance

than ITERLP2A and ITERLP2B sorted by C or by C then E .

(a) Case 24: 16 processors. (b) Case 32: 32 processors.

Figure 4.7: Simulation results.

Though there were a few anomalies with certain system parameters, the results definitely show

that with realistic ranges of random values and the cost of latency being factored in, that ITERLP

does not perform near-optimal; it is shown that ITERLP has limitations when latency is ignored.

Simulations show again that both ITERLP2 algorithms outperform ITERLP in all realistic cases;

as well ITERLP2A performed best with the nearest-optimal times overall.

4.2 Clusters

The following results include all algorithms except OPT. Experiments were conducted for 2,

4, and 8 clusters with m = 4, 8, 16, 32 processor nodes in each cluster with up to a possible 64

20

processors per experiment. The ITERLP2 algorithms were sorted in four different configurations

(by C, by C then E , by E , and by L). Figures 4.8, 4.9, 4.10, 4.11, and 4.12 show some results from

all five cluster experiments; there are two graphs per figure, with one cluster simulation run in each.

(a) 8 processors. (b) 16 processors.

Figure 4.8: Case 1 cluster results.

Results for case 1 are quite interesting, because they show that ITERLP, and both ITERLP2

algoriths that sorting by C, or by C then E are progressively worsened when the number of processors

is increased from 8 to 16. The optimal time of ITERLP appears to get much worse, whereas, both

ITERLP2 algorithms seem to only worsen slightly. Despite the poor solution times when sorting

by C, or by C then E , the results are the complete reverse for both ITERLP2 algorithms, when

sorting by E , or by L; the results not only improve when going from 8 to 16 processors, but also

outperform ITERLP by three times. It is shown in Fig. 4.8 with 16 processors that with either

ITERLP2 algorithm, the worst results for E , or by L are in the 180 range for optimal time, as

opposed to ITERLP with an optimal time of around 560. The parameters used in this cluster

experiment definitely favour sorting by E , or by L.

Case 2 produced very monotonous results in Fig. 4.9 for all algorithms; however, results do show

that ITERLP is outperformed by ITERLP2A and ITERLP2B, but not by much. Another thing to

note is that with any of the algorithms going from 16 to 32 processors, when sorting by C, or by

C then E the results are worsened and when sorting by E , or by L, there is no change. The reason

that the results are worsened with 32 processors is that there were, on average, 16 processors chosen

for the solution times; this was the worst choice due to the computational parameters being much

higher than that of the other 16 processors that were not chosen. Overall for this case, whether

ITERLP2A or ITERLP2B is used, any sort order is sufficient and ITERLP is still outperformed

by both ITERLP2 algorithms.

21

(a) 16 processors. (b) 32 processors.

Figure 4.9: Case 2 cluster results.

(a) 16 processors. (b) 32 processors.

Figure 4.10: Case 3 cluster results.

Results from case 3 are among the most interesting cluster experiments. This experiment was

assumed to show the limitation of sorting only by C with ITERLP. This assumption was correct,

and it definitely shows that with either ITERLP2 algorithm, that sorting by C is also the worst

choice. Based on the parameters chosen initially, it was obvious that when sorting by E , by C then

E , or by L that results should be the same and nearest-optimal. The results also show that the

performance of ITERLP goes from being mediocre to more than twice as worse, when going from

16 to 32 processor respectively. It is shown from the results in Fig. 4.9 that ITERLP is once again

outperformed by both ITERLP2 algorithms.

Cases 4 and 5 show similar results with some interesting irregularities. When going from 32 to

64 processors, some optimal times had no change, others had worsened, and the rest had improved

only slightly. Figures 4.11 and 4.12 show that sorting by E or by L are the best choices for ordering

22

(a) 32 processors. (b) 64 processors.

Figure 4.11: Case 4 cluster results.

with both ITERLP2 algorithms, regardless of the times being worse with 64 processors. ITERLP

is especially worsened when going from 32 to 64 processors in Fig. 4.11 with and optimal time

that is double that of ITERLP2B sorting by E . Though the results are worsened in some cases

for ITERLP2A and ITERLP2B, ITERLP is still outperformed; as well, ITERLP2B appears to

produce the nearest-optimal times.

(a) 32 processors. (b) 64 processors.

Figure 4.12: Case 5 cluster results.

It was unexpected in the cluster results that ITERLP2B would produce better times that

ITERLP2A in all cases, since in the random simulations, ITERLP2A produced the nearest-optimal

times.

23

Chapter 5

Conclusion

In this thesis a modified version of the heuristic algorithm ITERLP, named ITERLP2, was

created to investigate other sorting methods and latency cost. Random simulations and cluster

experiments have shown that, in realistic cases, ITERLP fails to produce near-optimal times when

latency is introduced; however, ITERLP2A and ITERLP2B consistently produce near-optimal per-

formance irregardless of the level of heterogeneity, the number of processor nodes, or the magnitude

of the result set. It has been shown where each of the sorting methods is best suited in cluster

experiments, but no method is best suited for all cases. ITERLP2A performs best in the random

simulations, whereas ITERLP2B performs best with cluster experiments. Finally, results from

experimentation have shown that ITERLP2 outperforms ITERLP in all realistic cases.

5.1 Contributions

To contribute to DLT, it has been shown that ITERLP has limitations when sorting only by

communication parameters and neglecting the cost of latency. As well, a newly modified and

improved heuristic algorithm, ITERLP2, has been created to be more realistic by factoring in

the cost of latency and considering other sorting methods. It has been shown that ITERLP2

outperforms ITERLP in all realistic cases.

5.2 Future Work

When the value of m becomes very large, ITERLP2 does not effectively schedule divisible loads

and could take a great deal of time to complete. To help get around this limitation, one can produce

24

an application of DLS involving clusters of clusters whereby each cluster can be considered as an

equivalent processor [1, 9, 11]. A load schedule can be created for this by considering clusters of

clusters as a multilevel-processor tree that can be recursively solved [1]. This is done by initially

solving with the set of equivalent processors in the first level of the tree. After each cluster in the

first level has had a load fraction calculated for it, each child processor/cluster below them will

have the parent load fraction split up yet again. This process repeats until the leaf nodes have been

reached in all branches.

25

Bibliography

[1] O. Beaumont, A. Ghatpande, H. Nakazato, H. Watanabe. Divisible Load Scheduling with Result

Collection on Heterogeneous Systems. (Heterogeneous Computation Workshop IPDPS, pp. 1-8,

2008).

[2] S. K. Chan, V. Bharadwaj, D. Ghose. Large matrix-vector products on distributed bus net-

works with communication delays using the divisible load paradigm: performance analysis and

simulation. (Math. Comput. Simul. 58, 1 (Dec. 2001), 71-92).

[3] S. Bataineh, T. Hsiung, T.G. Robertazzi. Closed Form Solutions for Bus and Tree Networks of

Processors Load Sharing a Divisible Job (IEEE Trans. Comput., vol. 43, no. 10, pp. 1184-1196,

1994).

[4] A. Ghatpande, H. Nakazato, O. Beaumont, H. Watanabe. Analysis of Divisible Load Scheduling

with Result Collection on Heterogenous Systems (IEICE Transactions on Communications

2008, vol. E91-B, no. 7, pp. 2234-2243, 2008).

[5] A. Ghatpande, H. Nakazato, O. Beaumont, H. Watanabe. SPORT: An Algorithm for Divisible

Load Scheduling with Result Collection on Heterogeneous Systems (IEICE Transactions on

Communications 2008, vol. E91-B, no. 8, pp. 2571-2588, 2008).

[6] SETI@home. SETI@home: Search for Extraterrestrial Intelligence at Home

(http://setiathome.ssl.berkeley.edu, August, 2008).

[7] ACEnet wiki. ACEnet website (http://wiki.ace-net.ca, May, 2008).

[8] O. Beaumont, L. Marchal, Y. Robert. Scheduling divisible loads with return messages on het-

erogeneous master-worker platforms (High performance computing. International conference

No12, Goa , INDE (18/12/2005) 2005, vol. 3769, pp. 498-507).

26

[9] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang. Scheduling Divisible Loads on

Star and Tree Networks: Results and Open Problems (IEEE Transactions on Parallel and

Distributed Systems ,vol. 16, no. 3, pp. 207-218, March, 2005).

[10] T. G. Robertazzi. Ten Reasons to Use Divisible Load Theory. (Computer, vol. 36, no. 5, pp.

63-68, May, 2003).

[11] D. Yu, T.G. Robertazzi. Divisible Load Scheduling for Grid Computing (Proc. of the IASTED

International Conference on Parallel and Distributed Computing and Systems, Los Angeles,

Nov, 2003).

[12] COIN-Clp. COmputational INfrastructure for Operations Research (http://www.coin-or.org,

May, 2008).

27

