A Comparison of Real Time Graphical Shading
L anguages

C$4983 Senior Technical Report

Anthony Lovesey
3068528

Faculty of Computer Science
University of New Brunswick
Canada

March 26, 2005

Executive Summary

As the technologies present in modern real-time 3D graphics hardware continue to
expand, programmers and artists are increasingly in need of tools and APIs with which to
utilize the power and flexibility that programmable graphic processing units (GPUs) now
provide. Such capabilities permit increasingly realistic and accurate visuals to be
rendered on consumer level hardware far beyond what traditional fixed-function
rendering pipelines can provide. With the advent of high-level shading languages,
programmers can directly manipulate the functionality of the 3D rendering pipeline by
creating custom “shaders’ that supplement the fixed function vertex and fragment
processing stages. These shading languages are Microsoft’ s DirectX High Level Shading
Language (HLSL), NVIDIA’s C for Graphics (Cg) and OpenGL’s Shading Language
(GLSL). Programmers deciding whether or not to utilize a high- level shading language
need to be aware of the changes necessary to the rendering process overal as well asthe
inherent differences, besides just those of syntax and semantics, between each language.

This technical report explores graphical shading languages and provides a
comparison of the three high level graphical shading languages by contrasting language
features including available language functions, program flexibility, pipeline control and
state access, data type support, ease of maintenance features, compile and execution
times, vendor support, implementation maturity and driver stability. The results of these
comparisons show that all three languages provide comparable language features and that
performance and usability largely depends on drivers and compiler implementations as
well as the choice of graphical API.

Results of alight-weight C++-based test framework used to implement
configurations of all three languages examines execution time differences in one unique
vertex processing bound shader test case and one unique fragment processing bound
shader test case. The results from these simple tests indicate that the actual execution
time of shaders is dependent on the maturity of the graphical hardware's drivers and the
language' s compilers. The vertexbound shader test results display a minimal difference
in execution time, with all three languages providing similar performance. Under the
pixel-bound shader test, results show that alternative lighting algorithms that produce a
greater visual quality can be used at real-time frame rates, with HLSL executing the test
pixel shader up to 10% faster then Cg and GLSL.

Recommendations are also provided to help developers wishing to create
programmable shaders. HLSL is the recommended shading language choice if DirectX is
the API of choice, with Cg recommended over GLSL for use with OpenGL until 2006
when GLSL implementations are expected to become widely available. These
recommendations are a starting point to aid in deciding what shading language would
prove the most beneficial to developer requirements.

Table of Contents

TaDIE OF FIQUIES.....ceiee e I
I [1o (U o (' o USSR 1
2. Evolution of the Programmable Graphics Pipeline...........ccccccveeeeinns 3
3. Modern High Level Graphical Shading Languages..........ccccevvvciveeeenne 8
L HLSL it 10
K32 O o RSOSSN 13
33, BLSL i 17
4. DataTypes and Language FUNCLIONScocciveiieiiiiiiinesciriieeeeee e 21
5. Available Maintenance FEatUres............cooviuiiiee i 25
6. PIPEliNg StaE ACCESS.......o i cieiiiieee ettt 27
7. Implementation and Driver Maturity............cocccvivieeeeeeeciiee e, 29
8. Execution Speed COMPAiSONSccevvveeeeeeeeeieeeeeeecccceerrre e 32
9. FUtUre ROGOMEPS.vvvieiiiiiie ettt 3
10. Conclusion and ReCOmMmMENdations............cueveiiiieeeeiniieee e 30

Appendix |: Shading Language Execution Time Test Case 1. Vertex-Bound
SOUICE COURutieeiee ettt e e e e et e e e e e e s nnbrrreeeaeeeas 43

Appendix I1: Shading Language Execution Time Test Case 2: Pixel-Bound
SOUICE COUE ...ttt ettt s e e s are e e 53

Table of Figures

Figure 1: Fixed Function 3D Graphical Pipeline..........cccccvvviiiieeiiiiinnenns 4
Figure 2: Programmable 3D Graphical Pipdine..........ccocceiviiieiiiiiiinnenns 6
Figure 3: Result image for shading languages example............ccccceeeeeeen, 9
Figure 4: HLSL Compilation and Execution Process............cccccuvvveeeeennns 11
Figure 5. HLSL Simple Vertex Shader Samplecccoceeveeiiiiciiiieeeeens 12
Figure 6. HLSL Simple Pixel Shader Sample..........ccccoviiieeiiiiiiie s 13
Figure 7: NVIDIA Cg Compilation and Execution Process..................... 14
Figure 8. Cg Smple Vertex Shader Sample ... 16
Figure 9. Cg Simple Pixel Shader Sample.........ccoccevviieeei i 17
Figure 10: GLSL Compilation and Execution Process..........cccocveeerinenns 19
Figure 11. GLSL Simple VertexShader Sample.........coccveeeeviieeeeiiinennns 20
Figure 12. GLSL Simple Pixel Shader Sample..........occoveiviiieneiiiiennens 20
Figure 13. Example declaration of HLSL and Cg datatypes................... 22
Figure 14. Example declaration of GLSL datatypes.......ccccccoevvvvvveeeennnns 23
Figure 15: Tessellated sphere with Waobble vertex shader applied 33
Figure 16: Diffuse texture used in test pixel shadercoecvvveeeennns 34
Figure 17: Normal texture used in test pixel shaderceevvveeveveeennne.n. 35
Figure 18: Sphere with applied pixel shader..........cccoocviieiiiiiiiiciiieeee s 35

1. Introduction

Over the last decade, the field of computer graphics and imaging has experienced a
significant evolution in regards to both available hardware and software. Increasingly
affordable consumer-level commodity graphics accelerators coupled with ever-evolving
API and operating system support, has permitted advanced real-time, graphically intense
3d applications to become accessible to an increasing number of developers and end-
users. Following asimilar evolutionary track as contemporary general purpose CPUs,
today’ s graphical processing units (GPUs) offer raw performance features that permit the
majority of 3d imaging and composition operations to be fully offloaded from the CPU.
With this cortinuing evolution in rendering technology, there is a strong desire to give
developers greater control over GPU processing capabilities. As GPUs are primarily
responsible for transforming and rasterizing 3D primitives, a great deal of research has
been invested by vendors to create languages and APIs that alow for the programmable
control over what has traditionally been afixed function 3D pipeline. This originally
crude flexibility has given way to elegant high-level graphical shading languages that
dlow for the construction of programs that utilize graphics hardware to execute a wide
variety of rendering algorithms.

Currently there exist three primary high-level graphical shading languages that are
vendor supported: Microsoft’s DirectX High Level Shading Language (HLSL) [10],
NVIDIA’s C for Graphics (Cg) [11] and the OpenGL Shading Language (GLSL) [13].
These languages are meant to expose a high level of programmability on current and
future consumer level graphics hardware. As a developer or researcher wishing to utilize

one of these languages in an application or graphics algorithm test environment, what are

some of the considerations that should be made? What unique features does each of these
shading languages offer to developers? Are stable and mature compilers and drivers
available?

This paper presents an in-depth comparison between these three current high- level
graphical shading languages by examining unique features, implementation philosophies
and language flexibility. An emphasis is placed on aspects of these languages that are
crucia for a greater overall understanding of the technology that is producing a
significant shift in how real-time rendering algorithms are being implemented. This paper
begins by briefly describing the evolution that the 3d rendering pipeline has gone
through, leading to the creation of current shading languages. Each high level shading
language is then discussed with details about their design philosophies. Section 3 details
common data types and functions available for al three languages, followed by features
of each language that aid or hinder maintainability of shaders within large projects.
Crucial to integrating shading technology into standard graphic APIs is the concept of
having access to fixed function states that is explored in Section 6. Section 7 describes
the driver and implementation maturity of all three languages on 3 common operating
systems, Microsoft Windows, Linux, and Apple OS X. To investigate any potential
performance penalties of using graphical shaders, results from vertex and pixel shader
test cases are given with execution speed statistics. Finally, recommendations are made
about the usability and important aspects of each language that developers should be

mindful of.

2. Evolution of the Programmable Graphics Pipeline

With the introduction of affordable 3d graphics hardware nearly a decade ago, developers
were free to create applications that could display interactive real time three-dimensiona
images by utilizing many of the accelerated 3d pipeline features present in these new
graphic processors [1]. When creating 3d spaces, al source geometry and shading
information must be submitted to the GPU and utilized to construct the final output image
[7]. Thisis accomplished by transmitting the input geometry through an application AP
such as OpenGL or DirectX over the system bus to the actual graphics hardware. Oncein
the accelerator hardware’ s memory, al information is processed through a standard
collection of pipeline stages[1]. Per-vertex operations are performed first as each
incoming vertex is transformed from the local space in which it was defined into world
space by modeling and viewing transformations specified by the user. If per- vertex
lighting is requested lighting calculations may also be performed. After a number of
vertices is received that equals the number of vertices of the primitive (e.g. 3 for a
triangle) currently being constructed, the primitive is assembled and projection and
clipping is performed on the primitive [14]. The primitive then reaches the rasterization
stage of the pipeline where each pixel that represents the primitive' s surface is processed.
The godl of this stage is to calculate afinal output color for the pixel by taking into
account user defined lightening, fog, and surface material properties[1]. The pixel is
tested against per-fragment testing parameters such as depth and stencil properties to
decide if the fragment should proceed any farther or be discarded. Finally, the rasterized
primitive must have any frame buffer operations, such as blending applied, before being

written to the system’s frame-buffer [14]. This entire process is shown in Figure 1.

R -
' From : Per-Vertex | | Primitive Projection | | Rasterization
! Application | Operations Assembly & Culling
1 Memory |
| o e e - - —
[l To 1
Fragment | | Per- Framebuffer | | Framebuffer DAC
Processing Fragment Operations
Operations
Texture
Memory

Pixel Transfer

In/out PCI/AGP bus

Figure 1: Fixed Function 3D Graphical Pipeline

As early hardware was designed around being able to provide the most efficient
rendering results for what accelerated power was available, graphics API architects and
hardware vendors provided a fixed function pipeline that was statically written into the
drivers or designed into the physical hardware. Under a fixed function pipeline data can
be sent to the pipeline and pipeline states set, but no direct atering of the vertex and
fragment- processing stages can be specified [4]. A common example is the lighting
model used by most 3d pipelines. Both DirectX and OpenGL use a Phong based lighting
formulaasit can be easily computed on a per- vertex basis. Even though many other
lighting models exist such as Global Illumination and BRFD [3], developers where
restricted to the one available model. Similar examples of restrictions existed throughout

the pipeline process.

As GPU architectures were refined and increased in speed, vendors slowly began
to expose some programmability into their hardware by allowing for very smple
operations to be performed on the rasterization stage of the pipeline through the use of
register combiners. Implemented as additions to the graphic APIs, register combiners
allowed for primitive mathematical operations to be performed on the texture register
contents at this stage [1]. While somewhat crude, this permitted an initial glimpse of what
increased control of the pipeline could provide as multiple texels applied to a surface
could be added, subtracted, multiplied, and even have their dot product computed. The
most significant change then came with the introduction of assembly- like shading
languages. With enough power and flexibility in hardware to perform calculations outside
of those of the fixed function pipeline, these languages alowed for the first true
implementation of a programmable pipeline[9].

A programmable pipeline allows for complete control over specific stages of the
pipeline through the creation of shaders; small snippets of code that when compiled,
dynamically replace a particular stage’ s standard vendor supplied execution
implementation. The two most computationally intensive stages of the pipeline, per-
vertex processing and fragment processing, are the stages that provide support for
programmable shading technology [3]. Similar in appearance to traditional CPU
assembly languages, these early shading languages allow a developer to write a separate
string based vertex and pixel program that can be run through the graphics API and
replace the fixed function calculations of both pipeline stages. Figure 2 shows atypical

design of a programmable pipeline. The stages marked Custom Vertex Processor and

Custom Fragment Processor represent the stages where programmabl e shaders replace

the functionality of the fixed- function pipeline.

N
[v 1
' From Primitive Projection Rasterization
1 . . — —
1 Application | Custom Assembly & Culling
1 N \ Vertex
1 _Memory Processor
AN F A : ||
i ,1_/ To |
f o Per- Framebuffer Framebuffer DAC
] 1 . 1
) v Fragment Operations
: Operations
! Custom ||
' Fragment
' Processor
! Texture
“““ Memory
I
| Pixel Transfer
I I
[[

In/out PCI/AGP bus

Figure 2: Programmable 3D Graphica Pipeline

Hardware registers, texture units and primitive and state information can be easily
accessed and modified with avariety of standard mathematical and geometric functions.
This flexibility immediately alowed devel opers to start implementing graphical
algorithms that up until that point could only be tested in software on the CPU, usually
rendering at aless then real time speeds [12].

As the number of assembly commands and features available increased, it was
easily seen that the assembly- like languages would prove inadequate as shaders
continued to grow in size and complexity. To rectify this problem, designers began work
on the next level of shading languages, producing high level stading languages that

provided a C like syntax and increased readability that could be compiled down to vendor

hardware specific machine instructions and run similar to the earlier assembly shading
languages [4]. The increased ease of writing custom shading code that these languages
provide introduces an even greater opportunity for graphics developers to implement

custom, unique rendering algorithms and techniques.

3. Modern High Level Graphical Shading L anguages

Presently, there are two primary graphical APIs used in real-time 3d graphics;, Microsoft's
proprietary DirectX and OpenGL maintained by the Architecture Review Board (ARB).

Each API currently provides a high level shading language, HLSL and GLSL
respectively, with the graphic hardware vendor NVIDIA providing athird, Cg, which can
use either API. All three high level shading languages are designed around a familiar
framework and syntax that closely resembles a subset of the C programming language
[8]. User-defined functions, mathematical calculations, loops and conditional statements
are available. The two categories of shaders, vertex and pixel (fragment?), are written as
separate string based source files that can be loaded through the corresponding API. Each
distinctive shader is written as a collection of one or more functions, where one must be a
function with amain() declaration to indicate a point of entry where execution of the
corresponding pipeline stage is to begin [13]. All three shading languages also currently
abstract or limit access to the actual hardware of each programmable stage such as direct
video or texture memory manipulation [4]. There are a number of unique features of each
language that prove important, most notably what each language defines as compliant
hardware.

Additionally, for each of the discussed high level shading languages we provide a
simple vertex and pixel shader example for comparison that execute the identical
operations in each language. The vertex shader transforms the incoming vertex (from a

sphere mesh) into clip space and feeds it back out to the next pipeline stage. Likewise, the

! Dynamic flow control is supported only on the most recent hardware [11].

2 DirectX uses the term “pixel” shader whereas OpenGL utilizes “fragment” shader.

pixel shader calculates the color of the current pixel of the current primitive by fetching a
texel from an active texture unit containing a rock- like diffuse texture and adding the
current primitive color, green, to the result. The resulting identical image produced by all

three shading languages is shown in Figure 3.

Figure 3: Result image for shading languages example

It is important to note that current high level shading languages provide the ability

to replace computations at the vertex and pixel processing stages of the pipeline but must

still accept and output the same data as under a fixed function pipeline. Therefore, while
shaders can be used to calculate other lighting models and effects by utilizing the speed
of modern GPUs, they have no knowledge of the entire scene composition or other
surrounding geometric objects. The use of shaders aso helps reduce the amount of
graphical APl specific calls that are needed in the user application since rendering
algorithms that required the modification of numerous pipeline states and multiple

rendering passes can be removed.

31 HLSL

A younger API then OpenGL, Microsoft’s DirectX framework, whose Direct3D

component is used for 3d graphics, has provided developers with access to shading
capabilities for approximately 4 years [10]. HLSL is arecent attempt to create a high
level shading language with support for legacy as well as future hardware. Referred to as
“Vertex Shaders’ and “Pixel Shaders’, DirectX denotes a graphic hardware’s level of
shader support by the respective shader version supported [10]. Each version of the
vertex and pixel shader specification denotes a minimum set of hardware requirements
that must be met for a gr aphics adaptor to be compliant. This can include mandatory
support for a specific number of underlying temporary registers, constant registers,
number of instructions per active shader, number of dependent texture reads, and ability
to pass shared values between shaders. Current specifications include vertex shader
versons 1.1, 2.0, 2.x, 3.0 and pixel shader versions 1.1, 1.2, 1.3, 1.4, 2.0, 2.x, 3.0,
commonly referred to as Shader 1.x, Shader 2.0, Shader 2.x and Shader 3.0 [8]. DirectX’s

high level shading language, HLSL, provides compilation target support for all shader

10

versions, but version 2.x of both shader types is recommended as lower levels often
provide inadequate support for implementing complex agorithms [10].

When an application is required to utilize a shader, the complete source for the
shader is loaded and transmitted to the HLSL trandlator that is provided by the DirectX
runtime. This trandator produces an intermediary binary stream representation of the
shader that is then passed to the hardware’ s driver where the stream is assembled into
vendor specific instructions and cached on the actual hardware [2]. When the shader isto
be run, an APl command informs the driver that the compiled code is to be used in place
of the fixed function operations and until deactivation the shader becomes an active part

of the pipeline. This processisillustrated in Figure 4.

User Application

I
HLSL Shader Source

Microsoft Supplied
Runtime Library (can

be pre-translated)
L
Intermediate Code
DirectX API

: |
: HLSL Assembler | DirectX Driver
1 1
1 1
1 1

Vendor Machine Code

I
Graphics Hardware

Figure 4: HLSL Compilation and Execution Process

11

As HLSL istightly integrated into the DirectX runtime, shaders written in this
language can only be used under the Windows operating system [10]. Figures5 & 6
below provide an example of our simple HLSL vertex and pixel shader example

described earlier. The resulting image can be seen in Figure 3.

/*

Sanpl e HLSL Vertex Shader

Transforns an incomng vertex into clip-space and output to next

pi peline stage. Al so passes along vertex color and texture coordinates.
*/

fl oat 4x4 worl dVi ewPr oj ; //'Uniform variable — set by application

/*Structure containing per-vertex input val ues*/
struct VS_I NPUT

float3 position : POSITION, /] Obj ect space vertex coords
float4 color0O ;. COLORO; //Current vertex color
float2 texcoord0 : TEXCOORDO; //Current vertex texture

/] coords

}s

/*Structure containing per-vertex output val ues*/
struct VS_OUTPUT

float4 position : POSITION; / I Homogenous clip space
//vertex coords

float4 color0O ;. COLORO; [/ Current vertex color

float2 texcoordO : TEXCOORDO; //Current vertex texture
/] coords

}s

/*Vertex shader entry point*/
VS_OUTPUT main(VS_INPUT IN)

{
VS_QUTPUT QUT;
/1 Store incom ng vertex's coordinates
float4 v = float4(IN position.x, IN position.y,
I'N. position.z,1.0f);
//Transformcurrent vertex into clip space using nodel -vi ew
[/ projection matri x
QUT. position = mul(v, worldViewProj);
QUT. col or 0 = IN. col or0;
OUT. t excoord0 = I N. texcoordO;
/1 Qutput current vertex val ues
return OUT,
}

Figure 5. HLSL Simple Vertex Shader Sample

12

/*

Sanpl e HLSL Pi xel Shader

Cal cul ates the final color of the current pixel by |ooking up a diffuse
color value froma bound texture and adding the interpolated current
col or.

*/

/| Sanpl er that indicates the | oaded texture to be sanpled from
sanpl er testTexture;

/*Structure containing per-pixel input values*/
struct VS_OUTPUT

float4 position : POSITION; // Screen space X,y coordi nates
float4 colorO ;. COLORO; /'l nterpol ated col or
float2 texcoordO : TEXCOORDO; /1l nterpol ated texture coords.

}s

/*Structure containing per-pixel output val ues*/
struct PS_OUTPUT
{

}s

/ *Pi xel shader entry point*/
PS_OUTPUT main(VS_OUTPUT IN)

float4 color : COLOR; /' Final pixel color

{
PS_OUTPUT QUT;
/1'Using the interpolated texture coordinates for this pixel
/11 ook up a diffuse RGB col or value fromthe bound texture
//and add the current pixel color. The result is the final color
/lvalue for the current pixel.
QUT. col or = tex2D(testTexture, IN texcoord0d) + IN. color0;
// Return current pixel values
return OUT,

}

Figure 6. HLSL Simple Pixel Shader Sample
3.2. Cg

Developed in cooperation with Microsoft during the design of HLSL, NVIDIA’s Cg high
level shading language is nearly identical in syntax and semantics to HLSL [13].
Originally designed as a cross API shading language and an early OpenGL high level

shading language candidate, Cg combines an interesting number of features from both of

13

the other two shading languages. Through the use of an external runtime trandator, Cg's
string based vertex and fragment shaders are trandated to either DirectX or OpenGL
assembly language programs that are then run through the respective API’ s shader

aseemblers[11]. Figure 7 details this approach.

User Application

[
Cg Shader Source

' NVIDIA Supplied
: Cg Translator ' Runtime Library

DirectX or OpenGL API

1 1
: Cg Assembler : DirectX or OpenGL Driver
1 1
1 1
1 1

Vendor Machine Code
|

Graphics Hardware

Figure 7: NVIDIA Cg Compilation and Execution Process

This cross API support is accomplished through the use of trandlation “profiles’,
similar to HLSL’ s shader levels, that allow for the shaders to target a wide variety of
hardware, including the standard DirectX shader levels, OpenGL’s shading extensions,
and specific NVIDIA hardware features. When a shader is sent to the trandator the user

specifies a profile flag and the translator will attempt to generate code that runs on

14

hardware with the corresponding level of physical support [11]. For example, theVS 2 0
and PS_2_0 profileswill try and compile vertex and fragment programsto fit in the
hardware restrictions of the Shader 2.0 specification whereas the VP40 and FP40 profiles
will trandate Cg shaders to utilize many of the new features available on only most
recent NVIDIA hardware. This can be quite confusing as depending on the API and
targeted hardware a devel oper can chose between 7 separate vertex and pixel shading
profiles. Attempting to run translated Cg code on hardware that does not support the
profile specified when compiling the shader source code will result in an error or possible
rendering anomalies [11].

The runtime trandator supplied by NVIDIA supports any hardware whose drivers
includes DirectX or OpenGL shading capabilities but generally compiles Cg shaders
most efficiently for NVIDIA hardware [9]. Even though the Cg compiler sourceis

available from NVIDIA to other vendors, none have attempted to implement custom

compilers that optimize for their own hardware [8]. It is not surprising then that while Cg
shaders will run on other hardware, they often run slower.

As stated, a Cg shader’s syntax is nearly identical to one written in HLSL as
shown in Figures 8 & 9 below. The resulting image from this example can be seen in

Figure 3.

15

/ *
Sanpl e Cg Vertex Shader
Transforns an i ncom ng vertex into clip-space and output to next

pi pel i ne stage. Al so passes along vertex color and texture coordi nates.
*/

/*Structure containing per-vertex input val ues*/
struct appin

float3 position : POSITION; /| Cbj ect space vertex coords
float4 color0O ;. COLORO; [/ Current vertex color
float2 texcoord0 : TEXCOORDO; //Current vertex texture

/| coords

}s

/[*Structure containing per-vertex output val ues*/
struct outfragnment

{
float4 position : POSITION; / I Honogenous clip space
//vertex coords
float4 color0O ;. COLORO; //Current vertex color
float2 texcoord0 : TEXCOORDO; //Current vertex texture
/| coords
b

/*Vertex shader entry point*/
outfragment main(appin IN, uniformfl oat4x4 worl dVi ewProj)

{
out f ragnment OUT;

/1 Store incoming vertex' s coordinates

float4 v = float4(IN position.x, IN position.y, IN position.z,
1.0f);

/I Transform current vertex into clip space using nodel -vi ew

[/ projection matri x

QUT. posi tion mul (worl dViewProj, v);

QUT. col or 0 IN.colorO

OUT. t excoor dO I N. t excoor dO;

/1 Qut put current vertex val ues
return OUT;

Figure 8. Cg Simple Vertex Shader Sample

16

/ *

Sanpl e Cg Pi xel Shader

Cal cul ates the final color of the current pixel by | ooking up a diffuse
color value froma bound texture and adding the interpolated current

col or

*/

/*Structure containing per-pixel input val ues*/
struct fragnmentin

{
float4 position : POSITION, /] Screen space X,y coordi nates
float4 colorO ;. COLORO; /'l nterpol ated col or
float2 texcoord0 : TEXCOORDO; /11 nterpol ated texture coords.
b

/*Structure containing per-pixel output val ues*/
struct pixel out

float4 color : COLOR; /I Final pixel color
b

/ *Pi xel shader entry point,

“uni form sanpl er 2D test Texture” defines the texture to use in the
shader. This is set by the calling application.

*/

pi xel out mai n(fragnmentin IN, uniform sanpl er2D testTexture)

{
pi xel out OUT;

/1'Using the interpol ated texture coordinates for this pixe

/11 ook up a diffuse RGB col or value fromthe bound texture
//and add the current pixel color. The result is the final color
/lvalue for the current pixel

QUT. col or = tex2D(testTexture, IN texcoord0) + IN. colorO0;

/I Return current pixel val ues
return OUT;

Figure 9. Cg Simple Pixel Shader Sample

33. GLSL

OpenGL is an open standard whose AP is controlled by a central body. A majority of the
members must agree upon any core additions to the language specification [13]. Due to
competing interests of the voting members, OpenGL’s has lacked a high level shading

until recently with the inclusion of GLSL into the official OpenGL 2.0 specification.

17

Even a standard assembly level shading language extension has only recently been
added®. Unlike DirectX’s and Cg's support for legacy hardware, GLSL is designed
around high GPU hardware requirements. Targeted towards future hardware and for the
sake of compiler efficiency, support for older hardware is extremely limited or non
existent [3]. Any fully compliant GLSL implementation must have hardware that equates
roughly to the Shader 3.0 specification. Since few high-end cards currently support al the
language's specified features, many vendors currently support a slightly reduced
implementation of the language that corresponds to the Shader 2.x level of hardware
requirements [6].

Contrary to the design of HLSL and Cg, GLSL moves all shader compilation and
linking functions directly into the hardware' s driver. Text based shader source is sent
directly to the OpenGL driver where vertex or pixel shader objects are constructed and

linked to form a GLSL program that will run in the programmable pipeline [13]. The

developer has complete control over when these steps can occur through commands in
the OpenGL API. With no intermediary trandation layer and to keep with OpenGL
design philosophies, vendors are provided with only a specification and are free to
implement and optimize the GLSL compiler as best suits their respective hardware. As
new hardware features become available vendors can easily modify the driver’s GLSL
compiler to make use of them without the need to redistribute separate updated run time

libraries [3]. Figure 10 details the process involved in compiling GLSL shaders.

® ARB_vertex_program and ARB_fragment_program extensions [1]

18

User Application
I

GL SL Shader Source
OpenGL API
GLSL GLSL Shader
Compiler |] Object

I
Compiles Shader Code
I
GLSL GLSL Shader
Linker || Program

Vendor Machine Code

I
Graphics Hardware

Figure 10: GLSL Compilation and Execution Process

As the burden for providing GLSL support rests completely in the hands of the vendors,
only 3 vendors, ATI, NVIDIA, and 3DLabs, currently have fully functioning GL SL
implementations.

The sample source below in Figures 11 & 12 illustrates GL SL’s more compact
syntax compared to HLSL and Cg. This compactnessis aresult of providing very tight
integration with the OpenGL pipeline that helps to eliminate lengthy in and out pipeline

data structures [6]. Once again, the resulting image can be seen in Figure 3.

19

/ *

Sanpl e GLSL Vertex Shader

Transforns an i ncom ng vertex into clip-space and output to next

pi peline stage. Al so passes along vertex color and texture coordinates.
*/

/*Vertex shader entry point*/
void main(void)

{ /1 Transform current vertex into clip space using nodel -vi ew
/lprojection matrix and output to next pipeline stage.
/1 ->gl _Model Vi ewProj ecti onMatrix (GLSL pre-defined, contains
/1 current Model Vi ew-Projection Matrix from OpenGL pi peline)
/'l >gl _Vertex (GLSL pre-defined, contains incomng vertex’'s
/1 X,Y,Z,w cords.)
/1l >gl _Position (GLSL pre-defined, mandatory output variable for
/1 transform vert ex)
/'l >gl _TexCoord[0] (G.SL pre-defined, output vari able for current
/1 vertex’'s texture coordinates)
/'l >gl _FrontCol or (GLSL pre-defined, output variable for current
/1 vertex's col or)
gl _Position = gl _Mdel Vi ewProjectionMatrix * gl _Vertex;
gl _TexCoord[0] = gl _Milti TexCoor doO;
gl _Front Col or = gl _Col or
}
Figure1l. GLSL Simple Vertex Shader Sample
/ *

Sanpl e GLSL Pi xel Shader
Cal cul ates the final color of the current pixel by |ooking up a diffuse
color value froma bound texture and addi ng the interpol ated current

col or
* |

/] Sanpl er that indicates the | oaded texture to be sanpled from
uni form sanpl er 2D test Texture

/ *Pi xel shader entry point*/
void main(void)

{
/1Using the interpolated texture coordi nates for this pixe
//1 ook up a diffuse RGB color value fromthe bound texture
//and add the current pixel color. The result is the final color
/lvalue for the current pixel and is assigned to the mandatory GLSL
/| pre-defined pixel color output variable, gl_FragCol or
gl _FragCol or = texture2D(test Texture, gl_TexCoord[O0].xy)
gl _FragCol or += gl _Col or;
}

Figure 12. GLSL Simple Pixel Shader Sample

20

4. Data Types and L anguage Functions

For any graphical shading language to be useful it must provide support for many of the
basic data structures used for representing geometry, transformations and shading values.
Geometrical structures can include vectors, points, matrices representing transformations
and shading values described using arrays or scalar values [14]. These basic structures are
needed within both the vertex and pixel shaders to describe incoming and outgoing data
as well to represent intermediary calculations. For example, an incoming vertex needs to
be represented by a4 component vector and will be multiplied by a 4x4 model view
projection matrix. However, as GPUs deal with afinite set of possible calculations, the
same diversity seen in traditional programming languages such as C is unneeded in
shading languages [12]. Basic data types supported by al three shading languages can be
categorized into five groups. scalars, vectors, matrices, texture samplers, and user defined
[5]. Even with arestricted set of available data types, those writing shaders should be
aware that variable type declaration syntax differences exist between the languages.
Developed in conjurction with one another, HLSL and Cg share the greatest
similarity in their supported basic data types. Supported data types for scalars and 2-4
component vectors and NxM matrices include boolean, int, half, float, double [10]. The
actual syntax declaration is identical for both languages. When a shader wishes to sample
atexel from atexture map a“texture sampler” must be declared. Texture samplers take
one, two, or three component vectors representing texture coordinates and return the
sampled three-component color value from that position in the texture map. Samplers are
available for 1D, 2D, 3D and cube map textures. HLSL defines a single sampler datatype

where the type is defined as a parameter when sampling whereas Cg provides a separate

21

sampler type for each texture format (i.e. sampler2D) [9]. Additionally, both languages
support Typedef and Struct types that allow for user defined grouping of the above basic

types. Figure 13 below is an example of some simple variable declarations for both

languages.

float3 nyColor = float3(0.1,0.4,0.5); /13 conmponent float vector

fl oat 4x4 nodel Vi ew, /14x4 float matrix

sanpl er 2D myText ur e; /1 Cg 2D texture sanpler

struct appin { /1 User defined struct
float4 Position : POSI TI ON; //with binding semantics
float4 Nornal : NORMAL;

Figure 13. Example declaration of HLSL and Cg data types

Both languages also support the use of binding semanticsas can be observed in Figure 13
by the inclusion of the“: POSITION” postfix of the variable declaration. Binding
semantics allow for declared input and output variables to be specifically bound to
hardware defined registers. Some, such as POSITION, must always be present as an input
of avertex shader since without it the current incoming vertex position from the APl will
not be available unless it is explicitly assigned to avariable. Vertex and pixel shaders for
both HLSL and Cg share a large number of possible binding semantics, with both types
of shaders requiring certain semantics that must be bound for correct functionality [10].

In comparison to HLSL and Cg, the designers of GLSL chose to include a more
restrictive set of syntax rules for declaring data types. The available scalar data types are
bool, int and float; similar to the other shading languages. In GLSL, a vec data type,

instead of a normal C-style array, represents vectors of any of these types. Two, three and

22

four component vec types are available for booleans, integers and floats, declared as
bvec(2,3,4), ivec(2,3,4) or fvec(2,3,4) [13]. A mat datatypeisaso available for use,
however only matrices of NxN floating point values are allowed unlike the NxM
dimension matrices of HLSL and Cg [3]. It is these differences in data types that
represent one of the greatest differences in syntax that GLSL contains. Texture samplers
are declared as in Cg with additional support for shadow map texture samplers [6]. The
use of structsis also available. Figure 14 shows an example containing a number of

variable declarations under GLSL.

vec3 myPosition = vec3(2.0,3.4,-5.1); /13 conmponent vec
mat 4 nodel Vi ewM x; /14x4 float matrix
sanpl er 2D mysanpl er; /1A 2d texture

/| sanpl er
sanpl er 1DShadow shadowvap; /1 A 1D shadow

/ltexture sanpl er

Figure 14. Example declaration of GLSL data types

Essential to all shading languages is the ability to support a wide selection of common
mathematical and geometric calculations. Coordinate system transforms, lighting
calculations, and coloring mixing are common techniques used by the fixed function
pipeline and a programmable pipeline requires even greater support for functions that
may be needed by a wide variety of possible rendering algorithms [14]. All three shading
languages other excellent support for many useful built-in functions suchas vector dot-
product, vector cross-product, matrix multiplication, vector normalization, range
clamping, trigonometric cosine, trigonometric sine, vector reflection, linear interpolation

of values, maximum and minimum calculation, logarithms and many more [11]. Many of

23

the functions act as they do in C and the majority have direct vertex and fragment
machine instruction implementations, providing fast execution times. While al three
languages specifications include a diverse selection of available functions, developers
should ensure that a particular function has actually been implemented before using it.
Some functions such as GLSL’s noisg() function for generating random noise values is

not actually implemented in any current vendor compilers [3].

24

5. Available M aintenance Features

When making use of shaders the situation can quickly arise where a developer begins
writing separate vertex and pixel shaders to calculate shading properties for every type of

surface within a given 3d space. For a complex scere containing dozens of unique

surfaces, each described by a different shader, shader developers can find themselves
trying to manage a large number of separate source files. Therefore, there exist some
features inherent to each of the shading languages designs that attempt to help manage
the maintenance of shaders. One concept is the ability to not restrict all source code for a
single shader to exist in one exclusive file or to force shader developers to manually parse
and combine separate code fragment files. HLSL uses the concept of shader fragments
that allow multiple shaders to be combined together before they are compiled. A central
shader source fragment that defines the vertex or pixel shader’s main() entry point can
call separate functions that are defined in other shader fragments [10]. Using the DirectX
API, acomplete shader can be constructed and passed to the driver.

Similarly, GLSL provides an elegant solution to combining shader source modules by
allowing multiple shaders objectsto be attached to ashader program before being linked
[3]. This greatly increases the ability to easily maintain functions shared by multiple
independent shaders.

Cg currently provides no mechanism to combine user-defined functions in asingle
shader. A single shader program accepts only the complete and final source string for a
shader. Should a similar maintenance feature be required when using Cg, a user could

implement their own set of functions to take in multiple shader source strings and

25

combine them into a complete program before passing it to the Cg runtime to be
compiled [12].

Within acommercial environment it may also be desirable to protect rendering
algorithms used in applications or prevent users from manually editing shaders to change
their specific functionality. Currently only HLSL supports at least a partia solution by
allowing HLSL shaders to be pre-trandated into the custom DirectX assembly shader
stream format [13]. For Cg and GLSL, solutions such as embedding shader source strings
directly into the compiled application executable or packing shaders into a custom

archive format are the only alternatives.

26

6. Pipeline State Access

Another aspect of any real time shading language that is crucial to being able to easily
integrate a shader framework into a graphical application is the ability to access certain
elements of the fixed function pipeline from within the shaders that replace the normal
vertex and fragment processing stages. A program that utilizes the DirectX or OpenGL
APIswill usually set and modify alarge number of pipeline states in between rendering
passes such as transformation matrices, lighting values, and surface material and fog
settings. Allowing an application to specify these values and giving the shaders access to
them through some standard mechanism provides a convenient method to easily integrate
shadersinto the pipeline.

As OpenGL’s architecture uses a state machine methodology, state values
specified through the API become part of the current context until they are once again
modified by the user [1]. Thisdesign is carried over into GLSL through the inclusion of a
wide variety of predefined uniform variables that permit access to state information. For
vertex shaders this includes the current incoming vertex (gl_Position), normal
(gl_Normal), modelview matrix (gl_ModelViewMatrix), projection matrix
(gl_ProjectionMatrix), fog settings (gl_FogParameters struct), and any enabled light
properties (gl _LightSourceParameters struct) [6]. The advantage to this approach is that
it greatly reduces the number of varying (per primitive), uniform (per pass), and attribute
(per vertex) values that must be passed explicitly to either shader and reduces the
possibility of introducing errors into the application. This is contradictory to the approach
used by HLSL and Cg shaders that target DirectX. Shaders designed to run under the

DirectX programmable pipeline must pass al values that are needed by a shader before it

27

is set as active [10]. This may require an application to continually query current values
from the fixed function pipeline and resubmit the obtained values as shader parameters.
Semantic bindings help to aleviate this restriction somewhat but only for per vertex or
per pixel information such as position or color, not for those such as the current model
view matrix.

When using Cg targeted towards the OpenGL programmable pipeline, the
DirectX style restrictions are dropped and complete state access is granted similar to
GLSL [11]. A single predefined structure glstate contains complete accessibility to all
states useful in the vertex and fragment processing stages of the pipeline. However this
feature aso illustrates how Cg shaders can easily lose their cross APl appeal. For Cg
shaders to remain compatible with both the DirectX and OpenGL rendering pipeline,

state variables have to be explicitly sent by the user [3].

28

7. Implementation and Driver Maturity

Any developer wishing to incorporate high level shader features into a project must be
aware of the current stability issues that may be present in any of the three shading
languages compilers and drivers.

Having gone through a number of iterations and design changes, HLSL can be
considered the most stable of all the current shading languages. The introduction of
DirectX 9.0c completed along series of driver and API refinements, producing a robust
framework for utilizing vertex and pixel shaders including a shader effects framework
that alows for multiple shaders to be collected into rendering passes, easing the amount
of code necessary to implement complex rendering [4]. Graphics hardware vendors
wishing to advertise there products as DirectX 9 compliant must include drivers that fully
support the HLSL specification either directly in hardware or through a software fallback
code path [10]. With its tight integration into the general DirectX libraries, the HLSL
runtime and drivers are available exclusively on the Microsoft Window’ s operating
system.

Targeted as a cross platform shading language, Cg's runtime libraries are
surprisingly stable and error free. The Cg runtime exists for Microsoft Windows, Apple
OSX and Linux operating systems. Since Cg's runtime trangator converts shader source
code to either DirectX shader assembly streams or OpenGL assembly extension
instructions, a system that properly supports either of these standards should theoretically
support Cg [11]. Being controlled by a single vendor, the Cg trandator is updated
frequently and at version 1.3 supports many of the most recent NVIDIA hardware

features. As described previously, while the trandator is able to target a wide variety of

29

hardware, optimization is rarely performed for nonNVIDIA hardware, instead producing
the most straightforward interruption [7]. A developer wishing to implement an
applicationthat utilizes Cg should be aware of this fact if they wish to support awide
user base. One operating system where Cg is the only option is Apple sOS X. OS X’s
visua sub system relies heavily upon OpenGL. As Apple restricts vendors from releasing
drivers outside of their development network, GLSL support has still not been exposed.
Until Apple activates support for GLSL, Cg is currently the only available high level
shading language available for their platform.

As the youngest of all three shading languages, many drivers for GLSL are till
considered experimental by their vendors [13]. With modifications and refinements still
being made to the specification, coupled with its high hardware requirements for full
compliance, many features of the language are ill unavailable in certain

implementations [1]. Graphic hardware vendors ATI, NVIDIA and 3DLabs currently

provide a satisfactory level of support for GLSL, with 3DL abs offering the most mature
compiler [13]. As each vendor must provide a shader source code-to- machine instruction
GLSL compiler entirely within their respective drivers, numerous incompatibilities are
still present. Some have even forgone writing a full compiler instead utilizing aternative
implementations. NVIDIA, whose current line of graphics hardware is the only one to
incorporate hardware that allows a complete GLSL implementation, chooses to provide
an internal GLSL to Cg trandator [3]. The advantage of this approach is that by moving
the Cg trandator directly into the drivers a stable and reliable compiler is available to

produce hardware specific code. Unfortunately, this has produced the side effect of

30

making the interpretation GLSL source compilation errors difficult, as currently, vague

Cqg error strings may be returned.

31

8. Execution Speed Comparisons

To illustrate the difference in driver and compiler maturity, the results of two simple
shaders emphasizing vertex bound and fragment bound shading operations are given. A
simple custom C++ framework was used to test corresponding implementations of both
shaders for each of the three shading languages. Under both tests a timer function
recorded the average number of completed frames that could be rendered in one second
(FPS). The tests were intended to stress their respective stages of the pipeline through a
combination of large batches of incoming geometry from the APl and a non-trivial
number of shader instructions being performed.

The vertex bound test comprised of a single vertex shader that was responsible for
transforming the incoming vertex into clip space after applying a series of trigonometric
cosine and sine values to the vertex. A highly tessellated sphere comprised of
approximately 50,000 vertices was sent through each API to the shader. Figure 15 shows
a screenshot of the resulting sphere with the vertex shader applied, producing an
animated wobble effect. The vertex offsets that are applied to each vertex are computed
entirely on the GPU. The sphere is rendered in wireframe mode so that the vertex dense
surface of the sphere can be observed. The source code for this vertex shader isgivenin

Appendix 1.

32

Figure 15: Tessellated sphere with Wobble vertex shader applied

For the fragment bound test, a per-pixel lighting technigue was applied called
normal-mapping. A simple sphere comprised of 50 primitives was sent into each AP
along with a pre-computed matrix for each vertex that provided an object space-to-
tangent space transformation [13]. In the vertex shader this matrix was used to transform
the passed light position into tangent (or texture) space. The pixel shader then calculated
the lit value of each surface pixel by looking up the surface normal value from a normal
texture and performing the dot product of the acquired normal vector with the
transformed light vector. This intensity was then combined with a diffuse surface texture

to produce afinal color value. This test produced a surface image that appears to have

33

greater detail and depth over simple diffuse texture mapping. This technique is only
possible using a programmable pipeline since the normal texture lookup and lighting
calculation must be performed per-pixel using a pixel shader. Figure 16 shows the diffuse
texture and Figure 17 shows the pre-computed normal texture from which normal values
areretrieved. Figure 18 gives the final results of the pixel shader applied to the sphere.

The source code for this pixel shader is available in Appendix 2.

Figure 16: Diffuse texture used in test pixel shader

Figure 18: Sphere with applied pixel shader

Both tests were performed on an AMD-64 3000+ desktop with 1Gig of RAM
running Microsoft Windows XP with a 128MB NVIDIA 6800 video adaptor. All drivers

and language compilers consisted of the most recent versions available (Video adapter

35

driver: Forceware 71.84, Cg runtime: 1.3, DirectX runtime: 9c). The described tests

produced the following results:

Table 1: Frames per second test results

Test/Language HLSL Cg 1.3 (OpenGL) GLSL
Vertex bound 123 120 115
Fragment bound 102 91 94

Both tests performed under al three shading languages produced similar results with only
very dight differences most likely attributable to the video adaptor’s drivers. The
similarities in the vertex bound test may also suggest that a bus limit from user
application memory to the video adaptor was present. The differences present in the pixel
bound test results are most likely due to the maturity of the adapter’s drivers and the
language’' s compilers. As these tests where performed under only one set of conditions,
they are only intended to give an estimate of what performance results may be expected.
What can be observed is that the programmabl e pipeline offers significant processing
power for avariety of shading applications using any of the three shading languages.

For the vertex bound test to be performed under the fixed function pipeline each of
the 50,000 vertices of the tessellated sphere would have to have its wobble offset
recal culated each frame on the CPU. Performing such a high number of floating point
calculations each frame may reduce performance of other running processes that require
high CPU usage.

For the fragment bound test, the resultsin Table 1 show that a complex lighting
algorithm other then the fixed function pipeline’'s Phong model can be utilized and

produce real-time frame rates (FPS > 30). Under a fixed function pipeline, the normal

36

mapping lighting technique’ s results could not be reproduced in real time, as it requires
the ability to perform specific per-pixel calculations in the 3d pipeline. The algorithm can
currently only be performed on the CPU through the use of nonrreal time, ray-tracing

software.

37

9. Future Roadmaps

With the pace at which programmable pipeline technology is being adopted for a wide
variety of applications, the general consensus is that eventually a significant amount of
time spent on developing graphical applications will be spend implementing shaders [3].
Also, future advances in graphical hardware will continue to force these shading
languages to be modified to expose even greater programmability within the graphics
pipeline.

The most likely change to happen in the near future is the merging of available
functions and constructs between vertex and pixel shaders. Some of the current hardware
restrictions that prevent both types of shaders from sharing certain functions, such as
vertex shaders accessing texture memory or pixel shaders rendering to vertex arrays, are
aready disappearing [6]. Once the majority of standard hardware supports such features,
the distinction between vertex and pixel shaderswill exist only at the application
development level. GLSL is currently the only language with a specification that has
anticipated such changes.

Additionally, future roadmaps may permit other stages of the remaining fixed
function pipeline to be transformed into a programmable framework, most notable the
frame-buffer operation stage [8]. Currently, for practical reasons, shaders cannot read
from the frame-buffer and al frame-buffer operations can only be specified through
corresponding APl cals[1]. A third type of shader, a frame-buffer shader, could allow

for user defined image space operations to be performed.

38

10. Conclusion and Recommendations

With powerful real-time commodity 3d hardware becoming increasingly standard, high-
level graphical shading languages now present flexible means to incorporate rea-time
rendering algorithms into graphical applications by utilizing the programmability of
GPUs. HLSL, Cg, and GLSL all offer various advantages and disadvantages that should
be considered before custom shading technology is used. While many of the core syntax,
available data types and built-in functions are largely similar and offer similar levels of
performance, issues such as driver implementation and operating system support will
usudly be the determining factor in what shading language is most useful.

As all three languages offer comparable features regarding syntax and library
functions, the decision of what language to use currently rests on two aspects. platform
and hardware. Due to the strong ties between al three shading languages and the
underlying graphics hardware, any project targeted towards a wide variety of users
should incorporate a suitable fallback code path as the diversity in present consumer
hardware severely limits the use of advanced shaders, especially those written in GLSL.
Additionally, shaders that smply recreate the standard fixed function pipeline should be
avoided as they are already heavily optimized within the vendor’s drivers.

If an application is written using DirectX under the Windows operating system
then HLSL isthe optimal choice due to is stable trandator and drivers. HLSL' s ability to
generate vertex and pixel shaders for many levels of graphics hardware and features that
protect shader source makes it appealing for those who produce commercial interactive
products. Conversely, those utilizing OpenGL currently have a choice of whether to use

Cg and support a wider variety of hardware or tse GLSL that while requiring demanding

39

hardware, is designed to be a core component of the OpenGL 2.0 specification [6]. Asa
recommendation, any OpenGL application that is to be released to a wide audience
within the next year and wishes to target a variety of operating systems should utilize Cg.
Starting in 2006, GLSL would be ideal as by that time wide support for GLSL should be
available.

Despite what language is ultimately chosen, the language specification documents
available for each language should be thoroughly reviewed before shader development is
begun. As this report has detailed, there are many small aspects of each of the three
shading languages that should be carefully considered.

As programmabl e pipeline and shading technologies continue to be refined and
standardized with support provided from additional vendors, shading languages will

prove essential for opening up new techniques within the field of computer graphics and

imaging.

40

References

[1] Bylthe, D., and McReynolds, T., Advanced Graphics Programming Using OpenGL,
Morgan Kaufman, 2005.

[2] Elliot, C., Programming Graphics Processors Functionally, In Proceedings of the
ACM SIGPLAN workshop on Haskell, 2004, pp. 45-56.

[3] Engdl, W., ed., Shader X3: Advanced Rendering with DirectX and OpenGL, Charles
River Media, 2005.

[4] Fosner, R. Real-Time Shader Programming, Morgan Kaufmann Publishers, 2003.

[5] Heidrich, W., and Seidel, H., Realistic, Hardware-accelerated Shading and Lighting,
In Proceedings of the 26th annual conference on Computer graphics and interactive
techniques, Los Angeles, California, USA, August 8-13, 1999, pp. 171-178.

[6] Kessenich, J., Baldwin D, and Rog, R., OpenGL Shading Language v 1.10, 2004.
[Onling]. Available at http://0ss.sgi.com/projects/ogl-
sample/registry/ARB/GL SLangSpec.Full.1.10.59.pdf

[7] LaMothe, A., Tricks of the 3D programming gurus: advanced 3D graphics and
rasterization, Sams, 2003.

[8] Lastra, A., Molnar, S., Olano, M., and Wang, Y ., Real-Time Programmable Shading,
In Proceedings of the 1995 symposium on Interactive 3D graphics, Monterey,
California, USA, April 9-12, 1995, pp. 55-ff.

[9] Mark, W., Glanville, .S, Akeley, K., and Kilgard, M., Cg: A system for programming
graphics hardware in a C-like language, In Proceedings of ACM SIGGRAPH 2003,
Los Angeles, Cadifornia, USA, August 8-12, 2003, pp. 896-907.

[10] Microsoft Corporation, HLS. Shader Reference, Microsoft MSDN, 2005.
[Onlin€]. [Updated 6 January 2005]. Available at
http://msdn.microsoft.com/library/default.asp?url=/library/en
ug/directx9_c/directx/graphicg/reference/hislreference/hidreference.asp

[11] NVIDIA Corporation, Cg Toolkit: User’s Manual (Release 1.3), 2005. [Onlin€].
Available at ftp://download.nvidia.com/devel oper/cg/Cg_1.3/Docs/Cg_1.3 Docs.zip

[12] Peercy, M., Olano, M., Airey, J., and Ungarm, P., Interactive Multi-Pass
Programmable Shading, | n Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, New Orleans, Louisiana, USA, July 23-28, 2000,
pp. 425-432.

[13] Rog, R. A., OpenGL Shading Language, AddisonWesley, 2003.

41

[14] Watt, A., 3D Computer Graphics (Third Edition), Addison-Wesley, 2000.

42

Appendix |: Shading Language Execution Time Test Case 1.
Vertex-Bound Source Code

The following source code listing provides the information necessary to create and run
the vertex-bound shader used in Test Case 1. For brevity only the initiation and per-
frame update code used in the C++ test application framework on which the graphical
shaders’ usage depends is provided. This source can be easily integrated into any
windowing system that providesthe ability to set up a DirectX or OpenGL window
context and handle user events. Further error checking of many of the function results
should also be used. The number of frame per second (FPS) can be measured by
implementing a simple timer that records the number of times that a complete frame can
be drawn in one second.

Source code for the test vertex shader is supplied in its entirety for all three graphical
shading languages.

User Application d obal Variables:

/***/

/* Used by HLSL*/

[/ DirectX 9 device

LPDI RECT3D9 g_pD3D

LPDI RECT3DDEVI CE9 g_pd3dDevi ce

NULL;
NULL;

[/ Pointer to vertex shader
LPDI RECT3DVERTEXSHADER9 g_pVertexShader = NULL;
LPDI RECT3DVERTEXDECLARATI ON9 g _pVert exDecl arati on = NULL;

/| Shader constant table — stores the locations of all user configurable

[/variabl es that exist inside the shader
LPD3DXCONSTANTTABLE g_pConst ant Tabl eVS = NULL;

/***/

/* Used by Cg*/

CGprofile g_CGprofil e; /1 Cg Shader profile

CCcont ext g_CCcont ext ; /1 Cg context

CGprogram g_CGprogram /1 Cg shader program

CGpar anet er g_CGparam Model Vi ewvatri x;

CGpar anet er g_CGparam Ti ner; /1 Cg Paranmeters used to send
CGpar anet er g_CGparam Vertical ; /lvalues to the conpiled
CGpar anet er g_CGparam Hori zontal ; /I shader each frane

CGpar anet er g_CGparam Ti meScal e; /1

/***/

/* Used by GLSL*/
GLhandl eARB g_pr ogrambj ; //Handl e to GLSL program obj ect
GLhandl eARB g_vertexShader; /I Handl e to conpiled GLSL vertex

43

/ I shader

GLuint g_l ocation_Ti ner; /1Binding to uniformvariable in
GLuint g_l ocation_Vertical; //the conpiled vertex shader.
GLuint g_location_Horizontal ; /1 Al'l ows updated values to be sent
GLuint g_l ocation_Ti neScal e; //to the active shader each franme

44

User Application Shader Initialization (Performed once upon application
creation):

// Load/ Compi l e the vertex shader for each shadi ng | anguage
swi t ch(Language)

{
case HLSL:

/1 Since our vertex shader uses explicit binding semantics we
//have to create a vertex declaration using those senantics.

D3DVERTEXELEMENT9 decl ar ati on[] ={{0, 0, D3DDECLTYPE_FLOAT3,
D3DDECLMETHOD DEFAULT, D3DDECLUSAGE_POSI TI ON,
0}, {0, 12, D3DDECLTYPE_D3DCOLOR,
D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR,
0}, {0, 16, D3DDECLTYPE_FLOAT2,
D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD,
0}, D3DDECL_END() } ;

/1 Set this declaration
g_pd3dDevi ce- >Cr eat eVert exDecl arati on(decl arati on,

&g pVertexDecl aration);

HRESULT hr;

LPD3DXBUFFER pCode; /! The buffer the shader’s code is
/11 oaded into.

DWORD dwshader Fl ags = 0;

LPD3DXBUFFER pBuf ferErrors = NULL;

/1 Assenbl e the vertex shader fromthe file.

/'l “main” — specifies the shaders entry point

/1 “vs_1 1" — specifies the vertex shader level to try
/1 and conpile for

/1 Any uni form values in the shader source will have

//location entries made in the g_pConstant Tabl eVS obj ect
hr = D3DXConpi | eShader FronFi | e("wobbl e_vert. hl sl ™, NULL,
NULL, "mai n","vs_1 1", dwShader Fl ags, &pCode,

&pBufferErrors, &g pConstant Tabl eVS);

/'l Create the vertex shader

g_pd3dDevi ce- >Cr eat eVer t exShader (
(DWORD*) pCode- >Get Buf f er Poi nter (),
&g_pVert exShader);

pCode- >Rel ease();

br eak;

case CG

{

/1 Choose a vertex profile (in this case OpenGL assenbly
/Ilprofile)
g_CGprofile = CG PROFI LE_ARBVPI;

/'l Create a Cg Context
g_CCcontext = cgCreateContext();

45

// Create the vertex shader program using the created

//context. We read in the string source from

/1 “wobbl e_vert.cg”. The translator will try and conpile

this //to work with the specified profile.

g_CGprogram = cgCr eat ePrograntronfi |l e(g_CGcont ext,
CG_SOURCE, " wobble_vert.cg",
g_CGprofile, NULL, NULL);

//Load the programusing Cg's interface
cgGLLoadPr ogr am(g_CGCpr ogr an) ;

/'l Get handles to the uniformvariables we will set l|ater
g_CGpar am _Model Vi ewMatri x = cgGet NanmedPar anet er (
g_CGprogram "nodel Vi ewProj Matri x");

g_CGparam Ti mer = cgGet NanedPar anet er (g_CGpr ogr am
"Timer");

g_CGparam Vertical = cgGet NamedPar amet er (g_CGpr ogr am
"Vertical");

g_CCparam Hori zontal = cgGet NamedPar anet er (g_CGpr ogr am
"Horizontal ");

g_CGparam Ti neScal e = cgGet NanedPar anet er (g_CGpr ogr am
"Ti meScal e") ;

br eak;

}
case G.SL:

{

/'l Create the vertex shader object
g_vertexShader =gl Creat eShader Obj ect ARB(G._VERTEX_SHADER ARB) ;

/l'User defined function that reads in shader source strings

/[1from “wobble_vert.glsl” text file

unsi gned char *vertexShader Source = readShader Sour ce(
"wobbl e_vert.glsl");

[/l Covert to string array paraneter for next function call
vertexShader Strings[0] = (char*)vertexShader Assenbl y;

/1 Send the read in vertex shader source to vertex program

/] obj ect.

gl Shader Sour ceARB(g_vertexShader, 1, vert exShader Stri ngs,
NULL) ;

// Now that the program has source code, conpile the shader
gl Conpi | eShader ARB(g_vert exShader) ;

/l/Create a GLSL program object and attach the conpiled shader
g_prograntCbj = gl Creat ePrograntChj ect ARB() ;
gl Att achObj ect ARB(g_prograntbj, g_vertexShader);

/1Link the GLSL program object containing the conmpiled GSL

/lvertex shader.
gl Li nkProgr amARB(g_pr ogr anthj);

46

/1 Get handles to all the uniformvariables we will set |ater
g_location_Timer = gl GetUnifornlLocati onARB(g_pr ogranthj ,

"Timer");
g_location_Vertical = gl GetUniformnmlLocati onARB(g_pr ogranbj,
"Vertical");

g_l ocation_Horizontal = gl GetUniformnLocati onARB(g_progranthj,
"Horizontal ") ;
g_l ocation_Ti neScal e = gl Get Uni fornmLocati onARB(g_pr ogr anObj ,

"Ti meScal e") ;
br eak;

Per Frame (Perfornmed once per frame):

/I Each redraw of the wi ndow we activate the shaders and pass in any
/I dynam c vari abl e val ues they may use.
swi t ch(Language)
{
case HLSL:

{

Update any DirectX states

/1 Get the current Model View Projection Matrix

D3DXMATRI X wor | dVi ewProj ection = g_matWorld * g_natView *
g_mat Proj ;

//Pass it into the constants table
g_pConst ant Tabl eVS->Set Matri x(g_pd3dDevi ce,
"worl dVi ewProj ", &worl dVi ewProjection);

/1 Set the Horizontal, Vertical, Timer, and Ti nerScal e
//values in the shaders constant table
g_pConst ant Tabl eVS- >Set Fl oat (g_pd3dDevi ce,
"Horizontal ", 0. 14f);
g_pConst ant Tabl eVS->Set Fl oat (g_pd3dDevi ce,
"Vertical",7.5f);
g_pConst ant Tabl eVS->Set Fl oat (g_pd3dDevi ce,
"Ti meScal e", 5. 4f);
g_pConst ant Tabl eVS->Set | nt (g_pd3dDevi ce,
"Timer",deltaM | | i seconds);

/1 Set vertex declarati on and nmake wobbl e vertex shader
/lactive

47

g_pd3dDevi ce- >Set Vert exDecl aration(g_pVertexDeclaration);
g_pd3dDevi ce- >Set Vert exShader (g_pVertexShader);

Draw Sphere

/[Deactivate current veriex shader
g_pd3dDevi ce- >Set Ver t exShader (NULL) ;

case CG

Updat e any Direct X/ OpenGL states

/l Enabl e vertex Profile used by the wobbl e vertex shader
CgGL. cgG.Enabl eProfil e(g_CGprofile);

// Activate the wobbl e vertex shader
CgGL. cgGLBi ndPr ogr am(g_CGpr ogr am) ;

/'l Set the "nopdel Vi ewProj Matri x" paraneter in the vertex

/lshader to the current concatenated

/'l nmodel vi ew and projection matrix

CgGL. cgGLSet St at eMat ri xPar anet er (g_CGpar am Model Vi ewMat ri x,
CgGL. CG_GL_MODELVI EW PROQIECTI ON_MATRI X,
CgG.. CG_G._MATRI X_I DENTI TY) ;

/1 Set the Horizontal, Vertical, Tinmer, and Ti nerScal e

//val ues used by the vertex shader

CgGL. cgGLSet Par anet er 1i (g_CGparam Ti mer, deltaM | | i seconds) ;
CgQL. cgGL.Set Par aret er 1f (g_CGpar am Hori zontal , 0. 14f);

CgQ.. cgGLSet Par arret er 1f (g_CGpar am Verti cal , 7. 5f);

CgGL. cgGLSet Par anet er 1f (g_CGpar am_Ti neScal e, 5. 4f) ;

Draw Sphere

48

/1 Di sable the vertex shader profiles
CgGL. cgGLDi sabl eProfil e(g_CGprofile);

}
case G.SL:

{

Updat e any Of.aenGL states

/1 Enabl e the GLSL shader. program contai ning the conpil ed
/I wobbl e vertex shader
gl UsePr ogr antCbj ect ARB(g_pr ogrambj) ;

/1 Set the Horizontal, Vertical, Tinmer, and Ti nerScal e
//val ues used by the vertex shader

gl Uni f or mLi ARB(g_Il ocati on_Ti ner,deltaM I |iseconds);

gl Uni f or mLf ARB(g_I| ocati on_Hori zontal , 0. 14f);

gl Uni f or mLf ARB(g_I ocation_Vertical,7.5f);

gl Uni f or mLf ARB(g_I ocati on_Ti meScal e, 5. 4f) ;

Dr aw Sbhere

/'l Disable the GLSL shader objects
gl UsePr ogr anbj ect ARB(NULL);

49

HLSL Shader Source:

/**

Vertex-Bound Test: HLSL Vertex Shader
Source file: “wobble_vert.hlsl”

**/

/* Uniforms — changed at nobst once per frame*/
fl oat 4x4 mat Vi ewPr oj ecti on;

float Tinmer;

fl oat Horizontal;

float Vertical;

float TinmeScal e;

/* Vertex data from application*/
struct VS | NPUT

{
float4 Position : PGSI TI ONO;

}s

/* Data passed out fromvertex shader */
struct VS_OUTPUT

{
float4 Position : POSITI ONO;
b
VS_OUTPUT vs_mai n(VS_I NPUT I nput)
{
VS_OUTPUT CQut put ;
/1 Scal e down tinme
float timeNow = (Tinmer)*TineScal e;
/] Store current incom ng vertex
float4 Po = float4(lnput.Position.xyz, 1);
[l Calulate offset values for “wobble” effect
float iny = Po.y * Vertical + tinmeNow,
float wiggleX = sin(iny) * Horizontal *30;
float wi ggleY = cos(iny) * Horizontal *30;
/1 Apply wobbl e offsets to current vertex's x and y coordi nates
Po.y = Po.y + wiggleY/5;
Po.x = Po.x + wiggleX;
/[l Transformthis new vertex position into clip space and store
/lin output structures position menber
Qut put . Posi tion = mul (mat Vi ewPr oj ecti on, Po) ;
return(Qutput);
}

50

Cg Shader Source:

/**

Vertex-Bound Test: Cg Vertex Shader
Source file: “wobble_vert.cg”

**/

uni form fl oat 4x4 Worl dVi ewProj ;
uni form fl oat Tiner;

uni form fl oat Horizontal;

uni form fl oat Vertical;

uni form fl oat Ti neScal e;

/* Vertex data from application*/
struct appdata {

float3 Position : POSITION;
b

/* Data passed out fromvertex shader */
struct vertexQutput {
float4 HPosition : POSITION;

}s

/*Entry point of vertex shader*/
vertexCQut put main(appdata IN) {

/1 Qur output structure
vertexCQut put OUT;

/] Scal e down tinme
float tinmeNow = Tiner*Ti neScal e;

/] Store current incom ng vertex
float4 Po = float4(IN. Position.xyz, 1);

/] Calul ate offset values for “wobble” effect
float iny = Po.y * Vertical + tinmeNow,
float wiggleX = sin(iny) * Horizontal;
float wiggleY = cos(iny) * Horizontal;

/1 Apply wobble offsets to current vertex’'s x and y coordi nates
Po.y Po.y + wi ggleY/5;
Po. x Po. x + wiggl eX;

/1l Transformthis new vertex position into clip space and store
//in output structures position menber

QUT. HPosi tion = nul (Po, Worl dVi ewProj);

return OUT,

51

GLSL Shader Source:

/**

Vertex-Bound Test: GLSL Vertex Shader
Source file: “wobble_vert.glsl”

**/

/* Uniforms — changed at npbst once per frame*/

uniformint TIME_FROM INT; /1 Timer (allows aninmated effect)
uni form fl oat Ti meScal e; /| Speed up/ sl ow down wobbl e effect
uni form fl oat Horizontal; /1 Anpl i t ude

uni formfloat Vertical; //'Wave | ength

/*Entry point of vertex shader*/

void main()

{
/] Scal e down tinme
float r = float(TIME_FROM INT) / 650.0;
float ti meNow = r*Ti neScal e;

/1 Store current incoming vertex
vecd4d Po = vec4(gl _Vertex.xyz,1);

/] Calulate offset values for “wobble” effect
float iny = Po.y * Vertical + tinmeNow,

float wiggleX = sin(iny) * Horizontal;

float wiggleY = cos(iny) * Horizontal;

/1 Apply wobble offsets to current vertex’s x and y coordinates

Po.y = Po.y + wiggleY / 5.0;
Po. x Po. x + wi ggl eX;

/'l Transformthis new vertex position into clip space and store in
/1 GLSL vertex output variable
gl _Position = gl _Model Vi ewPr oj ecti onMatri x*Po;

52

Appendix Il: Shading L anguage Execution Time Test Case 2:
Pixel-Bound Sour ce Code

The following source code listing provides the information necessary to create and run
the pixel-bound shader used in Test Case 2. For brevity, only the initiation and per-frame
update code used in the C++ test application framework on which the graphical shaders
usage depends is provided. This source can be easily integrated into any windowing
system that provides the ability to set up a DirectX or OpenGL window context and
handle user events. Further error checking of many of the function results should also be
used. The number of frame per second (FPS) can be measured by implementing a simple
timer that records the number of times that a complete frame can be drawn in one second.

Source code for the test vertex shader and pixel shader are supplied in their entirety for
all three graphica shading languages.

User Application d obal Variables:

/***/

/* Used by HLSL*/

/I DirectX 9 device

LPDI RECT3D9 g_pD3D

LPDI RECT3DDEVI CE9 g_pd3dDevi ce

NULL;
NULL;

/1 Pointer to vertex shader

LPDI RECT3DVERTEXSHADER9 g_pVertexShader = NULL;

LPDI RECT3DVERTEXDECLARATI ON9 g_pVert exDecl arati on = NULL;

/I Shader constant table — stores the locations of all user configurable
/lvariables that exist inside the vertex shader

LPD3DXCONSTANTTABLE g_pVert exConst ant Tabl eVS = NULL;

[/ Pointer to pixel shader

LPDI RECT3DPI XEL SHADER9 g_pPi xel Shader = NULL;

/| Shader constant table — stores the locations of all user configurable
/lvariables that exist inside the pixel shader

LPD3DXCONSTANTTABLE g_pPi xel Const ant Tabl ePS = NULL;

/***/

/* Used by Cg*/

CCcont ext g_CCcont ext ; /1 Cg context

CCprofile g_CGvertexprofile; /1 Cg vertex shader profile
CGprofile g_CGpi xel profile; /1 Cg pixel shader profile
CGprogram g_CGvertexprogram /1 Cg vertex shader program
CCGprogram g_CGpi xel program /1 Cg pixel shader program

CGpar anet er g_CGpar am Li ght Col or ; /1 Cg Paraneters used to send
CGpar anet er g_CGparam Li ght Positi on; /lvalues to the conpil ed
CGpar anet er g_CGparam Model Vi ewMat ri x; /I shader each frane

53

/***/

/* Used by GLSL*/

GLhandl eARB g_pr ogr anbj ; //Handl e to GLSL program obj ect

GLhandl eARB g_vert exShader; //Handl e to conpiled GSL vertex
/' I shader

GLhandl eARB g_pi xel Shader ; //Handl e to conpil ed GLSL pi xel
/I shader

GLuint g_l ocati on_Li ght Col or; /1 Binding to uniformvariable in

//the conpil ed pixel shader.

54

User Application Shader Initialization (Performed once upon application
creation):

// Load/ Conpil e the vertex & pixel shaders for each shading | anguage
swi t ch(Language)

{
case HLSL:

/1 Since our vertex shader uses explicit binding semantics we
/I have to create a vertex declaration using those semantics.

D3DVERTEXELEMENT9 decl ar ati on[] ={{0, 0, D3DDECLTYPE_FLOAT3,
D3DDECLMETHOD DEFAULT, D3DDECLUSAGE_POSI TI ON,
0}, {0, 12, D3DDECLTYPE_D3DCOLOR,
D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR,
0}, {0, 16, D3DDECLTYPE_FLOAT2,
D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD,
0}, D3DDECL_END() } ;

/1 Set this declaration
g_pd3dDevi ce- >Cr eat eVert exDecl arati on(decl arati on,
&g _pVertexDecl aration);

HRESULT hr;

LPD3DXBUFFER pCode; /1 The buffer the shader’s code is
/1l oaded i nto.

DWORD dwshader Fl ags = 0O;

LPD3DXBUFFER pBufferErrors = NULL;

/1 Assenbl e the vertex shader fromthe file.

/'l “main” — specifies the shaders entry point

/1 “vs_1 1" — specifies the vertex shader level to try
/1 and conmpile for

/1 Any uni formvalues in the shader source will have
//location entries made in the g_pVertexConst ant Tabl eVS
/'] obj ect

hr = D3DXConpi | eShader FronFi |l e(" normal _map_vert. hlsl ",
NULL, NULL, "main","vs_1_1",
dwShader Fl ags, &pCode,
&pBuf ferErrors,
&g _pVert exConst ant Tabl eVS) ;

/1 Create the vertex shader

g_pd3dDevi ce- >Cr eat eVer t exShader (
(DWORD*) pCode- >Get Buf f er Poi nter (),
&g_pVertexShader);

pCode- >Rel ease();

/| Assenbl e the pixel shader fromthe file.

/'l “main” — specifies the shaders entry point

/Il “ps_2 0" — specifies the pixel shader level to try
/1 and compile for

// Any uni formvalues in the shader source will have
//location entries made in the g_pPi xel Const ant Tabl eVS
/'] obj ect

hr = D3DXConpi | eShader FronFi | e(" nor mal _map_pi xel . hl sl ",

55

NULL, NULL, " mai n", "ps_2_0",
dwShader Fl ags, &pCode,
&pBuf ferErrors,

&g_pPi xel Const ant Tabl eVS) ;

/'l Create the pixel shader

g_pd3dDevi ce- >Cr eat ePi xel Shader (
(DWORD*) pCode- >Cet Buf f er Poi nter (),
&g _pPi xel Shader) ;

pCode- >Rel ease();

br eak;

case CG

{

}

/1 Choose a vertex & pixel profile (in this case OpenCGL
Il assenbly profile)

g_QGvertexprofile = CG_PROFI LE_ARBVP1;

g_CGpi xel profil e = CG_PROFI LE_ARBFP1;

// Create a Cg Context
g_CGcont ext = cgCreat eContext();

// Create the vertex shader program using the created

//context. We read in the string source from

//“normal _map_vert.cg”. The translator will try and

//conpile this to work with the specified profile.

g_CGvertexprogram = cgCreat ePr ogranfronFi | e(g_CCcont ext,
CG_SOURCE, "normal _map_vert.cg",
g_CGvertexprofile, NULL, NULL);

/'l Create the pixel shader program using the created

/lcontext. We read in the string source from

/1 *“normal _map_pi xel.cg”. The translator will try and

//conpile this to work with the specified profile.

g_CGpi xel program = cgCr eat ePr ogr anfronti | e(g_CGcont ext,
CG_SOURCE, "nornal _map_pi xel . cg",
g_CGpi xel profile, NULL, NULL);

//Load the progranms using Cg's interface
cgG.LoadPr ogran(g_CGvert exprogran;
cgGLLoadPr ogr an(g_CGpi xel program) ;

/'l Get handles to the uniformvariables we will set |ater

g_CGCpar am Li ght Col or = cgGet NanmedPar anet er (g_CGpr ogr am
"fLightDiffuseCol or");

g_CGpar am Li ght Posi ti on = cgCGet NanedPar anmeter (g_CGpr ogr am
"vLi ght Posi tion");

g_CGpar am Model Vi ewMatri x = cgGet NamedPar anet er (
g_CGprogram "nodel Vi ewProj Matri x");

br eak;

case GA.SL:

{

/I Create the vertex shader object

56

g_vertexShader =gl Cr eat eShader Obj ect ARB(GL_VERTEX_SHADER_ARB) ;

/'l Create the pixel shader object
g_pi xel Shader =gl Cr eat eShader Obj ect ARB(GL_FRAGVENT_SHADER ARB) ;

/' User defined function that reads in shader source strings

//from“normal _map_vert.glsl” text file

unsi gned char *vertexShader Source = readShader Sour ce(
“normal _map_vert.glsl");

/' User defined function that reads in shader source strings
/1 from“normal _map_pixel.glsl” text file
unsi gned char *pi xel Shader Source = readShader Sour ce(

“normal _map_pi xel . glsl");

/1 Covert to string array paraneter for next function cal
vert exShader Strings[0] = (char*)vertexShader Assenbl y;
pi xel Shader Stri ngs[0] = (char*) pi xel Shader Assenbl y;

//Send the read in vertex shader source to vertex program

/| obj ect .

gl Shader Sour ceARB(g_vertexShader, 1, vert exShader Stri ngs,
NULL) ;

/1 Send the read in pixel shader source to fragnent program

/| obj ect .

gl Shader Sour ceARB(g_pi xel Shader, 1, pi xel Shader Stri ngs,
NULL) ;

/1 Now that the program has source code, conpile the shaders
gl Compi | eShader ARB(g_vert exShader) ;
gl Conpi | eShader ARB(g_pi xel Shader) ;

/[l Create a GLSL program object and attach the conpil ed shaders
g_prograntbj = gl Creat eProgranthj ect ARB() ;

gl AttachObj ect ARB(g_programObj, g_vertexShader);

gl Att achObj ect ARB(g_progranmObj, g_pixel Shader);

//Link the GLSL program object containing the conpiled G.SL
/lvertex & pixel shader.
gl Li nkProgr amARB(g_pr ogr anthj);

//Get handles to all the uniformvariables we will set |ater

g_l ocation_Li ght Col or = gl GetUni formiLocati onARB(g_progr anObj ,
" fLightDiffuseColor");
br eak;

57

Per Frame (Perfornmed once per frane):

// Each redraw of the wi ndow we activate the shaders and pass in any
//dynam c vari abl e val ues they may use.
swi t ch(Language)
{
case HLSL:

{

Update any Direct X states

/1 CGet the current Mbdel View Projection Matrix
D3DXMATRI X wor | dVi ewProj ection = g_matWorld * g_mat View *
g_mat Proj ;

//Pass it into the constants table
g_pVert exConst ant Tabl eVS- >Set Mat ri x(g_pd3dDevi ce,
"worl dVi ewProj ", &worl dVi ewProjection);

/1 Set the light position in the vertex shader
float* |ightPos={vLi ght Pos. x, vLightPos.y, vLightPos. z};
g_pVert exConst ant Tabl eVS- >Set Fl oat (g_pd3dDevi ce,

"vLi ght Posi tion", |ightPos, 3);

/1 Set the diffuse Iight color in the pixel shader

float* |ightColor={1.0,1.0,1.0};

g_pPi xel Const ant Tabl eVS- >Set Fl oat (g_pd3dDevi ce,
"fLightDiffuseCol or",
I'i ght Col or, 3);

/1 Set vertex declaration and vertex shader

/lactive

g_pd3dDevi ce- >Set Ver t exDecl arati on(g_pVertexDecl arati on);

g_pd3dDevi ce- >Set Ver t exShader (g_pVert exShader) ;

!/ Make pixel shader active
g_pd3dDevi ce- >Set Pi xel Shader (g_pPi xel Shader) ;

Set Textures & Draw Sphere

58

}

/| Deactivate current vertex & pixel shader
g_pd3dDevi ce- >Set Ver t exShader (NULL) ;
g_pd3dDevi ce- >Set Pi xel Shader (NULL) ;

br eak;

case CG

{

Updat e any Di .rectX/OpenGL states

/l Enabl e vertex Profile used by the normal mapping vertex
/l'and pi xel shaders

CgGL. cgGL.Enabl eProfil e(g_CGrertexprofile);

CgGL. cgGLEnabl eProfil e(g_CQpi xel profile);

/1 Activate the normal mapping vertex & pixel shaders
CgGL. cgGL.Bi ndProgram(g_CGvert exprogran;

CgGL. cgGL.Bi ndProgr am(g_CGpi xel progran ;

/1 Set the "nodel ViewProj Matri x" paranmeter in the vertex

/I shader to the current concatenated

/'l nmodel vi ew and projection matrix

CgGL. cgGL.Set St at eMat ri xPar anet er (g_CGpar am _Model Vi ewMat ri x,
CgGL. CG_GL_MODELVI EW PROJECTI ON_MATRI X,
CgG.. CG_G._MATRI X_| DENTI TY) ;

/1 Set the |light properties
CgQL. cg@.Set Par anet er 3f (g_CGpar am_Li ght Posi ti on,
vLi ght Pos. x, vLi ghtPos.y, vLightPos. z);
CgGL. cgGLSet Par anet er 3f (g_CGpar am Li ght Col or, 1.0f, 1.0f,
1.0f);

Set Text ures. & Draw Sphere

/1 Di sabl e the vertex shader profiles

CgGL. cgGLDi sabl eProfil e(g_CGvertexprofile);
CgGL. cgGLDi sabl eProfil e(g_C&pi xel profile);
br eak;

}
case GA.SL:

{

59

Updat e any OpenGL states

/1 Enabl e the GLSL shader program containing the conpiled
/I normal nmapping vertex & pixel shader
gl UsePr ogr antbj ect ARB(g_pr ogranmbj) ;

gl Uni f or mM3f ARB(g_I ocati on_Li ght Col or, 1. Of , 1. Of , 1. Of) ;

Set Light, Textures & Draw Sphere

/'l Disable the GLSL shader objects
gl UsePr ogr anbj ect ARB(NULL) ;
br eak;

60

HLSL Shader Sour ce:

/**

Pi xel - Bound Test: HLSL Vertex Shader
Source file: “normal _map_vert. hlsl”

**/

fl oat 4x4 nodel Vi ewProj Matri x;
fl oat3 vLi ght Posi ti on;

/* Inconmi ng vertex data*/
struct VS_I NPUT {

float4 position : POSITION, /'l The position of the current
//vertex.

float2 texCoords : TEXCOORDO; /1 Di ffuse texture coordi nates

float3 vNor nal ;. TEXCOORDL1; /] Vertex normal

float3 vTangent : TEXCOORDZ; /'l Vertex tangent

float3 vBi normal : TEXCOORDS3; //Vertex binormnal

}s

/* Data passed out from pixel shader */
struct VS_OUT {
float4 positionOUT : POSI Tl ON; // The transformed vertexfl oat2
t exCoor dsOUT : TEXCOORDO; //Send tex. coords to pixel the
/I shader
float3 vLightVector: TEXCOORDL; //Send the transforned |ight
/lvector to the pixel shader

b
VS_OUT mai n(appdata I N)
{
VS_QUT QUT;
/'l Calculate the light vector
QUT. vLi ght Vector = IN vLi ghtPosition — IN position.xyz;
/1 Transformthe |ight vector from object space into tangent
/'l space
float3x3 TBNMWatrix = float3x3(I N.vTangent, |N vBinornmal,
I N. vNor mal) ;
QUT. vLi ght Vector.xyz = mul (TBNMat ri x, OUT. vLi ght Vect or) ;
/1 Transformthe current vertex from object space to clip space,
OUT. posi ti onOUT = nul (nodel Vi ewProj Matri x, position);
/1 Send the texture map coords to the fragnment shader
OUT. t exCoor dsOUT = | N. t exCoor ds;
return OUT,
}

61

/**

Pi xel - Bound Test: HLSL Pi xel Shader
Source file: “normal _map_pixel . hlsl”

**/

float3 fLightDiffuseCol or;
sanmpl er baseText ure;
sanpl er nor mal Text ure;

/* Incom ng pixel data*/
struct PS_IN {
float4 colorIN: COLORO;
float2 texCoords : TEXCOORDO; /1 The texture map's texcoords
float3 vLi ghtVector : TEXCOORDL;, //The transfornmed |ight vector
/1 (in tangent space)

}s

/* Data passed out from pi xel shader */
struct PS_OUT {
float4 colorOQUT : COLORO; //The final color of the current pixel

b

PS_OUT numi n(appdata PS_I N)

{
PS_QUT OUT;
/I'We must nornelize the light vector as it's linearly
/l'interpolated across the surface and its | ength nay change
I N. vLi ght Vector = normalize(IN. vLi ght Vector);
/1Since the normals in the normal map are in the (color) range
/1[0, 1] we need to unconpress themto real normal vector
/ldirections in the range [-1, 1].
float3 vNormal = 2.0f * (tex2D(nornmel Texture, |N. texCoords).rgb

- 0.5f);
/'l Cal cul ate the diffuse conponent and store it as the final
/lcolor in col orQUT
/1 The diffuse conponent is defined as: | = D * Dm* clanp(Le*N,
/10, 1). saturate() works like clanp().
OUT. col orOQUT. rgb = fLightDiffuseCol or * tex2D(baseText ure,
I N.texCoords).rgb * saturate(dot(lN. vLi ghtVector, vNormal));

return OUT,

}

62

Cg Shader Source:

/**

Pi xel - Bound Test: Cg Vertex Shader
Source file: “normal _map_vert.cg”

**/

/* Inconmi ng vertex data*/
struct appdata {

float4 position : POSITION, /]l The position of the current
[/ vertex.

float2 texCoords : TEXCOORDO; [/ Di ffuse texture coordi nates

fl oat3 vNor mal . TEXCOORD1; /1 Vertex normal

float3 vTangent : TEXCOORDZ; /'l Vertex tangent

float3 vBi normal : TEXCOORD3; /[Vertex binornal

}s

/* Data passed out from pixel shader */
struct vertexCQutput {
float4 positionQUT : POSITION; /1 The transfornmed vertexfloat?2
t exCoor dsOQUT . TEXCOORDO; //Send tex. coords to pixel the
/I shader
float3 vLi ghtVector: TEXCOORDL; //Send the transformed |ight
//vector to the pixel shader

}s

vertexQut put main(appdata IN,
const uniform fl oat 4x4 nodel Vi ewProj Matri X,
const uniformfloat3 vLi ght Position)

{
vertexQut put OUT;
/'l Calculate the light vector
QUT. vLi ght Vector = IN. vLi ght Position — IN position.xyz;
/I Transformthe |ight vector from object space into tangent
/|l space
float3x3 TBNMatrix = float 3x3(I N.vTangent, |N vBi nornmal,
I N. vNor mal) ;
OUT. vLi ght Vector. xyz = nul (TBNMatri x, OUT. vLi ght Vector);
/'l Transformthe current vertex from object space to clip space,
QUT. posi tionOUT = nul (nodel Vi ewProj Matri x, position);
/1l Send the texture map coords to the fragment shader
OUT. t exCoordsQUT = | N. t exCoor ds;
return OUT;
}

63

/**

Pi xel - Bound Test: Cg Pi xel Shader
Source file: “normal _map_pi xel .cg”

**/

/* Incom ng pixel data*/
struct appdata {
float4 colorIN: COLORO;
float2 texCoords : TEXCOORDO; // The texture map's texcoords
float3 vLightVector : TEXCOORD1; //The transfornmed |ight vector
/1 (in tangent space)

}s

/* Data passed out from pi xel shader */
struct pixel Qut put {

float4 colorQUT : COLORO; //The final color of the current pixel
b

pi xel Qut put mai n(appdata IN, uniform sanpl er2D baseTexture : TEXUN TO,
uni form sanpl er 2D normal Texture : TEXUN T1
uniformfloat3 fLightDiffuseCol or)

pi xel Qut put OUT,;

//We nmust normalize the light vector as it's linearly
/linterpol ated across the surface and its | ength may change
I N. vLi ght Vector = normalize(IN. vLi ght Vector);

/1Since the normals in the normal map are in the (color) range

/110, 1] we need to unconmpress themto real normal vector

/ldirections in the range [-1,1].

float3 vNormal = 2.0f * (tex2D(normal Texture, IN.texCoords).rgb
— 0.5f);

/Il Calculate the diffuse component and store it as the final
//color in colorQUT

/1 The diffuse conponent is defined as: | =D * Dm* clanp(LeN
/10, 1). saturate() works like clam().

QUT. col orQUT. rgb = fLightDiffuseColor * tex2D(baseTexture

I N. texCoords).rgb * saturate(dot(IN. vLi ghtVector, vNormal));

return OUT;

64

GLSL Shader Source:

/**

Pi xel - Bound Test: G.SL Vertex Shader
Source file: “normal _map_vert.glsl”

**/

/lVarying datatype allows sharing of this val ue between vertex and
/I pi xel shader in same pipeline
varyi ng vec3 vLi ght Vector; /| Tangent -space |ight position

void main()

[/ Calculate the Iight vector
vLi ght Vector = gl _Li ght Source[0]. position.xyz - gl_Vertex.xyz

//Transformthe |ight vector from object space into tangent
!/ space. Qur tangent, binormal, and normal vectors are passed in
/lthrough the APIs multitexture texture coordinate calls
mat 3 TBNWMat ri x=f | oat 3x3(gl _Mul ti TexCoord2. xyz,
gl _Mil ti TexCoord3. xyz,
gl _Milti TexCoordl. xyz);

vLi ght Vect or. xyz = vLi ght Vect or * TBNMat ri x;

Pass t hrough our diffuse texture coordinates to the pixel shader
gl _TexCoord[0] = gl _Multi TexCoordoO;

/'l Transformthe current vertex from object space to clip space
gl _Position = gl _Model Vi ewProj ectionMatrix * gl _Vertex;

/**

Pi xel - Bound Test: GLSL Pi xel Shader
Source file: “normal _map_pixel.glsl”

**/

//'Uniforns set by user application

uni form vec3 fLightDiffuseCol or; /1Diffuse color of |ight
uni f or m sanpl er 2D baseText ure; //Diffuse map texture unit handl e
uni f orm sanpl er 2D nor mal Text ur e; /I Normal map texture unit handle

/1 Set by vertex shader
varyi ng vec3 vLi ght Vector; /| Tangent - space |ight position

void main()

/1 W& nust renenber to normalize the |ight
vLi ght Vector = normalize(vLi ght Vector);

/1Since the normals in the normal map are in the col or range

/1[0, 1] we need to unconpress themto real normal vector
/ldirections in the range [-1,1].

65

vec3 vNormal = 2.0f * (texture2D(normal Texture,
gl _TexCoord[O].xy).rgb - 0.5f);

// Calculate the diffuse conponent and store it as the final
/'l fragment col or.

/1l The diffuse conponent is defined as: | = D * Dm* clanp(LeN,

/110, 1)

vec3 result = fLightDiffuseCol or *
t exture2D(baseTexture, gl_TexCoord[O0].xy).rgb *
cl anmp(dot (vLi ght Vector, Normal),0.0,1.0);

gl _FragCol or = vec4(result,1.0); //Mist include al pha val ue

66

