
µ: A Functional Programming
Language for Digital Signal Processing

Matthew Gordon

University of New Brunswick

9 April 2003

CS4997 Undergraduate Thesis
Supervisor: Prof. Brad Nickerson

Contents

1 Introduction 5

2 Motivation and Inspiration 6
2.1 Audio Engineering and Filter Plugins 6

2.1.1 Hard Disk Recording Software 6
2.1.2 Filter Plugins . 6

2.2 Music Synthesizers . 7
2.2.1 Virtual Instrument Plug-ins 7
2.2.2 CSound . 7

2.3 Solution: Special-Purpose Programming Language 7

3 Design of the µ Language 9
3.1 Design Goals . 9
3.2 Characteristics of µ . 9

3.2.1 Pure Functional . 9
3.2.2 Modelled After Standard Mathematical Notation . . . 9
3.2.3 Equational Reasoning 10
3.2.4 “Everything is a Function” 11
3.2.5 Flow of Control . 11

3.3 Design Specifics . 12
3.3.1 Program structure . 12
3.3.2 Binding Sound Files To Functions 12
3.3.3 Defining Functions . 12
3.3.4 Basic Expression Syntax and Operators 13
3.3.5 Other Operators . 13
3.3.6 Conditionals . 14
3.3.7 Function Composition 15
3.3.8 Extra Niceties . 15

4 Implementation 16
4.1 Goal of This Implementation 16
4.2 Development Environment . 16
4.3 High-level Program Structure 16
4.4 Lexing and Parsing . 16
4.5 Intermediate Data Structures 17

4.5.1 Symbol Table . 17

1

4.5.2 Function List . 17
4.5.3 Constant List . 18
4.5.4 Expression Trees . 18

4.6 Code Generation . 18
4.6.1 Output File . 18
4.6.2 Conventions Followed in Generated Code 19
4.6.3 Layout of Generated Code 19
4.6.4 Expression Evaluation 20
4.6.5 The libmu Library . 20

5 Testing 23
5.1 Wav Output Testing With Synthesizers 23

5.1.1 Additive Synthesis . 23
5.1.2 PWM Synthesis . 24

5.2 Wav I/O Testing With Filters 25
5.2.1 Mixers . 25
5.2.2 Chorus . 25
5.2.3 Compression . 26

6 Analysis 27
6.1 Effectiveness For Writing Synthesizers 27
6.2 Effectiveness For Writing Filters 27

7 Future Directions 29
7.1 Optimization . 29
7.2 Input/Output . 29
7.3 Extensions to Syntax . 30

8 Conclusion 31

A µ Language Grammar 32
A.1 Lexical Specification . 32
A.2 µ Grammar Specification . 34

B Parse.h 37

C Sample µ Programs 43
C.1 Additive Synthesis . 43
C.2 PWM Synthesis . 44

2

C.3 Stereo Mixdown . 45
C.4 Chorus . 45
C.5 Compression . 46
C.6 Organ Melody . 46

D Code Generation Example 50

E Glossary 55

F CS4997 Summary Sheet 56

3

List of Figures

1 A mathematical expression and the equivalent expression in
the µ language. 10

2 A function with side effects, written in C. 10
3 #input and #output pragmas 12
4 Function definition syntax . 12
5 Summation syntax . 13
6 µ function and equivalent math expression demonstrating sum-

mation. 13
7 Syntax for a conditional function 14
8 A conditional function and mathematical equivalent 14
9 The printExpr() function from the muc code generator . . . 21
10 A pulse wave with a duty cycle of 66%. 24

4

1 Introduction

This document describes my undergraduate thesis work at the University
of New Brunswick between September of 2002 and April of 2003. During
this time I designed a programming language and implemented a compiler
for that language. The language is called µ (pronounced ‘moo’) and was
designed primarily with digital signal processing in mind. After designing
the language and implementing the compiler, I wrote a number of simple
µ programs and evaluated the language based on my experience with these
programs.

The field of digital signal processing (DSP for short) involves the creation
of signal filters. A filter is anything which a signal passes through which may
change the signal. A good introduction to this field can be found in [13]. DSP
has a wide range of applications—just about every technology that involves
signals involves DSP: telephones, radios, televisions, computer networks and
many others. However µ was designed primarily for processing a certain kind
of signal: audio signals.

5

2 Motivation and Inspiration

2.1 Audio Engineering and Filter Plugins

Audio engineering is the task of taking one or more audio sources—instruments,
singing or speaking people, or anything else that makes a noise—and repro-
ducing it so that it sounds as good as possible. This is accomplished by
applying various filters to the audio sources in order to remove unwanted
artefacts or make the sounds more pleasant to listen to. The “sound guy”
that runs the mixing board when a band is playing live is an audio engineer,
and audio engineering is also a very important part of creating sound for
movies, radio, videos and compact discs.

2.1.1 Hard Disk Recording Software

Recording studios traditionally have used reel-to-reel analog tape machines
to record music. These machines support multiple tracks of high-quality
audio, allowing each part of the music (e.g. each instrument and singer in
a band) to be recorded separately on it’s own track. After everything has
been recorded, filters can be applied to individual tracks or groups of tracks,
and finally a mixer is used to mix all the tracks together and produce a
stereo output to record onto CDs, Tapes or DVD. This allows the engineer
to experiment with using different filters with the different tracks and try
different ways of mixing the tracks together.

Recording studios are increasingly moving towards hard disk recording
software such as Pro Tools. Instead of recording to analog tape, the tracks
are recorded digitally onto computer hard disk. The mixing and processing
(filtering) can then be done using software, although hardware filters are still
often used.

2.1.2 Filter Plugins

The audio signal filters used with recording software typically take the form
of plug-ins—software modules which dynamically link with (“plug into”) the
recording software using one of a number of standardized interfaces. For
example, if a user is unhappy with the equalizer that is included with their
recording software they may buy a third-party equalizer plug-in in a format
that their software recognizes. After they have installed the new equalizer it
becomes available to them as just another part of the recording package.

6

The filters used in recording music fall mostly into a small number of
categories; equalizers, delays, compressors and expanders are the most com-
mon. Different examples of a particular type of filter vary with respect to the
details of their exact capabilities and interface, along with the “character”
that they impart to the sound. Good plug-ins can cost quite a bit of money.
One of my goals in this thesis was to work towards an easy way for users to
experiment with making their own filter plug-ins.

2.2 Music Synthesizers

2.2.1 Virtual Instrument Plug-ins

Another kind of plug-in that is often used with recording software is a virtual
instrument or synthesizer. These plug-ins allow the software to create music
tracks without recording an actual instrument—the software “synthesizes” a
sound which resembles an instrument. This can be either a purely synthetic
musical sound or a simulation of a real instrument. Another goal for this
thesis was to work towards creating an easy way for users to create their own
synthesizers. Many plug-ins already exist that allow the user to design their
own synthesizer sounds; however, these are typically modelled after analog
synthesizers and do not take full advantage of the extra possibilities allowed
by the use of the computer.

2.2.2 CSound

One program which is designed specifically for synthesizing music on a com-
puter is CSound, a free program available at [3]. CSound reads in text files
following a specified format and generates sound. Although CSound is a very
powerful and flexible program, I found that the syntax of the input files was
quite difficult to learn and was not very readable. I felt that I could improve
on this design.

2.3 Solution: Special-Purpose Programming Language

I decided that for my thesis I would design and implement a simple computer
language designed specifically for creating audio filters and synthesizers. I
decided that a full-fledged system for creating plug-ins was too large a project
for the time available and instead focussed on creating a compiler that could
evaluate the design of the language. I decided to create a compiler that

7

generates programs that can read and write wave-format files—this would
allow me to evaluate the language based on how easy it is to create a variety
of filters and synthesizers with it. If the language turned out to be a good
design then a future project would be expanding it into a full-featured system
for creating plug-ins. For no particular reason, I decided to call my new
language µ.

8

3 Design of the µ Language

3.1 Design Goals

µ was designed to meat the following criteria:

1. The common types of filters (equalizers, compressors, expanders, delay
effects, modulators) should be easy to implement in µ.

2. µ should not be limited to standard filter designs.

3. People with a solid math background but no programming experience
should be able to learn µ easily.

4. µ should be very expressive mathematically. It should be possible to
concisely write complex expressions.

5. Things like input, output and memory management should be taken
care of automatically by the compiler.

3.2 Characteristics of µ

I decided that the µ language should be a first-order pure functional language
based on standard mathematical notation. The following paragraphs explain
what exactly is meant by this and how it helps meet the design goals.

3.2.1 Pure Functional

µ is a functional programming language. For a complete discussion what
functional languages are and how they are different from other types of lan-
guages, I would recommend reading [9]. By calling µ a first-order pure func-
tional language I mean that it supports equational reasoning but not higher-
order functions [1, page 298]. Equational reasoning is discussed in section
3.2.3 below.

3.2.2 Modelled After Standard Mathematical Notation

One of the design goals was to make a language that was easy for mathematically-
inclined non-programmers to learn. To meet this goal, the µ grammar was
modelled after standard mathematical notation. An example of this is shown

9

in figure 1. On the left is a mathematical function definition and on the right
is the equivalent µ function definition.

f(x) =

{
sin(x)/x for x > 0 f(x) = sin(x)/x for x > 0

0 otherwise | 0 otherwise

Figure 1: A mathematical expression and the equivalent expression in the µ
language.

3.2.3 Equational Reasoning

From a semantic standpoint, one important way that µ differs from common
imperative languages such as C is that it uses equational reasoning. As
with all pure functional languages, functions in µ never have side effects.
Variables are also not supported in the traditional imperative sense: once a
value is bound to a variable, the value of the variable cannot change. The
practical effect of this is that if the statement y = f(x) occurs at one point
in a program and the statement z = f(x) occurs at another point in the
program, then it is guaranteed that z = y. This is how things normally work
in mathematics but it is not how they work in imperative languages. In
an imperative language, the value of x could have changed, causing z to be
different from y. Also, the function f could have side effects; for example, f
could contain a static variable which affects the return value and is changed
when f is called. For an example of this, see figure 2.

float f(float x) {

static float i = 0;

i += 1;

return x + i;

}

Figure 2: A function with side effects, written in C.

10

The most important thing that equational reasoning does for µ is it puts a
layer of abstraction on top of the von Neumann architecture. Functions and
variables behave the way they are supposed to in mathematics, not the way
they are supposed to on a von Neumann machine. This is intended to simplify
the translation of filters from mathematical or electrical notation into µ. It
allows µ to more closely model not only abstract mathematical functions, but
also electrical circuits, which are typically described by systems of equations.

3.2.4 “Everything is a Function”

In µ, “everything is a function.” Functions can be defined by the programmer
using expressions, µ includes some built-in functions, and sound files are
treated as functions. After all, a sound is just a function of air pressure
versus time.

At the beginning of a µ program, input and output files are bound to
function names. The input files can then be read by “evaluating” their
functions—the ith sample of the file bound to “aFile” is returned by “aFile(i)”.
Similarly, the output file is created by defining it’s function.

3.2.5 Flow of Control

A µ program does not contain sequences of statements which are executed
in order as with an imperative language. Rather, µ programs consist of a
collection of function definitions, one or more of which must be bound to
output files. Each output function is evaluated once for each sample in it’s
output file. For example, if the function f(x) is bound to the output file
“output.wav” which is 1,000,000 samples long, then f(x) is evaluated once
for each possible integer value of x between 0 and 999,999. Functions in µ
support any rational numbers as parameters, but the output is sampled for
each integer value.

The output function(s) may be defined in terms of other functions, in
which case the other functions are evaluated as needed. Lazy evaluation is
used—functions are only evaluated if they are needed for the output and only
over the range needed for the output.

11

3.3 Design Specifics

This section describes in detail the specifics of the µ syntax and semantics.
The complete grammar specification can be found in appendix A.

3.3.1 Program structure

Each µ program consists of two parts. The first part is the pragma section
and the second is the definitions section. Both sections must be present in
all programs.

The pragma section is intended to contain all declarations concerning
i/o and data types. It must contain at least one #output pragma and may
also contain #input or #include pragmas. All pragmas start with the “#”
character. The #include pragma causes the contents of the specified file to
be added to the definitions section. The #input and #output pragmas are
described below.

3.3.2 Binding Sound Files To Functions

Sound files are bound to functions using #input and #output pragmas. An
example is shown in figure 3. In the example, the file “input.wav” is bound
to the function f in; f in(i) now refers to the value of the ith sample from
“input.wav”. The file “output.wav” will be created using integer values 0–
999,999 of f out.

#input f in from "input.wav"

#output f out to "output.wav" length 1000000 datatype int16

Figure 3: #input and #output pragmas

3.3.3 Defining Functions

Function name (Parameter) = Expression

Figure 4: Function definition syntax

12

Figure 4 shows the syntax for a function definition. Function name is
the name of the function and Parameter is the name of it’s parameter. The
parameter name can be any valid identifier that is not used for a function or
constant name; more than one function can use the same parameter name.
Expression is a mathematical expression which evaluates to the value of the
function in terms of the parameter.

3.3.4 Basic Expression Syntax and Operators

Expressions involving literal numbers, named constants, the parameter and
the +, -, * and / operators are written just as they would be in C. In addition,
µ contains a summation operator, the % operator has a different meaning than
in other languages, and µ has it’s own form of conditional.

3.3.5 Other Operators

SUM(Iterator = LowExpression to HighExpression)(Expression)

Figure 5: Summation syntax

The SUM operator in µ performs mathematical summation similar to Σ-
notation. The syntax is shown in figure 5—Expression is evaluated for each
integer value of Iterator between the values LowExpression and HighExpres-
sion. All the values of Expression are summed up to get the result. Figure
6 shows an example µ function definition and equivalent math expression,
demonstrating the SUM operator.

f(x) = SUM(i = 1 to x)(i*x)

f(x) =
x∑

i−1

ix

Figure 6: µ function and equivalent math expression demonstrating summa-
tion.

The “%” operator is more flexible in µ than a simple modulus operator.
When used with integer values, it returns the modulus, i.e., a % b returns

13

the remainder of integer division a/b. However, in µ it has been extended to
operate on all rational numbers. The definition is:

x = a%b ↔ (∃y ∈ Z | ay + x = b) ∧ (¬∃z ∈ Z | az + x = b ∧ z > y) (1)

Z is the set of integers. This looks like the definition for modulus, but in
µ it applies for ∀x, a, b ∈R. This is useful for creating waves from wavelets
because as x varies from 0 to ∞, x%n loops continually over the range [0, n].

3.3.6 Conditionals

Function Name (Parameter) = Expression1 for Condition1
| Expression2 for Condition2
| Expression3 for Condition3

.

.

.
| OtherwiseExpression otherwise

Figure 7: Syntax for a conditional function

The only conditional form in µ is the conditional function form. The syn-
tax for a conditional function is shown in figure 7. Each Condition specifies
a range of values for the parameter. When the function is evaluated, the
Expression corresponding to the first Condition that matches is used to cal-
culate the return value. If no Condition matches, then OtherwiseExpression
is used. Each conditional function must have exactly one OtherwiseExpres-
sion. An example of a conditional function with equivalent math expression
is given in figure 8.

f(x) = x for x < 10

| 10 otherwise

f(x) =

{
x for x < 10
10 otherwise

Figure 8: A conditional function and mathematical equivalent

14

3.3.7 Function Composition

Of course it does no good to be able to define all sorts of functions if they can-
not be combined in some way and influence the output. Other functions can
be referenced inside a function’s definition just as they would be in math-
ematics. A function reference takes the form Function name(Expression),
where Expression can be any valid µ expression. Function references are le-
gal anywhere inside an expression where a constant or literal is legal. This
includes inside function references, e.g. h(x) = f(g(x)) is a legal function
definition; it means h(x) = f ◦ g(x).

3.3.8 Extra Niceties

There are two other features are included in the µ specification to aid the
programmer: constants and built-in functions.

A constant is defined much like a function except that there is no parame-
ter for a constant, and the expression in a constant definition cannot contain
function references. Constant definitions belong in the definitions section of
a µ program.

Built-in functions are just that—functions that can be used in any µ
program without being defined by the programmer. They are legal anywhere
a function reference is legal. The µ built-in functions are sin, cos, tan, arcsin,
arccos, arctan, log and ln. Log and ln are log10 and loge, respectively.

15

4 Implementation

This section describes the design of muc, the µ compiler that was imple-
mented as part of this thesis.

4.1 Goal of This Implementation

The version of muc that was created for this thesis is an evaluation version
intended for testing the effectiveness of the language design. It is not a
full-featured compiler system and does not have adequate error checking or
optimization of any sort. However, muc was designed and implemented in a
manner that should facilitate adding these things later. All language features
described in section 3 are implemented in this version of muc except that it
only supports one input file and one output file.

4.2 Development Environment

Muc was developed on a Linux PC using the GNU C and C++ compilers, the
NEdit text editor, the lex lexical analyser generator, and the yacc compiler
generator.

4.3 High-level Program Structure

Muc can be broken down into the following compilation phases: lexical anal-
ysis, parsing, semantic actions, intermediate representation and code gen-
eration. A typical compiler normally involves more phases than this; some
phases that would normally be included in a compiler were deemed unnec-
essary for muc. Optimization phases were not included, some phases were
made unnecessary by the use of C++ instead of assembler as the output
language (described in 4.6 below), and some phases are only needed in im-
perative languages with more complicated control structures. For example,
the normal processes of canonicalization and trace generation do not apply
because µ does not involve sequences of instructions or jumps.

4.4 Lexing and Parsing

As stated above, lex and yacc were used to aid in the implementation of
muc. These tools were selected based primarily on their apparent popularity

16

and the fact that they are designed to work together. Lex reads a lexical
specification from a text file and generates a C source file containing a lexical
analyser for the language. For more information on lex, see [4]. Similarly,
yacc[5] reads a text file containing a context-free grammar specification with
semantic actions and generates a C source file containing an LALR [1, p.
65] parser for the language. The parser generated by yacc can use the lexer
generate by lex, which is what was done in this case.

4.5 Intermediate Data Structures

The µ parser generates a number of intermediate data structures which are
then used during code generation. These data structures are described below.
All global data structures are defined in the file “parse.h” which is listed in
appendix B.

4.5.1 Symbol Table

Muc uses a singly-linked list for it’s symbol table; the elements of this list
are of type SymTabEnt. See appendix B for the definition of SymTabEnt.
SymTabEnt.name is the symbol name (identifier) and SymTabEnt.type is it’s
type: TYPE CONST, TYPE FUNC or TYPE PARAMETER. If the symbol refers to
a constant then SymTabEnt.parseTree points to it’s expression tree (see
4.5.4). If the symbol is a function name, then SymTabEnt.func points to the
function table entry for that function.

4.5.2 Function List

Muc also uses a linked list to store all the function definitions; the elements
of this list are FuncListEnts. Each FuncListEnt contains a link to the
function’s name in the symbol table and to the function parameter’s entry in
the symbol table. FuncListEnt also contains a list of functions that are called
by the current function. If the function is a conditional function, then the
for clauses are stored in a list of ExpressionListEnts. ExpressionListEnt
contains the beginning and end of the range of values that this expression
applies to, along with the expression tree itself. FuncListEnt contains a
separate entry for the otherwise clause. This field is also used to store the
expression tree for non-conditional functions.

17

4.5.3 Constant List

Muc keeps a linked list of constants. This list simply contains pointers to
the corresponding entries in the symbol tables and allows all constants to be
easily found and iterated over.

4.5.4 Expression Trees

The actual mathematical expressions associated with the constants and func-
tions are stored using expression trees. The nodes of these trees belong to the
types EExpression, EElement, ETerm, EFactor, EP, EAbs, and ESum. Each
of these corresponds to a production in the µ grammar; the expression trees
reflect the parse trees of µ expressions.

4.6 Code Generation

This section describes the final stage of the compiler—code generation. For
an example of some output from the code generator, along with the µ source
it was generated from, see appendix D.

4.6.1 Output File

Muc does not generate assembly code. The task of creating a complete com-
piler system is a large one for an undergraduate thesis; having the compiler
generate output in a high level language reduced the scope of the project
to manageable proportions. Generating assembler code has the advantage of
greatly increased flexibility; the compiler has complete control over all details
of the generated executable. This allows for executables which are very well
optimized for both space and execution time. The drawback to all this power
is the responsibility that comes with it—the compiler must handle register
and memory management, the mechanics of function calls, and many other
details. Generating output in a high-level language removed the need for
muc to take care of these things.

The high-level language which was selected for muc’s output is C++.
There are four main advantages of C++ over other possibilities. Firstly, C++
is the language with which I am most familiar. Secondly, C++ allows variable
declarations to be intermixed with other statements, instead of needing to be
declared at the beginning of a file or function. This simplifies the design of
the code generator because temporaries can be declared as needed, allowing

18

the output to be easily generated in a single pass. C++ also allows for
the creation of arbitrary nested scopes (using { and }), simplifying the task
of variable scope management for muc. Finally, C++ is an international
standard which can be compiled on a wide range of platforms.

4.6.2 Conventions Followed in Generated Code

The code generated by muc is spaced and indented in such a way as to make it
easily readable. The program is broken into lines as a typically programmer
would, despite the fact that C++ does not require statements to be separated
by newline characters. The code generator also increases indentation each
time scope narrows; function bodies are indented and indentation is increased
inside if and for statements.

Temporaries variables and other names generated by muc always begin
with an underscore. Since µ identifiers cannot begin with an underscore, this
prevents collisions between names.

4.6.3 Layout of Generated Code

The C++ files generated by muc can be broken down into three sections:
declarations, function definitions, and the main function. The main function
can further be divided into constant definitions and the main program loop.
The file is generated in a single pass from top to bottom.

The first section of the output file contains the constant and function
declarations. This section simply contains declarations of all the function
and constant names from the µ source. All constants are declared as floats
and each function is declared as inline, returning a float and taking a single
float as it’s parameter. Making the functions inline increases the efficiency
of the resulting code while still allowing recursion—the C++ compiler ignores
the inline specifier on recursive functions. Functions are not defined until the
function definition section, and constants are not assigned values until the
constant definition section inside main.

The second section of the generated files consists of function definitions.
Each function definition begins with the variable declaration “float retval;”
and ends with the statement “return retval;”. For non-conditional func-
tions, the middle part consists simply of evaluating the function expression
and storing the result in retval. For conditional functions, an if. . . else
statement is used to select the correct expression. For details on expression

19

evaluation, see section 4.6.4.
The third and final part of the generated code is the main function. The

main function begins by assigning values to the constants. This is done by
evaluating the expressions from the constant table. (See section 4.6.4 below.)
Next, the output audio file is opened using libmu (see section 4.6.5). A for-
loop is then used to evaluate the output function for each sample and the
results are written out using libmu. Finally, the output audio file is closed.

Once all these sections have been written, the C++ file is closed and is
ready for compilation using g++, the GNU C++ Compiler.

4.6.4 Expression Evaluation

Expression evaluation is performed by the muc code generator using the func-
tion printExpr(EExpression *expr, char *temp). The source code for
this function is shown in figure 9. The printExpr() function generates code
which evaluates expr and stores the result in the C++ variable whose name
is stored in temp. Each type of node in the expression tree has a similar
function associated with it. Each of these functions creates new temporary
variables to hold the results of their subexpressions, calls the print routines of
the subexpressions, and then combines the results into the variable pointed
to by temp. The easiest way to understand this process is simply to look at
figure 9.

Muc uses the getTemp() and releaseTemp() functions to manage tem-
porary variables. getTemp() returns the name of a new temporary which is
valid in the C++ file, releaseTemp() “releases” the temporary. The first
time a temporary is created, getTemp() inserts a variable declaration into
the C++ file. If getTemp() is called after a temporary has been released, it
will return the name of the previously released temporary but will not declare
it again. These functions elegantly allow the creation of an indefinite number
of temporaries while ensuring that the number of variable declarations in the
C++ code is kept to a minimum.

4.6.5 The libmu Library

The C++ code generated by muc must be linked with the “libmu” library
in order to work. This library contains the file i/o functions used by µ. It
consists of six functions. One function opens ‘.wav’ files for reading, another
reads a sample from the file, and a third closes the file. The other three

20

void printExpr(EExpression *expr, char* temp)

{

/*Expression just contains a term; just call printTerm().*/

if(expr->type==expr_term)

{

printTerm(expr->term, temp);

}

/*Expression is an input file reference*/

else if(expr->type==expr_file)

{

indent();

fprintf(outfile, "%s = _readSample((unsigned int)fp);\n", temp);

}

/*Expression is addition or subtraction.*/

else

{

/*Create a new temporary variable*/

char* t1 = getTemp();

/*Store the first subexpresion in the temp*/

printExpr(expr->expr, t1);

/*Create another temporary*/

char* t2 = getTemp();

/*Store the second subexpression in the temporary*/

printTerm(expr->term, t2);

indent();

/*Add or subtract the two temporaries*/

fprintf(outfile, "%s = %s %c %s;", temp, t1, expr->op, t2);

free(t2);

releaseTemp();

free(t1);

releaseTemp();

}

}

Figure 9: The printExpr() function from the muc code generator

21

functions open a file for writing, write a sample, and close the output file.
Libmu currently only operates on Microsoft Wave files, as described in [2].

22

5 Testing

After the implementation of the µ compiler was complete, several programs
were written in µ as tests. The purpose of these tests was not just to ensure
that the compiler worked properly; they also served to help evaluate the µ
language, based primarily on how easy it was to write the programs. For a
general discussion of the results, see section 6. The specific tests that were
performed are described below.

There were three stages in the testing of muc. First, a version of muc
which did not support the #input and #output pragmas was created. This
version simply printed the first 100 integer values of the last function defined.
Some simple tests were run with this version to check that expression and
function evaluation worked correctly. Next, support for the #output pragma
was added. This allowed some test synthesizers to be written, as described
in section 5.1 below. Finally, #input support was added and the test filters
described in section 5.2 were created.

5.1 Wav Output Testing With Synthesizers

Doing synthesizer testing before filter testing allows the expression evaluation
and wav file output sections to be tested thoroughly before wav file input is
implemented. This is a great benefit because problems in the input would
ruin the rest of the processing and bugs in output or expression evaluation
would make it difficult to diagnose bugs in the input. In short, it allows the
muc output to be tested in pieces, rather than all at once.

5.1.1 Additive Synthesis

The first major test program written in µ was a basic Hammond organ sim-
ulation using additive synthesis. Additive synthesis is the method of synthe-
sizing a sound by adding together a collection of oscillators. The synthesizer
is basically individually generating each harmonic of the note [13].

The Hammond electric organ, in its original form worked by having an
electric motor drive a gear. This gear drove other gears which were connected
to AC generators; the sound of the organ was the combined output from
these generators. The gear ratios were calculated so that the output from
the different generators formed a harmonic series. Nine “drawbars” were
used by the player to control the relative volume of the different harmonics.

23

This allowed the player to control the timbre of the organ in much the same
way that the timbre of a conventional organ can be controlled by pulling out
stops.

The test program created can be found in appendix C.1. The nine draw-
bar settings, which on an organ can vary between zero and ten, are declared
as constants, allowing them to be easily adjusted for different sounds. A
“gain” constant is then defined for controlling the final volume. Sine-wave
oscillator are used to create each of the harmonics and these are added to-
gether to form the output.

This synthesizer was very easy to write in µ and sounds pretty good.
Appendix C.6 shows a program which uses this synthesizer to play a tune.
The program in C.6 also uses a chorus effect to give the organ a “fuller”
sound.

5.1.2 PWM Synthesis

The second synthesizer written in µ is a string pad; a type of synthesizer
that is supposed to sound like a string ensemble. Synth string ensembles like
this one don’t sound at all like real string ensembles, but they are popular
instruments in their own right. They typically use PWM synthesis.

PWM stands for Pulse Width Modulation. A “pulse wave” is a wave
that is a constant positive value for a units of time, then a constant negative
value for b units of time, then a constant positive value for a units of time,
etc. The ratio a/b is the duty cycle of the pulse wave. A square wave is a
pulse wave with a duty cycle of 50%. Figure 10 shows an example of a pulse
wave.

Figure 10: A pulse wave with a duty cycle of 66%.

Pulse width modulation means the duty cycle of the pulse wave is vary-
ing over time. PWM synthesis is a common method for creating synthesized

24

string sounds; for a more complete discussion of PWM and string synthesiz-
ers, see [7] and [8].

Appendix C.2 is an implementation of the PWM string pad described in
[8]. The design was easy to implement in µ, even though it was created by
following instructions written for analog synthesizers. A variety of interesting
sounds can be obtained by varying this basic design.

5.2 Wav I/O Testing With Filters

After the synthesizer tests were performed, some filters were written. These
tested muc’s wav input capability and further tested the capabilities of µ.

The first filter test was an ‘allpass’ filter. An allpass filter allows all
frequencies to pass through unchanged except that it may alter their phase.
In this case however, the filter had no effect on the signal—it simply read a
file in and created a duplicate of it. This tested the generated code’s basic
ability to read and write wav files correctly.

5.2.1 Mixers

One basic type of filter is a mixer. A mixer simply reads a number of inputs,
adjusts their volumes, and combines the signals together into one output.
In µ volume can be adjusted by multiplying the function by a constant and
signals can be combined by adding functions together.

The implemented version of muc does not support multiple input files.
It can read stereo files—a stereo wav file contains the samples from the two
samples intermixed: left, right, left, right, etc. Muc simply reads stereo
files just like they were mono. This does not conform to the µ specification
but it does allow us to easily create a test program which performs a stereo
mixdown; that is, combine the two channels of a stereo file into a single mono
file. The code for this can be found in appendix C.3.

5.2.2 Chorus

Another test filter that was written is a chorus effect. Chorus effects make
the sound of an instrument sound like multiple instruments using a variable
delay. The original signal is combined with a slightly delayed version of itself,
and the length of the delay is varied. This creates the effect of multiple
instruments because the ear perceives two sounds that are not quite in sync.

25

Also since the delay is varying, the delayed signal is continuously speeding
up and slowing down which causes the pitch of the delayed signal to vary
slightly. This increases the perception of multiple instruments.

The chorus program used for testing is shown in appendix C.4. This filter
can also be used as a “flange” or comb filter by using a shorter delay and as
an echo effect by using a longer delay.

5.2.3 Compression

The final test filter that was written is a compressor. A compressor reduces
the dynamic range of a signal by decreasing the volume of the loud parts. The
test compressor is shown in appendix C.5. This is a fairly basic compressor
but could easily be improved.

The rms() function calculates an RMS average signal level for the region
around the current point in the file. This level is then used to adjust the
output gain—the gain is adjusted to keep the RMS level below the threshold
value of 0.9.

Unlike all the other tests, this compressor unfortunately does not work.
This seems to be caused by a bug in muc, but the problem could not be
found within the time frame of the thesis work. This compressor should
work, given a properly working compiler, and was quite straightforward to
write. It should also be possible to write a more elaborate compressor by
making some simple modifications to this code.

26

6 Analysis

As stated earlier, the motivation behind the implementation of muc was to
test the design of the µ language by implementing some synthesizers and
filters in µ.

The stated objective of µ was not to become the tool of choice for pro-
grammers creating digital filters, but rather to create an easy way for people
to experiment with audio filters and synthesizers. It is my opinion the µ is
well suited towards this end, although it requires some additional features.

6.1 Effectiveness For Writing Synthesizers

In comparison to other programming languages, µ makes writing synthesizers
easier by automatically handling extraneous details and allowing the user to
focus on the actual synthesis of the signal. It is easy to experiment with
different synthesizer designs.

The syntax of µ is easier to learn and remember than computer music
languages such as CSound while remaining much more flexible than any ana-
log modelling synthesizer. I found that it was straightforward to implement
standard synthesizer designs in µ, yet it is not limited to these designs.

To be a truly effective means of creating synthesizers, µ needs better
support for playing music once the actual signal generator is created. It is
easy to create interesting single note or chord sounds with µ, but it is very
cumbersome to get a µ program to play an actual song. The method used
in C.6 of controlling pitch and volume with conditional functions is virtually
unusable—constructing a very simple melody is a great deal of work.

One possible solution to this is to allow µ programs to have input pa-
rameters specifying pitch, volume and aftertouch. A wrapper could then be
created which could read MIDI data and invoke the µ program for each note
in the piece. Alternatively, the wrapper could allow the program to function
in a similar manner as a virtual instrument plug-in for recording software.

6.2 Effectiveness For Writing Filters

I believe that µ is also a useful language for creating audio filters with.
Although it may not offer huge improvements over other languages, such as
C++, it does simplify the task of creating and experimenting with filters, and
the µ paradigm may inspire different filter designs simply by being different

27

itself. Also, µ makes it easier for mathematically-inclined non-programmers
to write digital filters by abstracting away the von Neumann architecture
and using more familiar notation.

28

7 Future Directions

There are many possibilities for the future development of µ. Some of the
ideas in this section were part of the original conception of µ; others came
about as a result of the implementation and evaluation described in this
thesis.

7.1 Optimization

Perhaps the most obvious way in which muc itself could be improved is in
the area of optimization. Currently muc makes no attempt at optimizing
the code which it outputs. The inefficiency is particularly bad when doing
summations: in the compressor test program from C.5, for example, all the
samples inside the window are read from the file each time rms() is invoked,
despite the fact that all but one of them would have been read already.

There are a lot of possibilities for optimizing the code generated by muc.
First, the generated code often contains a lot of redundancy—values that are
used more than once are generally calculated more than once. Second, the
code would benefit from an input and output buffering scheme. Lastly, the
absence of side effects and chronological sequences of instructions in µ allows
a compiler a lot of options in rearranging the code to get the most efficient
execution.

7.2 Input/Output

The input and output buffering mentioned above would not only improve
the efficiency of µ programs, it also opens up new i/o possibilities. If input
buffering is used to ensure that the input files are read sequentially from start
to finish, then the inputs and outputs no longer have to be files, they can be
pipes to and from other processes, or any other kind of data stream. µ filters
could be applied in real time. This would also allow µ programs to be used
as filter plug-ins for recording software.

Another thing muc is missing is the ability to read from and write to
multiple files in a single program. This would be simple to implement but
couldn’t be completed in the time available for this project.

29

7.3 Extensions to Syntax

There are a number of useful additions which could be made to the µ syntax.
One such possibility is a mechanism for specifying program parameters. The
benefits of this for synthesizers are mentioned in section 6.1, it also would
allow file name and filter parameters to be specified at run-time for filters.

It could also be useful to include numerical integration and differentiation
as operators, as well as fast fourier transform. Functions with more than one
parameter might also be useful.

30

8 Conclusion

In the introduction I stated that for my thesis project I designed and imple-
mented a special-purpose programming language for audio digital filter and
synthesizer creation, and evaluated this language based on it’s ease of use.

The language, called µ, is a first-order pure functional programming lan-
guage with syntax and semantics modelled after standard mathematical no-
tation. I implemented a compiler, muc, which compiles µ programs into C++
code. Muc is not a full-featured compiler system, but rather it’s purpose is
to facilitate evaluation of the basic design concepts of the µ language.

After writing some synthesizers and filters in µ, I decided that it was a
good design which met it’s goals. More work needs to be done to make µ and
muc into a complete and useful system. In the final sections of this report I
discussed what directions this future work could take.

Overall I am pleased with my work on µ, although I wish more time had
been available to implement some different features and perform more tests.
I will probably continue to work on µ in the future, and eventually it may
become something which is useful to other people.

31

A µ Language Grammar

A.1 Lexical Specification

Whitespace is ignored in µ files. Anything after “//” until the end of the
line is ignored.

The following arithmetic operators are recognized:

+ addition
- subtraction
- negation
* multiplication
^ exponentiation
/ division
% modulus

The following single-character tokens are also recognized:

’ () = < > , # |

Integers and floats are defined as:

[0-9]+ INTEGER
[0-9]+\.[0-9]+ FLOAT

Identifiers take the form:

[a-zA-Z][0-9a-zA-Z_]* IDENT

And qutoted strings are recognized:

\"[^"]*\" QUOTED STRING

32

The following are reserved words in µ:

Operators Data Types Other keywords
INT int8 parameters
SUM int12 input

int16 from
Built-in Functions int20 output
cos int24 to
sin int32 include
tan float32 default
arccos float64 datatype
arcsin string resolution
arctan for

otherwise
length

All built-in functions are recognized by the lexer as the BUILTIN FUNC
token and all data types are recognized as occurrences of the DATATYPE
token. The other reserved words are each their own token.

33

A.2 µ Grammar Specification

MuProgram → PragmaList DefList
PragmaList → GlobalPragma

→ PragmaList GlobalPragma
GlobalPragma → InputPragma

→ OutputPragma
→ IncludePragma

InputPragma → # input IDENT from QUOTED STRING
OutputPragma → # output IDENT to QUOTED STRING length INTEGER

datatype DATATYPE
IncludePragma → # include QUOTED STRING

DefList → ConstDef
→ FuncDef
→ DefList ConstDef
→ DefList FuncDef

ConstDef → IDENT = ConstExpr
FuncDef → IDENT (IdentList) = Expr

→ IDENT (IdentList) = Expr for Condition
→ IDENT (IdentList) = Expr for Condition ClauseList

IdentList → IDENT
→ IdentList , IDENT

ClauseList → ExprClause
→ ClauseList ExprClause

ExprClause → | Expr for Condition
→ | Expr otherwise

Number → INTEGER
→ FLOAT
→ IDENT

34

Condition → Number < IDENT < Number
→ Number < = IDENT < Number
→ Number < IDENT < = Number
→ Number < = IDENT < = Number
→ Number > IDENT > Number
→ Number > = IDENT > Number
→ Number > IDENT > = Number
→ Number > = IDENT > = Number
→ IDENT < Number
→ IDENT > Number
→ Number < IDENT
→ Number > IDENT
→ IDENT < = Number
→ IDENT > = Number
→ Number < = IDENT
→ Number > = IDENT
→ Number = IDENT
→ IDENT = Number

ConstExpr → ConstTerm
ConstExpr → ConstExpr Op1 ConstTerm

ConstElement → (ConstExpr)
→ INTEGER
→ FLOAT
→ IDENT
→ ConstAbs
→ BuiltinFunc (ConstExpr)

ConstTerm → ConstFactor
→ ConstTerm Op2 ConstFactor

ConstFactor → ConstP
→ ConstP ^ ConstFactor

ConstP → - ConstP
→ ConstElement

ConstAbs → | ConstExpr |
Expr → Term

→ Expr Op1 Term

35

Element → (Expr)
→ INTEGER
→ FLOAT
→ IDENT
→ IDENT (Expr)
→ BuiltinFunc (Expr)
→ Integral
→ Sum
→ Abs

Term → Factor
→ Term Op2 Factor

Factor → P
→ P ^ Factor

P → - P
→ Element

Abs → | Expr |
Integral → INT (Expr) IDENT

Sum → SUM (IDENT = Expr to Expr) (Expr)
Op1 → +

→ -
Op2 → *

→ /

→ %

36

B Parse.h

#include <stdio.h>

#ifndef PARSECONSTS_H

#define PARSECONSTS_H

#define ZERO_DBFS 1

#define true 1

#define false 0

#define UNKNOWN_TYPE 0

#define BUILTIN_SIN 1

#define BUILTIN_COS 2

#define BUILTIN_TAN 3

#define BUILTIN_ARCSIN 4

#define BUILTIN_ARCCOS 5

#define BUILTIN_ARCTAN 6

#define TYPE_FUNC 7

#define TYPE_CONST 8

#define TYPE_PARAMETER 9

#define TYPE_INT8 10

#define TYPE_INT12 11

#define TYPE_INT16 12

#define TYPE_INT20 13

#define TYPE_INT24 14

#define TYPE_INT32 15

#define TYPE_FLOAT32 16

#define RANGE_INFINITY 0x7FFFFFFF

#define RANGE_NEG_INFINITY 0xFFFFFFFF

#define GTLT 0

#define GTLTE 1

#define GTELTE 2

#define GTELT 3

extern int lineNum;

extern char *infileName;

37

extern char *outfileName;

extern FILE *outfile;

extern int semanticErrorDetected;

extern char *audioOutFilename;

extern struct TSymTabEnt *outFunc;

extern int outFileLen;

extern int outFileDatatype;

extern char *audioInFilename;

typedef struct TExpression EExpression;

typedef struct TElement EElement;

typedef struct TTerm ETerm;

typedef struct TFactor EFactor;

typedef struct TP EP;

typedef struct TAbs EAbs;

typedef struct TSum ESum;

typedef struct TFuncListEnt FuncListEnt;

/**

* Symbol Table *

**/

typedef struct TSymTabEnt {

char* name;

int type;

int ivalue;

float fvalue;

EExpression *parseTree;

FuncListEnt *func;

struct TSymTabEnt *next;

} SymTabEnt;

int symTabInitialize();

SymTabEnt *addSymbol(char *name);

SymTabEnt *getSymbol(char *name);

38

/**

* Expression Trees *

**/

struct TExpression {

enum { expr_term, expr_op, expr_file } type;

ETerm *term;

char op;

EExpression* expr;

char *filename;

};

struct TElement {

enum {

element_expr,

element_integer,

element_float,

element_const,

element_func,

element_builtin_func,

element_sum,

element_abs

} type;

EExpression *expr;

union {

int integer;

float floatp;

SymTabEnt *constant;

SymTabEnt *func;

int builtinFunc;

ESum *sum;

EAbs *abs;

} child;

};

struct TTerm {

enum { term_factor, term_op } type;

39

EFactor *factor;

char op;

struct TTerm *term;

};

struct TFactor {

enum { factor_p, factor_exponent } type;

EP *p;

EFactor *factor;

};

struct TP {

enum {p_p,p_element} type;

EElement *element;

EP *p;

};

struct TAbs {

EExpression *expr;

};

struct TSum {

SymTabEnt *iter;

EExpression *start;

EExpression *end;

EExpression *expr;

};

/**

* Constant List *

**/

typedef struct TConstListEnt {

struct TConstListEnt *next;

SymTabEnt *symbol;

} ConstListEnt;

void constListInitialize();

40

ConstListEnt *getConstListHead();

void addConst(SymTabEnt *symbol);

/**

* Function List *

**/

typedef struct TExpressionListEnt {

EExpression *expr;

float start;

float end;

int rangetype;

struct TExpressionListEnt *next;

} ExpressionListEnt;

typedef struct TFuncCallListEnt {

SymTabEnt *func;

EExpression *param;

struct TFuncCallListEnt *next;

} FuncCallListEnt;

struct TFuncListEnt {

SymTabEnt *symbol;

EExpression *otherwiseExpr;

ExpressionListEnt *exprList;

SymTabEnt *parameters[1];

FuncCallListEnt *nestedCalls;

struct TFuncListEnt *next;

};

void funcListInitialize();

FuncListEnt *getFuncListHead();

FuncListEnt *addFunc(SymTabEnt *symbol, SymTabEnt *parameter, EExpression *otherwiseExpr, FuncCallListEnt* callList, ExpressionListEnt *exprList);

/**

* Code Generators *

**/

41

void printFunc(FuncListEnt*func);

void printConstExpressions(FILE *outfile);

void printFuncExpressions(FILE *outfile);

void printExpr(EExpression *expr, char *temp);

void printElement(EElement *element, char *temp);

void printTerm(ETerm *term, char *temp);

void printFactor(EFactor *factor, char *temp);

void printP(EP *p, char *temp);

void printAbs(EAbs *abs, char *temp);

void printSum(ESum *sum, char *temp);

#endif

42

C Sample µ Programs

C.1 Additive Synthesis

Following is an example of an additive synthesizer implemented in µ. It is a
simplified simulation of a Hammond organ. See section 5.1.1 for a complete
discussion of this program and section C.6 for an example of this synthesizer
in action.

#output o to "organ.wav" length 800000 datatype int16

Pi = 3.141592654

SampleRate = 44100 //CD sampling rate

//Constant to Hz to samples/sec

Hz = 2*Pi/SampleRate

//Define low A (Hz)

A = 220

//Signal gain (amplification) just before output

gain = 1

//The organ drawbar settings

db1 = 10 //16’

db2 = 2 //5 1/3 ’

db3 = 8 //8’

db4 = 7 //4’

db5 = 2 //2 2/3 ’

db6 = 6 //2’

db7 = 2 //1 3/5 ’

db8 = 4 //1 1/3 ’

db9 = 8 //1’

//Here’s where the real work is is done.

//Generate the tones corresponding to the nine tone wheels.

wheel1(t) = sin(t*2*Pi/SampleRate)

wheel2(t) = sin(2*t*2*Pi/SampleRate)

wheel3(t) = sin(3*t*2*Pi/SampleRate)

wheel4(t) = sin(4*t*2*Pi/SampleRate)

43

wheel5(t) = sin(5*t*2*Pi/SampleRate)

wheel6(t) = sin(6*t*2*Pi/SampleRate)

wheel7(t) = sin(7*t*2*Pi/SampleRate)

wheel8(t) = sin(8*t*2*Pi/SampleRate)

wheel9(t) = sin(9*t*2*Pi/SampleRate)

tone(t) = db1*wheel1(t) + db2 *wheel2(t) + db3*wheel3(t)

+db4*wheel4(t) + db5*wheel5(t) + db6*wheel6(t)

+db7*wheel7(t) + db8*wheel8(t) + db9*wheel9(t)

//Here is the actual output - play low A

o(s) = gain*tone(A*t)/90

C.2 PWM Synthesis

Here is an example of a string pad created using PWM synthesis which
demonstrates the use of wavelets in µ. It is discussed in section 5.1.2.

#output o to "synthstrings.wav" length 400000 datatype int16

//Pitch of middle-A in Hz.

pitch = 440

//Define a triangle wavelet over [0,1]

triangle_wavelet(x) = 4*x for 0 <= x < 0.25

| -4*(x-0.5) for 0.25 <= x < 0.75

| 4*(x-1) for 0.75 <= x < 1

| 0 otherwise

//Now use the triangle wavelet to build a triangle wave

triangle_wave(x) = triangle_wavelet(x%1)

//Define a pulse wavelet over [-1,1]

pulse_wavelet(x) = 1 for 0 <= x <= 1

| -1 for -1 <= x < 0

| 0 otherwise

//Some low frequency oscillators to modulate the pulse waves with

lfo1(t) = 0.4*triangle_wave(8*t)

44

lfo2(t) = 0.4*triangle_wave(7.5*t)

lfo3(t) = 0.4*triangle_wave(6.15*t)

//Create three modulated pulse waves with the lfos defined above

PWMwave1(t) = pulse_wavelet(((t*pitch)%1)-0.75+0.25*lfo1(t))

PWMwave2(t) = pulse_wavelet(((t*pitch)t%1)-0.75+0.25*lfo2(t))

PWMwave3(t) = pulse_wavelet(((t*pitch/2)%1)-0.75+0.25*lfo3(t)))

//Finally, combine the PWM waves together to create the output

o(s) = 0.5*PWMwave1(s/SampleRate) + 0.5*PWMwave2(s/SampleRate)

+ 0.5*PWMwave3(s/SampleRate)

C.3 Stereo Mixdown

This program mixes the two channels of a stereo file and produces a mono
file. The current version of the µ specification does not say what to do with
stereo files; the current version of muc returns the left channel as the even
elements of the input function and the right channel as the odd elements.
This program does not, therefore, conform strictly to the µ specification.

#input i from "The Microsoft Sound.wav"

#output o to "MSSound-mono.wav" length 150000 datatype int16

left(s) = i(x*2)

right(s) = i(x*2+1)

o(s) = 0.5*left(s) + 0.5*right(s)

C.4 Chorus

This µ program applies a chorus effect to a file, as described in section 5.2.2.

#input f_in from "input.wav"

#output f_out to "output.wav" length 100000 datatype int16

ChorusRate = 6 //in Hz

ChorusDepth = 0.5 //in milliseconds

45

lfo(x) = ChorusDepth*44.1*sin(ChorusRate*2*Pi*x/SampleRate)

chorused(t) = 0.5*melody(beatn(t)) + 0.5*melody(beatn(t-ChorusDepth+lfo(t)))

C.5 Compression

Here is a basic compressor implemented in µ. See section 5.2.3 for description.

#output f_out to "comped.wav" length 800000 datatype int16

#input f_in from "input.wav"

//lookahead and window width in samples

lookahead = 40

window = 80

gain = 1.1

//calculate rms average volume over the window.

rms(x) = (SUM(i = x-window to x)(f_in(i+lookahead)^2)/win)^0.5

//The compression function

//maps input volume to output gain

compfunc(a) = a for 0 <= a <= 0.9

| 0.9 for a > 0.9

| 0 otherwise

compressed(x) = f_in(compfunc(rms(x))/rms(x))*f_in(x)

f_out(x) = gain*compressed(x)

C.6 Organ Melody

#output o to "organ.wav" length 800000 datatype int16

Pi = 3.141592654

SampleRate = 44100 //CD sampling rate

//Constant to Hz to samples/sec

Hz = 2*Pi/SampleRate

46

bpm = 120 //Tempo in beats per minute

//Pitches (in Hz) for some notes

C = 261.63

D = 293.66

E = 329.63

F = 349.23

G = 392.00

//Signal gain (amplification) just before output

gain = 1

//The organ drawbar settings

db1 = 10 //16’

db2 = 2 //5 1/3 ’

db3 = 8 //8’

db4 = 7 //4’

db5 = 2 //2 2/3 ’

db6 = 6 //2’

db7 = 2 //1 3/5 ’

db8 = 4 //1 1/3 ’

db9 = 8 //1’

//Convert samples to beats

beatn(s) = s*(bpm/60)/SampleRate

//Convert beats to samples

sampleb(beat) = beat*SampleRate/(bpm/60)

//Here’s where the real work is is done.

//Generate the tones corresponding to the nine tone wheels.

wheel1(t) = sin(t)

wheel2(t) = sin(2*t)

wheel3(t) = sin(3*t)

wheel4(t) = sin(4*t)

wheel5(t) = sin(5*t)

wheel6(t) = sin(6*t)

wheel7(t) = sin(7*t)

wheel8(t) = sin(8*t)

47

wheel9(t) = sin(9*t)

tone(t) = db1*wheel1(t) + db2 *wheel2(t) + db3*wheel3(t)

+db4*wheel4(t) + db5*wheel5(t) + db6*wheel6(t)

+db7*wheel7(t) + db8*wheel8(t) + db9*wheel9(t)

//Here we define the "envelopes"-how volume

//changes over time for each note.

envelope_quaternote(x) = 1 for 0 <= x < 0.9

| -10*x + 10 for 0.9 <= x < 1

| 0 otherwise

envelope_halfnote(x) = 1 for 0 <= x < 1.9

| -10*x + 20 for 1.9 <= x < 2

| 0 otherwise

envelope_fade(x) = 1 for 0 <= x < 1.9

| -x/6 + 20 for 1.9 <= x < 7.9

| 0 otherwise

//Now play a melody by varying pitch over time

//t is in beats.

melody(t) = tone(E*sampleb(t)*Hz) for 0 <= t < 2

| tone(F*sampleb(t-2)*Hz) * envelope_quaternote(t-2) for 2 <= t < 3

| tone(G*sampleb(t-3)*Hz) * envelope_halfnote(t-3) for 3 <= t < 5

| tone(F*sampleb(t-5)*Hz) * envelope_quaternote(t-5) for 5 <= t < 6

| tone(E*sampleb(t-6)*Hz) * envelope_quaternote(t-6) for 6 <= t < 7

| tone(D*sampleb(t-7)*Hz) * envelope_quaternote(t-7) for 7 <= t < 8

| tone(C*sampleb(t-8)*Hz) * envelope_halfnote(t-8) for 8 <= t < 10

| tone(D*sampleb(t-10)*Hz) * envelope_quaternote(t-10) for 10 <= t < 11

| tone(E*sampleb(t-11)*Hz) * envelope_quaternote(t-11) for 11 <= t < 12

| tone(E*sampleb(t-12)*Hz) * envelope_halfnote(t-12) for 12 <= t < 14

| tone(D*sampleb(t-14)*Hz) * envelope_halfnote(t-14) for 14 <= t < 16

| tone(C*sampleb(t-16)*Hz) * envelope_halfnote(t-16) otherwise

//A chorus effect is used to give the organ a "fuller" sound.

ChorusRate = 6 //in Hz

ChorusDepth = 0.5 //in milliseconds

lfo(x) = ChorusDepth*44.1*sin(ChorusRate*2*Pi*x/SampleRate)

chorused(t) = 0.5*melody(beatn(t)) + 0.5*melody(beatn(t-ChorusDepth+lfo(t)))

48

//Here is the actual output

o(s) = gain*chorused(s)/90

49

D Code Generation Example

Below is excerpts of the C++ code generated by muc for the organ melody
program in C.6. The triple dots indicate places where parts of the code have
been omitted. This listing displays the overall layout of the generated code
along with some examples of generated functions.

#include <stdlib.h>

#include <math.h>

#include <stdio.h>

#include "libmu.h"

float Pi;

float SampleRate;

float bpm;

float C;

.

.

.

float Hz;

float ChorusRate;

float ChorusDepth;

inline float o(float t);

.

.

.

inline float envelope_quater(float x);

inline float sampleb(float beat);

inline float beatn(float s);

inline float o(float t) {

float _retval;

float _t0;

float _t1;

_t1 = gain;

float _t2;

float _t3;

_t3 = t;

50

_t2 = chorused(_t3);

_t0 = _t1 * _t2;

_t1 = (float)90;

_retval = _t0 / _t1;

return _retval;

}

.

.

.

inline float envelope_quater(float x) {

float _retval;

if(x >= 0 && x < 0) {

float _t0;

_t0 = (float)20;

float _t1;

_t1 = x;

_retval = _t0 * _t1;

} else if(x > 0.45 && x <= 4.01116e-34) {

float _t0;

float _t1;

_t1 = (float)2;

_t1 =-_t1;

float _t2;

float _t3;

float _t4;

_t4 = x;

float _t5;

_t5 = 0.450000;

_t3 = _t4 - _t5;

_t2 = _t3;

_t0 = _t1 * _t2;

_t1 = (float)1;

_retval = _t0 + _t1;

} else if(x >= 0 && x <= 0.45) {

_retval = (float)1;

} else {

51

_retval = (float)0;

}

return _retval;

}

inline float sampleb(float beat) {

float _retval;

float _t0;

float _t1;

_t1 = beat;

float _t2;

_t2 = SampleRate;

_t0 = _t1 * _t2;

float _t3;

_t3 = bpm;

float _t4;

_t4 = (float)60;

_t2 = _t3 / _t4;

_t1 = _t2;

_retval = _t0 / _t1;

return _retval;

}

inline float beatn(float s) {

float _retval;

float _t0;

float _t1;

_t1 = s;

float _t2;

float _t3;

float _t4;

_t4 = bpm;

float _t5;

_t5 = (float)60;

_t3 = _t4 / _t5;

_t2 = _t3;

_t0 = _t1 * _t2;

_t1 = SampleRate;

52

_retval = _t0 / _t1;

return _retval;

}

int main()

{

int _outputLength = 800000;

if(0==_openOutWav("organ.wav", 12))

{

fprintf(stderr,"Error:Could not open \"organ.wav\" for writing.\n");

return 1;

}

{

Pi = 3.141593;

}

{

SampleRate = (float)44100;

}

{

bpm = (float)120;

}

{

C = 261.630005;

}

.

.

.

{

float _t0;

float _t1;

_t1 = (float)2;

float _t2;

_t2 = Pi;

_t0 = _t1 * _t2;

_t1 = SampleRate;

Hz = _t0 / _t1;

}

53

{

ChorusRate = (float)6;

}

{

ChorusDepth = 0.500000;

}

for(int _i = 0; _i < _outputLength; _i++)

{

_writeSample(o((float)_i));

}

_closeOutWav();

return 0;

}

54

E Glossary

Dynamic Range - The difference in volume between the quiet parts and loud parts of a
piece of music.

LFO - Low Frequency Oscillator; an oscillator with a subsonic frequency.
LFOs have a frequency to low to be heard, but are used to modu-
late parameters such as the delay in a chorus or the duty cycle in a
pulse wave.

MIDI - Musical Instrument Digital Interface—Protocol for sending music data
over serial lines. MIDI signals do not define the sound of the music;
they contain the notes, volume and other information that allow an
electronic keyboard or synthesizer to play a piece of music. MIDI was
originally created as a standard interface between keyboards and syn-
thesizers, but MIDI data can also be saved in files.

PCM - Pulse Code Modulation - the method of storing audio digitally by reg-
ularly “sampling” the wave height and storing the value as a digital
number.

PWM - Pulse Width Modulation—see section 5.1.2.

Timbre - A violin playing A-440 and a flute playing A-440 sound different be-
cause they have a different timbre. Each is creating a 440Hz tone and a
collection of harmonics above it, but which harmonics are present and
to what extent, along with how they vary over time, is different. This
is what gives different instruments different sounds or timbres.

55

F CS4997 Summary Sheet

56

References

[1] Appel, Andrew. 2002. Modern Compiler Implementation in Java.
Cambridge University Press, Cambridge.

[2] Bagwell, Chris. Audio File Formats FAQ, [On-Line]. Avail-
able: http://home.attbi.com/ chris.bagwell/AudioFormats.html [Ac-
cessed on 2002-20-11]

[3] Booth, David, et. al. The CSound Manual, [On-Line]. Available:
http://www.lakewoodsound.com/csound/ [Accessed on 2002-20-11]

[4] Lesk, M. E. and Schmidt, E. Lex - A Lex-
ical Analyzer Generator, [On-Line]. Available:
http://dinosaur.compilertools.net/lex/index.html [Accessed on 2003-9-
4]

[5] Johnson, Stephen. Yacc: Yet Another Compiler-Compiler, [On-
Line]. Available: http://dinosaur.compilertools.net/yacc/index.html
[Accessed on 2003-9-4]

[6] Papoulis, Athanasios. 1977. Signal Analysis. McGraw-Hill, New
York.

[7] Reid, Gordon. 2000. Synth Secrets Part 10: Modulation. In Sound
On Sound Magazine, February 2000. SOS Publishing, Cambridge.

[8] Reid, Gordon. 2003. Synth Secrets: Synthesizing Strings—PWM &
String Sounds. In Sound On Sound Magazine, March 2003. SOS Pub-
lishing, Cambridge.

[9] Sebesta, Robert. 2002. Concepts of Programming Languages.
Addison-Wesley Publishing Company, Boston.

[10] Sloan, Randy. 2002. The Audiophile’s Project Sourcebook. McGraw-
Hill, New York.

[11] Smith, Julius. Introduction to Digital Filters. [On-Line]. Available
:http://www.ccrma.stanford.edu/ jos/filters/ [Accessed on 2002-20-11]

[12] Smith, Steven. 1999. The Scientist and Engineer’s Guide to Digital
Signal Processing. California Technical Publishing. San Diego.

57

[13] Steiglitz, Ken. 1996 A Digital Signal Processing Primer. Addison-
Wesley Publishing Company, Menlo Park.

[14] Taylor, Fred. 1983. Digital Filter Design Handbook. Marcel Dekker,
New York.

58

