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Executive Summary 
 
As the technologies present in modern real-time 3D graphics hardware continue to 
expand, programmers and artists are increasingly in need of tools and APIs with which to 
utilize the power and flexibility that programmable graphic processing units (GPUs) now 
provide. Such capabilities permit increasingly realistic and accurate visuals to be 
rendered on consumer level hardware far beyond what traditional fixed-function 
rendering pipelines can provide. With the advent of high- level shading languages, 
programmers can directly manipulate the functionality of the 3D rendering pipeline by 
creating custom “shaders” that supplement the fixed function vertex and fragme nt 
processing stages. These shading languages are Microsoft’s DirectX High Level Shading 
Language (HLSL), NVIDIA’s C for Graphics (Cg) and OpenGL’s Shading Language 
(GLSL). Programmers deciding whether or not to utilize a high- level shading language 
need to be aware of the changes necessary to the rendering process overall as well as the 
inherent differences, besides just those of syntax and semantics, between each language. 
 

This technical report explores graphical shading languages and provides a 
comparison of the three high- level graphical shading languages by contrasting language 
features including available language func tions, program flexibility, pipeline control and 
state access, data type support, ease of maintenance features, compile and execution 
times, vendor support, implementation maturity and driver stability. The results of these 
comparisons show that all three languages provide comparable language features and that 
performance and usability largely depends on drivers and compiler implementations as 
well as the choice of graphical API.  
 

Results of a light-weight C++-based test framework used to implement 
configurations of all three languages examines execution time differences in one unique 
vertex processing bound shader test case and one unique fragment processing bound 
shader test case. The results from these simple tests indicate that the actual execution 
time of shaders is dependent on the maturity of the graphical hardware’s drivers and the 
language’s compilers. The vertex-bound shader test results display a minimal difference 
in execution time, with all three languages providing similar performance. Under the 
pixel-bound shader test, results show that alternative lighting algorithms that produce a 
greater visual quality can be used at real-time frame rates, with HLSL executing the test 
pixel shader up to 10% faster then Cg and GLSL.  
 
 Recommendations are also provided to help developers wishing to create 
programmable shaders.  HLSL is the recommended shading language choice if DirectX is 
the API of choice, with Cg recommended over GLSL for use with OpenGL until 2006 
when GLSL implementations are expected to become widely available. These 
recommendations are a starting point to aid in deciding what shading language would 
prove the most beneficial to developer requirements.
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1. Introduction 

Over the last decade, the field of computer graphics and imaging has experienced a 

significant evolution in regards to both available hardware and software. Increasingly 

affordable consumer- level commodity graphics accelerators coupled with ever-evolving 

API and operating system support, has permitted advanced real-time, graphically intense 

3d applications to become accessible to an increasing number of developers and end -

users. Following a similar evolutionary track as contemporary general purpose CPUs, 

today’s graphical processing units (GPUs) offer raw performance features that permit the 

majority of 3d imaging and composition operations to be fully offloaded from the CPU. 

With this continuing evolution in rendering technology, there is a strong desire to give 

developers greater control over GPU processing capabilities. As GPUs are primarily 

responsible for transforming and rasterizing 3D primitives, a great deal of research has 

been invested by vendors to create languages and APIs that allow for the programmable 

control over what has traditionally been a fixed function 3D pipeline. This originally 

crude flexibility has given way to elegant high- level graphical shading languages that 

allow for the construction of programs that utilize graphics hardware to execute a wide 

variety of rendering algorithms.   

 Currently there exist three primary high-level graphical shading languages that are 

vendor supported: Microsoft’s DirectX High Level Shading Language (HLSL) [10], 

NVIDIA’s C for Graphics (Cg) [11] and the OpenGL Shading Language (GLSL) [13]. 

These languages are meant to expose a high level of programmability on current and 

future consumer level graphics hardware. As a developer or researcher wishing to utilize 

one of these languages in an application or graphics algorithm test environment, what are 
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some of the considerations that should be made? What unique features does each of these 

shading languages offer to developers? Are stable and mature compilers and drivers 

available?  

 This paper presents an in-depth comparison between these three current high- level 

graphical shading languages by examining unique features, implementation philosophies 

and language flexibility. An emphasis is placed on aspects of these languages that are 

crucial for a greater overall understanding of the technology that is producing a 

significant shift in how real-time rendering algorithms are being implemented. This paper 

begins by briefly describing the evolution that the 3d rendering pipeline has gone 

through, leading to the creation of current shading languages. Each high level shading 

language is then discussed with details about their design philosophies. Section 3 details 

common data types and functions available for all three languages, followed by features 

of each language that aid or hinder maintainability of shaders within large projects. 

Crucial to integrating shading technology into standard graphic APIs is the concept of 

having access to fixed function states that is explored in Section 6. Section 7 describes 

the driver and implementation maturity of all three languages on 3 common operating 

systems, Microsoft Windows, Linux, and Apple OS X. To investigate any potential 

performance penalties of using graphical shaders, results from vertex and pixel shader 

test cases are given with execution speed statistics. Finally, recommendations are made 

about the usability and important aspects of each language that developers should be 

mindful of. 
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2. Evolution of the Programmable Graphics Pipeline  

With the introduction of affordable 3d graphics hardware nearly a decade ago, developers 

were free to create applications that could display interactive real time three-dimensional 

images by utilizing many of the accelerated 3d pipeline features present in these new 

graphic processors [1]. When creating 3d spaces, all source geometry and shading 

information must be submitted to the GPU and utilized to construct the final output image 

[7]. This is accomplished by transmitting the  input geometry through an application API 

such as OpenGL or DirectX over the system bus to the actual graphics hardware. Once in 

the accelerator hardware’s memory, all information is processed through a standard 

collection of pipeline stages [1]. Per-vertex operations are performed first as each 

incoming vertex is transformed from the local space in which it was defined into world 

space by modeling and viewing transformations specified by the user. If per-vertex 

lighting is requested lighting calculations may also be performed. After a number of 

vertices is received that equals the number of vertices of the primitive (e.g. 3 for a 

triangle) currently being constructed, the primitive is assembled and projection and 

clipping is performed on the primitive [14]. The primitive then reaches the rasterization 

stage of the pipeline where each pixel that represents the primitive’s surface is processed. 

The goal of this stage is to calculate a final output color for the pixel by taking into 

account user defined lightening, fog, and surface material properties [1]. The pixel is 

tested against per-fragment testing parameters such as depth and stencil properties to 

decide if the fragment should proceed any farther or be discarded. Finally, the rasterized 

primitive must have any frame buffer operations, such as blending applied, before being 

written to the system’s frame-buffer [14]. This entire process is shown in Figure 1. 
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Figure 1: Fixed Function 3D Graphical Pipeline 
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be sent to the pipeline and pipeline states set, but no direct altering of the vertex and 

fragment-processing stages can be specified [4]. A common example is the lighting 

model used by most 3d pipelines. Both DirectX and OpenGL use a Phong based lighting 

formula as it can be easily computed on a per-vertex basis. Even though many other 

lighting models exist such as Global Illumination and BRFD [3], developers where 

restricted to the one available model. Similar examples of restrictions existed throughout 

the pipeline process. 
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 As GPU architectures were refined and increased in speed, vendors slowly began 

to expose some programmability into their hardware by allowing for very simple 

operations to be performed on the rasterization stage of the pipeline through the use of 

register combiners. Implemented as additions to the graphic APIs, register combiners 

allowed for primitive mathematical operations to be performed on the texture register 

contents at this stage [1]. While somewhat crude, this permitted an initial glimpse of what 

increased control of the pipeline could provide as multiple texels applied to a surface 

could be added, subtracted, multiplied, and even have their dot product computed. The 

most significant change then came with the introduction of assembly- like shading 

languages. With enough power and flexibility in hardware to perform calculations outside 

of those of the fixed function pipeline, these languages allowed for the first true 

implementation of a programmable pipeline [9].  

A programmable pipeline allows for complete control over specific stages of the 

pipeline through the creation of shaders; small snippets of code that when compiled, 

dynamically replace a particular stage’s standard vendor supplied execution 

implementation. The two most computationally intensive stages of the pipeline, per-

vertex processing and fragment processing, are the stages that provide support for 

programmable shading technology [3]. Similar in appearance to traditional CPU 

assembly languages, these early shading languages allow a developer to write a separate 

string based vertex and pixel program that can be run through the graphics API and 

replace the fixed function calculations of both pipeline stages. Figure 2 shows a typical 

design of a programmable pipeline. The stages marked Custom Vertex Processor and 
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Custom Fragment Processor represent the stages where programmable shaders replace 

the functionality of the fixed- function pipeline. 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Programmable 3D Graphical Pipeline 
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hardware specific machine instructions and run similar to the earlier assembly shading 

languages [4]. The increased ease of writing custom shading code that these languages 

provide introduces an even greater opportunity for graphics developers to implement 

custom, unique rendering algorithms and techniques.  
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3. Modern High Level Graphical Shading Languages 

Presently, there are two primary graphical APIs used in real-time 3d graphics; Microsoft's 

proprietary DirectX and OpenGL maintained by the Architecture Review Board (ARB). 

Each API currently provides a high level shading language, HLSL and GLSL 

respectively, with the graphic hardware vendor NVIDIA providing a third, Cg, which can 

use either API. All three high level shading languages are designed around a familiar 

framework and syntax that closely resembles a subset of the C programming language 

[8]. User-defined functions, mathematical calculations, loops and conditional statements1 

are available. The two categories of shaders, vertex and pixel (fragment2), are written as 

separate string based source files that can be loaded through the corresponding API. Each 

distinctive shader is written as a collection of one or more functions, where one must be a 

function with a main() declaration to indicate a point of entry where execution of the 

corresponding pipeline stage is to begin [13]. All three shading languages also currently 

abstract or limit access to the actual hardware of each programmable stage such as direct 

video or texture memory manipulation [4]. There are a number of unique features of each 

language that prove important, most notably what each language defines as compliant 

hardware.  

Additionally, for each of the discussed high level shading languages we provide a 

simple vertex and pixel shader example for comparison that execute the identical 

operations in each language. The vertex shader transforms the incoming vertex (from a 

sphere mesh) into clip space and feeds it back out to the next pipeline stage. Likewise, the 

                                                 
1 Dynamic flow control is supported only on the most recent hardware [11]. 

2 DirectX uses the term “pixel” shader whereas OpenGL utilizes “fragment” shader. 
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pixel shader calculates the color of the current pixel of the current primitive by fetching a 

texel from an active texture unit containing a rock- like diffuse texture and adding the 

current primitive color, green, to the result. The resulting identical image produced by all 

three shading languages is shown in Figure 3. 

 

Figure 3: Result image for shading languages example 

 

 It is important to note that current high level shading languages provide the ability 

to replace computations at the vertex and pixel processing stages of the pipeline but must 
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still accept and output the same data as under a fixed function pipeline. Therefore, while 

shaders can be used to calculate other lighting models and effects by utilizing the speed 

of modern GPUs, they have no knowledge of the entire scene composition or other 

surrounding geometric objects. The use of shaders also helps reduce the amount of 

graphical API specific calls that are needed in the user application since rendering 

algorithms that required the modification of numerous pipeline states and multiple 

rendering passes can be removed. 

 

3.1.  HLSL 

A younger API then OpenGL, Microsoft’s DirectX framework, whose Direct3D 

component is used for 3d graphics, has provided developers with access to shading 

capabilities for approximately 4 years [10]. HLSL is a recent attempt to create a high 

level shading language with support for legacy as well as future hardware. Referred to as 

“Vertex Shaders” and “Pixel Shaders”, DirectX denotes a graphic hardware’s level of 

shader support by the respective shader version supported [10]. Each version of the 

vertex and pixel shader specification denotes a minimum set of hardware requirements 

that must be met for a graphics adaptor to be compliant. This can include mandatory 

support for a specific number of underlying temporary registers, constant registers, 

number of instructions per active shader, number of dependent texture reads, and ability 

to pass shared values between shaders. Current specifications include vertex shader 

versions 1.1, 2.0, 2.x, 3.0 and pixel shader versions 1.1, 1.2, 1.3, 1.4, 2.0, 2.x, 3.0, 

commonly referred to as Shader 1.x, Shader 2.0, Shader 2.x and Shader 3.0 [8]. DirectX’s 

high level shading language, HLSL, provides compilation target support for all shader 
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versions, but version 2.x of both shader types is recommended as lower levels often 

provide inadequate support for implementing complex algorithms [10].  

 When an application is required to utilize a shader, the complete source for the 

shader is loaded and transmitted to the HLSL translator that is provided by the DirectX 

runtime. This translator produces an intermediary binary stream representation of the 

shader that is then passed to the hardware’s driver where the stream is assembled into 

vendor specific instructions and cached on the actual hardware [2]. When the shader is to 

be run, an API command informs the driver that the compiled code is to be used in place 

of the fixed function operations and until deactivation the shader becomes an active part 

of the pipeline. This process is illustrated in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: HLSL Compilation and Execution Process 
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 As HLSL is tightly integrated into the DirectX runtime, shaders written in this 

language can only be used under the Windows operating system [10]. Figures 5 & 6 

below provide an example of our simple HLSL vertex and pixel shader example 

described earlier. The resulting image can be seen in Figure 3. 

 

 
/* 
Sample HLSL Vertex Shader 
Transforms an incoming vertex into clip-space and output to next 
pipeline stage. Also passes along vertex color and texture coordinates. 
*/ 
 
float4x4 worldViewProj;   //Uniform variable – set by application  
 
/*Structure containing per-vertex input values*/ 
struct VS_INPUT 
{ 

float3 position  : POSITION;        //Object space vertex coords 
float4 color0    : COLOR0;          //Current vertex color 
float2 texcoord0 : TEXCOORD0;       //Current vertex texture   
                                    //coords 

}; 
 
/*Structure containing per-vertex output values*/ 
struct VS_OUTPUT 
{ 

float4 position  : POSITION;        //Homogenous clip space  
                                    //vertex coords 
float4 color0    : COLOR0;          //Current vertex color 
float2 texcoord0 : TEXCOORD0;       //Current vertex texture  
                                    //coords 

}; 
 
/*Vertex shader entry point*/ 
VS_OUTPUT main( VS_INPUT IN ) 
{ 

VS_OUTPUT OUT; 
    
      //Store incoming vertex’s coordinates 

float4 v = float4( IN.position.x, IN.position.y,   
                   IN.position.z,1.0f ); 
 
//Transform current vertex into clip space using model-view-
//projection matrix 
OUT.position  = mul( v, worldViewProj ); 
OUT.color0    = IN.color0; 
OUT.texcoord0 = IN.texcoord0; 
 
//Output current vertex values 
return OUT; 

} 
Figure 5. HLSL Simple Vertex Shader Sample 
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/* 
Sample HLSL Pixel Shader 
Calculates the final color of the current pixel by looking up a diffuse 
color value from a bound texture and adding the interpolated current 
color. 
*/ 
 
//Sampler that indicates the loaded texture to be sampled from 
sampler testTexture; 
 
/*Structure containing per-pixel input values*/ 
struct VS_OUTPUT 
{ 
 float4 position  : POSITION;     //Screen space x,y coordinates 
 float4 color0    : COLOR0;       //Interpolated color  
 float2 texcoord0 : TEXCOORD0;    //Interpolated texture coords. 
}; 
 
/*Structure containing per-pixel output values*/ 
struct PS_OUTPUT 
{ 
 float4 color : COLOR;   //Final pixel color 
}; 
 
/*Pixel shader entry point*/ 
PS_OUTPUT main( VS_OUTPUT IN ) 
{ 
 PS_OUTPUT OUT; 
 
      //Using the interpolated texture coordinates for this pixel 
      //look up a diffuse RGB color value from the bound texture 
      //and add the current pixel color. The result is the final color   
      //value for the current pixel. 
 OUT.color = tex2D( testTexture, IN.texcoord0 ) + IN.color0;  
 
      //Return current pixel values 
 return OUT; 
} 

Figure 6. HLSL Simple Pixel Shader Sample 

 

3.2. Cg 

Developed in cooperation with Microsoft during the design of HLSL, NVIDIA’s Cg high 

level shading language is nearly identical in syntax and semantics to HLSL [13]. 

Originally designed as a cross API shading language and an early OpenGL high level 

shading language candidate, Cg combines an interesting number of features from both of 
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the other two shading languages. Through the use of an external runtime translator, Cg’s 

string based vertex and fragment shaders are translated to either DirectX or OpenGL 

assembly language programs that are then run through the respective API’s shader 

assemblers [11]. Figure 7 details this approach. 

 

Figure 7: NVIDIA Cg Compilation and Execution Process 

 

This cross API support is accomplished through the use of translation “profiles”, 

similar to HLSL’s shader levels, that allow for the shaders to target a wide variety of 

hardware, including the standard DirectX shader levels, OpenGL’s shading extensions, 

and specific NVIDIA hardware features. When a shader is sent to the translator the user 

specifies a profile flag and the translator will attempt to generate code that runs on 

User Application 

Cg Translator 

Cg Assembler 

Graphics Hardware 

Cg Shader Source 

Intermediate Code 

Vendor Machine Code 

NVIDIA Supplied 
Runtime Library  

DirectX or OpenGL API 

DirectX or OpenGL Driver 



 
 

 15 

hardware with the corresponding level of physical support [11]. For example, the VS_2_0 

and PS_2_0 profiles will try and compile vertex and fragment programs to fit in the 

hardware restrictions of the Shader 2.0 specification whereas the VP40 and FP40 profiles 

will translate Cg shaders to utilize many of the new features available on only most 

recent NVIDIA hardware. This can be quite confusing as depending on the API and 

targeted hardware a developer can chose between 7 separate vertex and pixel shading 

profiles. Attempting to run translated Cg code on hardware that does not support the 

profile specified when compiling the shader source code will result in an error or possible 

rendering anomalies [11]. 

The runtime translator supplied by NVIDIA supports any hardware whose drivers 

includes DirectX or OpenGL shading capabilities but generally compiles Cg shaders 

most efficiently for NVIDIA hardware [9]. Even though the Cg compiler source is 

available from NVIDIA to other vendors, none have attempted to implement custom 

compilers that optimize for their own hardware [8]. It is not surprising then that while Cg 

shaders will run on other hardware, they often run slower.  

As stated, a Cg shader’s syntax is nearly identical to one written in HLSL as 

shown in Figures 8 & 9 below. The resulting image from this example can be seen in 

Figure 3. 
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/* 
Sample Cg Vertex Shader 
Transforms an incoming vertex into clip-space and output to next 
pipeline stage. Also passes along vertex color and texture coordinates. 
*/ 
 
/*Structure containing per-vertex input values*/ 
struct appin 
{ 

float3 position  : POSITION;      //Object space vertex coords 
float4 color0    : COLOR0;        //Current vertex color 
float2 texcoord0 : TEXCOORD0;     //Current vertex texture   
                                  //coords 
 

 
}; 
 
/*Structure containing per-vertex output values*/ 
struct outfragment 
{ 

float4 position  : POSITION;    //Homogenous clip space  
                                //vertex coords 

 float4 color0    : COLOR0;      //Current vertex color 
float2 texcoord0 : TEXCOORD0;   //Current vertex texture  
                                //coords 

 
}; 
 
/*Vertex shader entry point*/ 
outfragment main( appin IN, uniform float4x4 worldViewProj ) 
{ 
 outfragment OUT; 
 
      //Store incoming vertex’s coordinates 
 float4 v = float4( IN.position.x, IN.position.y, IN.position.z,  
                         1.0f ); 

//Transform current vertex into clip space using model-view-
//projection matrix 

 OUT.position  = mul( worldViewProj, v ); 
 OUT.color0    = IN.color0; 
 OUT.texcoord0 = IN.texcoord0; 
 

//Output current vertex values 
 return OUT; 
} 

Figure 8. Cg Simple Vertex Shader Sample 
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/* 
Sample Cg Pixel Shader 
Calculates the final color of the current pixel by looking up a diffuse 
color value from a bound texture and adding the interpolated current 
color. 
*/ 
 
/*Structure containing per-pixel input values*/ 
struct fragmentin 
{ 
 float4 position  : POSITION;     //Screen space x,y coordinates 
 float4 color0    : COLOR0;       //Interpolated color 
 float2 texcoord0 : TEXCOORD0;    //Interpolated texture coords. 
}; 
 
/*Structure containing per-pixel output values*/ 
struct pixelout 
{ 
 float4 color : COLOR;            //Final pixel color 
}; 
 
/*Pixel shader entry point, 
“uniform sampler2D testTexture” defines the texture to use in the 
shader. This is set by the calling application.  
*/ 
pixelout main( fragmentin IN, uniform sampler2D testTexture ) 
{ 
 pixelout OUT; 
 
      //Using the interpolated texture coordinates for this pixel 
      //look up a diffuse RGB color value from the bound texture 
      //and add the current pixel color. The result is the final color   
      //value for the current pixel. 
 OUT.color = tex2D( testTexture, IN.texcoord0 ) + IN.color0; 
 
      //Return current pixel values 
 return OUT; 
} 

Figure 9. Cg Simple Pixel Shader Sample 

 

3.3. GLSL 

OpenGL is an open standard whose API is controlled by a central body. A majority of the 

members must agree upon any core additions to the language specification [13]. Due  to 

competing interests of the voting members, OpenGL’s has lacked a high level shading 

until recently with the inclusion of GLSL into the official OpenGL 2.0 specification. 
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Even a standard assembly level shading language extension has only recently been 

added3. Unlike DirectX’s and Cg’s support for legacy hardware, GLSL is designed 

around high GPU hardware requirements. Targeted towards future hardware and for the 

sake of compiler efficiency, support for older hardware is extremely limited or non-

existent [3]. Any fully compliant GLSL implementation must have hardware that equates 

roughly to the Shader 3.0 specification. Since few high-end cards currently support all the 

language's specified features, many vendors currently support a slightly reduced 

implementation of the language that corresponds to the Shader 2.x level of hardware 

requirements [6].  

 Contrary to the design of HLSL and Cg, GLSL moves all shader compilation and 

linking functions directly into the hardware’s driver. Text based shader source is sent 

directly to the OpenGL driver where vertex or pixel shader objects are constructed and 

linked to form a GLSL program that will run in the programmable pipeline [13]. The 

developer has complete control over when these steps can occur through commands in 

the OpenGL API. With no intermediary translation layer and to keep with OpenGL 

design philosophies, vendors are provided with only a specification and are free to 

implement and optimize the GLSL compiler as best suits their respective hardware. As 

new hardware features become available vendors can easily modify the driver’s GLSL 

compiler to make use of them without the need to redistribute separate updated run time 

libraries [3]. Figure 10 details the process involved in compiling GLSL shaders. 

 

 

                                                 
3 ARB_vertex_program and ARB_fragment_program extensions [1] 
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Figure 10: GLSL Compilation and Execution Process 
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data structures [6]. Once again, the resulting image can be seen in Figure 3. 
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/* 
Sample GLSL Vertex Shader 
Transforms an incoming vertex into clip-space and output to next 
pipeline stage. Also passes along vertex color and texture coordinates. 
*/ 
 
/*Vertex shader entry point*/ 
void main( void ) 
{ 

//Transform current vertex into clip space using model-view-
//projection matrix and output to next pipeline stage. 
// àgl_ModelViewProjectionMatrix (GLSL pre-defined, contains  
//   current ModelView-Projection Matrix from OpenGL pipeline) 
// àgl_Vertex (GLSL pre-defined, contains incoming vertex’s  
//   x,y,z,w cords.) 
// àgl_Position (GLSL pre-defined, mandatory output variable for 
//   transform vertex) 
// àgl_TexCoord[0] (GLSL pre-defined, output variable for current 
//   vertex’s texture coordinates) 
// àgl_FrontColor (GLSL pre-defined, output variable for current 
//   vertex’s color) 
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
gl_TexCoord[0] = gl_MultiTexCoord0; 
gl_FrontColor = gl_Color; 

} 
Figure 11. GLSL Simple Vertex Shader Sample 

 

/* 
Sample GLSL Pixel Shader 
Calculates the final color of the current pixel by looking up a diffuse 
color value from a bound texture and adding the interpolated current 
color. 
*/ 
 
//Sampler that indicates the loaded texture to be sampled from 
uniform sampler2D testTexture; 
 
/*Pixel shader entry point*/ 
void main( void ) 
{ 
    //Using the interpolated texture coordinates for this pixel 
    //look up a diffuse RGB color value from the bound texture 
    //and add the current pixel color. The result is the final color    
    //value for the current pixel and is assigned to the mandatory GLSL  
    //pre-defined pixel color output variable, gl_FragColor.  
    gl_FragColor = texture2D(testTexture, gl_TexCoord[0].xy)  
    gl_FragColor += gl_Color;  
 
} 

Figure 12. GLSL Simple Pixel Shader Sample 
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4. Data Types and Language Functions 
 
For any graphical shading language to be useful it must provide support for many of the 

basic data structures used for representing geometry, transformations and shading values. 

Geometrical structures can include vectors, points, matrices representing transformations 

and shading values described using arrays or scalar values [14]. These basic structures are 

needed within both the vertex and pixel shaders to describe incoming and outgoing data 

as well to represent intermediary calculations. For example, an incoming vertex needs to 

be represented by a 4 component vector and will be multiplied by a 4x4 model view 

projection matrix. However, as GPUs deal with a finite set of possible calculations, the 

same diversity seen in traditional programming languages such as C is unneeded in 

shading languages [12]. Basic data types supported by all three shading languages can be 

categorized into five groups: scalars, vectors, matrices, texture samplers, and user defined 

[5]. Even with a restricted set of available data types, those writing shaders should be 

aware that variable type declaration syntax differences exist between the languages.  

 Developed in conjunction with one another, HLSL and Cg share the greatest 

similarity in their supported basic data types. Supported data types for scalars and 2-4 

component vectors and NxM matrices include boolean, int, half, float, double [10]. The 

actual syntax declaration is identical for both languages. When a shader wishes to sample 

a texel from a texture map a “texture sampler” must be declared. Texture samplers take 

one, two, or three component vectors representing texture coordinates and return the 

sampled three-component color value from that position in the texture map. Samplers are 

available for 1D, 2D, 3D and cube map textures. HLSL defines a single sampler data type 

where the type is defined as a parameter when sampling whereas Cg provides a separate 
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sampler type for each texture format (i.e. sampler2D) [9]. Additionally, both languages 

support Typedef  and Struct types that allow for user defined grouping of the above basic 

types. Figure 13 below is an example of some simple variable declarations for both 

languages. 

 

float3 myColor = float3(0.1,0.4,0.5); //3 component float vector 

float4x4 modelView;    //4x4 float matrix 

sampler2D myTexture;    //Cg 2D texture sampler 

struct appin  {       //User defined struct 

  float4 Position    : POSITION;       //with binding semantics 

  float4 Normal      : NORMAL;  

};  

Figure 13. Example declaration of HLSL and Cg data types 

 

  
Both languages also support the use of binding semantics as can be observed in Figure 13 

by the inclusion of the “: POSITION” postfix of the variable declaration. Binding 

semantics allow for declared input and output variables to be specifically bound to 

hardware defined registers. Some, such as POSITION, must always be present as an input 

of a vertex shader since without it the current incoming vertex position from the API will 

not be available unless it is explicitly assigned to a variable. Vertex and pixel shaders for 

both HLSL and Cg share a large number of possible binding semantics, with both types 

of shaders requiring certain semantics that must be bound for correct functionality [10]. 

 In comparison to HLSL and Cg, the designers of GLSL chose to include a more 

restrictive set of syntax rules for declaring data types. The available scalar data types are 

bool, int and float; similar to the other shading languages. In GLSL, a vec data type, 

instead of a normal C-style array, represents vectors of any of these types. Two, three and 
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four component vec types are available for booleans, integers and floats, declared as 

bvec(2,3,4), ivec(2,3,4) or fvec(2,3,4) [13].  A mat data type is also available for use, 

however only matrices of NxN floating point values are allowed unlike the NxM 

dimension matrices of HLSL and Cg [3]. It is these differences in data types that 

represent one of the greatest differences in syntax that GLSL contains. Texture samplers 

are declared as in Cg with additional support for shadow map texture samplers [6]. The 

use of structs is also available. Figure 14 shows an example containing a number of 

variable declarations under GLSL.  

 

vec3 myPosition = vec3(2.0,3.4,-5.1);  //3 component vec    

mat4 modelViewMtx;     //4x4 float matrix 

sampler2D mysampler;     //A 2d texture  

//sampler 

sampler1DShadow shadowMap;           //A 1D shadow  

//texture sampler 

Figure 14. Example declaration of GLSL data types 

 

Essential to all shading languages is the ability to support a wide selection of common 

mathematical and geometric calculations. Coordinate system transforms, lighting 

calculations, and coloring mixing are common techniques used by the fixed function 

pipeline and a programmable pipeline requires even greater support for functions that 

may be needed by a wide variety of possible rendering algorithms [14]. All three shading 

languages other excellent support for many useful built- in functions such as vector dot-

product, vector cross-product, matrix multiplication, vector normalization, range 

clamping, trigonometric cosine, trigonometric sine, vector reflection, linear interpolation 

of values, maximum and minimum calculation, logarithms and many more [11]. Many of 
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the functions act as they do in C and the majority have direct vertex and fragment 

machine instruction implementations, providing fast execution times. While all three 

languages specifications include a diverse selection of available functions, developers 

should ensure that a particular function has actually been implemented before using it. 

Some functions such as GLSL’s noise() function for generating random noise values is 

not actually implemented in any current vendor compilers [3].  
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5. Available Maintenance Features 

When making use of shaders the situation can quickly arise where a developer begins 

writing separate vertex and pixel shaders to calculate shading properties for every type of 

surface within a given 3d space. For a complex scene containing dozens of unique 

surfaces, each described by a different shader, shader developers can find themselves 

trying to manage a large number of separate source files. Therefore, there exist some 

features inherent to each of the shading languages’ designs that attempt to help manage 

the maintenance of shaders. One concept is the ability to not restrict all source code for a 

single shader to exist in one exclusive file or to force shader developers to manually parse 

and combine separate code fragment files. HLSL uses the concept of shader fragments 

that allow multiple shaders to be combined together before they are compiled. A central 

shader source fragment that defines the vertex or pixel shader’s main() entry point can 

call separate functions that are defined in other shader fragments [10]. Using the DirectX 

API, a complete shader can be constructed and passed to the driver.  

Similarly, GLSL provides an elegant solution to combining shader source modules by 

allowing multiple shaders objects to be attached to a shader program before being linked 

[3]. This greatly increases the ability to easily maintain functions shared by multiple 

independent shaders.   

Cg currently provides no mechanism to combine user-defined functions in a single 

shader. A single shader program accepts only the complete and final source string for a 

shader. Should a similar maintenance feature be required when using Cg, a user could 

implement their own set of functions to take in multiple shader source strings and 



 
 

 26 

combine them into a complete program before passing it to the Cg runtime to be 

compiled [12]. 

Within a commercial environment it may also be desirable to protect rendering 

algorithms used in applications or prevent users from manually editing shaders to change 

their specific functionality. Currently only HLSL supports at least a partial solution by 

allowing HLSL shaders to be pre-translated into the custom DirectX assembly shader 

stream format [13]. For Cg and GLSL, solutions such as embedding shader source strings 

directly into the compiled application executable or packing shaders into a custom 

archive format are the only alternatives. 
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6. Pipeline State Access 

Another aspect of any real time shading language that is crucial to being able to easily 

integrate a shader framework into a graphical application is the ability to access certain 

elements of the fixed function pipeline from within the shaders that replace the normal 

vertex and fragment processing stages. A program that utilizes the DirectX or OpenGL 

APIs will usually set and modify a large number of pipeline states in between rendering 

passes such as transformation matrices, lighting values, and surface material and fog 

settings. Allowing an application to specify these values and giving the shaders access to 

them through some standard mechanism provides a convenient method to easily integrate 

shaders into the pipeline. 

 As OpenGL’s architecture uses a state machine methodology, state values 

specified through the API become part of the current context until they are once again 

modified by the user [1]. This design is carried over into GLSL through the inclusion of a 

wide variety of predefined uniform variables that permit access to state information. For 

vertex shaders this includes the current incoming vertex (gl_Position), normal 

(gl_Normal), modelview matrix (gl_ModelViewMatrix), projection matrix 

(gl_ProjectionMatrix), fog settings (gl_FogParameters struct), and any enabled light 

properties (gl_LightSourceParameters struct) [6]. The advantage to this approach is that 

it greatly reduces the number of varying (per primitive), uniform (per pass), and attribute 

(per vertex) values that must be passed explicitly to either shader and reduces the 

possibility of introducing errors into the application. This is contradictory to the approach 

used by HLSL and Cg shaders that target DirectX. Shaders designed to run under the 

DirectX programmable pipeline must pass all values that are needed by a shader before it 
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is set as active [10]. This may require an application to continually query current values 

from the fixed function pipeline and resubmit the obtained values as shader parameters. 

Semantic bindings help to alleviate this restriction somewhat but only for per vertex or 

per pixel information such as position or color, not for those such as the current model 

view matrix. 

 When using Cg targeted towards the OpenGL programmable pipeline, the 

DirectX style restrictions are dropped and complete state access is granted similar to 

GLSL [11]. A single predefined structure glstate, contains complete accessibility to all 

states useful in the vertex and fragment processing stages of the pipeline. However this 

feature also illustrates how Cg shaders can easily lose their cross API appeal. For Cg 

shaders to remain compatible with both the DirectX and OpenGL rendering pipeline, 

state variables have to be explicitly sent by the user [3]. 
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7. Implementation and Driver Maturity 

Any developer wishing to incorporate high level shader features into a project must be 

aware of the current stability issues that may be present in any of the three shading 

languages’ compilers and drivers.  

 Having gone through a number of iterations and design changes, HLSL can be 

considered the most stable of all the current shading languages. The introduction of 

DirectX 9.0c completed a long series of driver and API refinements, producing a robust 

framework for utilizing vertex and pixel shaders including a shader effects framework 

that allows for multiple shaders to be collected into rendering passes, easing the amount 

of code necessary to implement complex rendering [4]. Graphics hardware vendors 

wishing to advertise there products as DirectX 9 compliant must include drivers that fully 

support the HLSL specification either directly in hardware or through a software fallback 

code path [10]. With its tight integration into the general DirectX libraries, the HLSL 

runtime and drivers are available exclusively on the Microsoft Window’s operating 

system. 

 Targeted as a cross platform shading language, Cg’s runtime libraries are 

surprisingly stable and error free. The Cg runtime exists for Microsoft Windows, Apple 

OSX and Linux operating systems. Since Cg’s runtime translator converts shader source 

code to either DirectX shader assembly streams or OpenGL assembly extension 

instructions, a system that properly supports either of these standards should theoretically 

support Cg [11]. Being controlled by a single vendor, the Cg translator is updated 

frequently and at version 1.3 supports many of the most recent NVIDIA hardware 

features. As described previously, while the translator is able to target a wide variety of 
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hardware, optimization is rarely performed for non-NVIDIA hardware, instead producing 

the most straightforward interruption [7]. A developer wishing to implement an 

application that utilizes Cg should be aware of this fact if they wish to support a wide 

user base. One operating system where Cg is the only option is Apple’s OS X. OS X’s 

visual sub system relies heavily upon OpenGL. As Apple restricts vendors from releasing 

drivers outside of their development network, GLSL support has still not been exposed. 

Until Apple activates support for GLSL, Cg is currently the only available high level 

shading language available for their platform. 

 As the youngest of all three shading languages, many drivers for GLSL are still 

considered experimental by their vendors [13]. With modifications and refinements still 

being made to the specification, coupled with its high hardware requirements for full 

compliance, many features of the language are still unavailable in certain 

implementations [1]. Graphic hardware vendors ATI, NVIDIA and 3DLabs currently 

provide a satisfactory level of support for GLSL, with 3DLabs offering the most mature 

compiler [13]. As each vendor must provide a shader source code-to-machine instruction 

GLSL compiler entirely within their respective drivers, numerous incompatibilities are 

still present. Some have even forgone writing a full compiler instead utilizing alternative 

implementations. NVIDIA, whose current line of graphics hardware is the only one to 

incorporate hardware that allows a complete GLSL implementation, chooses to provide 

an internal GLSL to Cg translator [3]. The advantage of this approach is that by moving 

the Cg translator directly into the drivers a stable and reliable compiler is available to 

produce hardware specific code. Unfortunately, this has produced the side effect of 
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making the interpretation GLSL source compilation errors difficult, as currently, vague 

Cg error strings may be returned. 

 



 
 

 32 

8. Execution Speed Comparisons 

 
To illustrate the difference in driver and compiler maturity, the results of two simple 

shaders emphasizing vertex bound and fragment bound shading operations are given. A 

simple custom C++ framework was used to test corresponding implementations of both 

shaders for each of the three shading languages. Under both tests a timer function 

recorded the average number of completed frames that could be rendered in one second 

(FPS). The tests were intended to stress their respective stages of the pipeline through a 

combination of large batches of incoming geometry from the API and a non-trivial 

number of shader instructions being performed. 

The vertex bound test comprised of a single vertex shader that was responsible for 

transforming the incoming vertex into clip space after applying a series of trigonometric 

cosine and sine values to the vertex. A highly tessellated sphere comprised of 

approximately 50,000 vertices was sent through each API to the shader. Figure 15 shows 

a screenshot of the resulting sphere with the vertex shader applied, producing an 

animated wobble effect. The vertex offsets that are applied to each vertex are computed 

entirely on the GPU. The sphere is rendered in wireframe mode so that the vertex dense 

surface of the sphere can be observed. The source code for this vertex shader is given in 

Appendix 1. 
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Figure 15: Tessellated sphere with Wobble vertex shader applied  

 

For the fragment bound test, a per-pixel lighting technique was applied called 

normal-mapping. A simple sphere comprised of 50 primitives was sent into each API 

along with a pre-computed matrix for each vertex that provided an object space-to- 

tangent space transformation [13]. In the vertex shader this matrix was used to transform 

the passed light position into tangent (or texture) space.  The pixel shader then calculated 

the lit value of each surface pixel by looking up the surface normal value from a normal 

texture and performing the dot product of the acquired normal vector with the 

transformed light vector. This intensity was then combined with a diffuse surface texture 

to produce a final color value. This test produced a surface image that appears to have 
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greater detail and depth over simple diffuse texture mapping. This technique is only 

possible using a programmable pipeline since the normal texture lookup and lighting 

calculation must be performed per-pixel using a pixel shader. Figure 16 shows the diffuse 

texture and Figure 17 shows the pre-computed normal texture from which normal values 

are retrieved. Figure 18 gives the final results of the pixel shader applied to the sphere. 

The source code for this pixel shader is available in Appendix 2. 

 

 

Figure 16: Diffuse texture used in test pixel shader 
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Figure 17: Normal texture used in test pixel shader 

 

Figure 18: Sphere with applied pixel shader 

 

 Both tests were performed on an AMD-64 3000+ desktop with 1Gig of RAM 

running Microsoft Windows XP with a 128MB NVIDIA 6800 video adaptor. All drivers 

and language compilers consisted of the most recent versions available (Video adapter 
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driver: Forceware 71.84, Cg runtime: 1.3, DirectX runtime: 9c). The described tests 

produced the following results: 

 

Table 1: Frames per second test results 
Test/Language HLSL Cg 1.3 (OpenGL) GLSL 
Vertex bound 123 120 115 
Fragment bound 102 91 94 

 
 
 

Both tests performed under all three shading languages produced similar results with only 

very slight differences most likely attributable to the video adaptor’s drivers. The 

similarities in the vertex bound test may also suggest that a bus limit from user 

application memory to the video adaptor was present. The differences present in the pixel 

bound test results are most likely due to the maturity of the adapter’s drivers and the 

language’s compilers. As these tests where performed under only one set of conditions, 

they are only intended to give an estimate of what performance results may be expected. 

What can be observed is that the programmable pipeline offers significant processing 

power for a variety of shading applications us ing any of the three shading languages.  

For the vertex bound test to be performed under the fixed function pipeline each of 

the 50,000 vertices of the tessellated sphere would have to have its wobble offset 

recalculated each frame on the CPU. Performing such a high number of floating point 

calculations each frame may reduce performance of other running processes that require 

high CPU usage. 

For the fragment bound test, the results in Table 1 show that a complex lighting 

algorithm other then the fixed function pipeline’s Phong model can be utilized and 

produce real-time frame rates (FPS > 30). Under a fixed function pipeline, the normal 
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mapping lighting technique’s results could not be reproduced in real time, as it requires 

the ability to perform specific per-pixel calculations in the 3d pipeline. The algorithm can 

currently only be performed on the CPU through the use of non-real time, ray-tracing 

software.  
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9. Future Roadmaps  

With the pace at which programmable pipeline technology is being adopted for a wide 

variety of applications, the general consensus is that eventually a significant amount of 

time spent on developing graphical applications will be spend implementing shaders [3]. 

Also, future advances in graphical hardware will continue to force these shading 

languages to be modified to expose even greater programmability within the graphics 

pipeline.  

 The most likely change to happen in the near future is the merging of available 

functions and constructs between vertex and pixel shaders. Some of the current hardware 

restrictions that prevent both types of shaders from sharing certain functions, such as 

vertex shaders accessing texture memory or pixel shaders rendering to vertex arrays, are 

already disappearing [6]. Once the majority of standard hardware supports such features, 

the distinction between vertex and pixel shaders will exist only at the application 

development level. GLSL is currently the only language with a specification that has 

anticipated such changes. 

 Additionally, future roadmaps may permit other stages of the remaining fixed 

function pipeline to be transformed into a programmable framework, most notable the 

frame-buffer operation stage [8]. Currently, for practical reasons, shaders cannot read 

from the frame-buffer and all frame-buffer operations can only be specified through 

corresponding API calls [1]. A third type of shader, a frame-buffer shader, could allow 

for user defined image space operations to be performed. 
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10. Conclusion and Recommendations 

With powerful real- time commodity 3d hardware becoming increasingly standard, high-

level graphical shading languages now present flexible means to incorporate real-time 

rendering algorithms into graphical applications by utilizing the programmability of 

GPUs. HLSL, Cg, and GLSL all offer various advantages and disadvantages that should 

be considered before custom shading technology is used. While many of the core syntax, 

available data types and built- in functions are largely similar and offer similar levels of 

performance, issues such as driver implementation and operating system support will 

usually be the determining factor in what shading language is most useful.   

 As all three languages offer comparable features regarding syntax and library 

functions, the decision of what language to use currently rests on two aspects: platform 

and hardware. Due to the strong ties between all three shading languages and the 

underlying graphics hardware, any project targeted towards a wide variety of users 

should incorporate a suitable fallback code path as the diversity in present consumer 

hardware severely limits the use of advanced shaders, especially those written in GLSL. 

Additionally, shaders that simply recreate the standard fixed function pipeline should be 

avoided as they are already heavily optimized within the vendor’s drivers.  

 If an application is written using DirectX under the Windows operating system 

then HLSL is the optimal choice due to is stable translator and drivers. HLSL’s ability to 

generate vertex and pixel shaders for many levels of graphics hardware and features that 

protect shader source makes it appealing for those who produce commercial interactive 

products. Conversely, those utilizing OpenGL currently have a choice of whether to use 

Cg and support a wider variety of hardware or use GLSL that while requiring demanding 



 
 

 40 

hardware, is designed to be a core component of the OpenGL 2.0 specification [6]. As a 

recommendation, any OpenGL application that is to be released to a wide audience 

within the next year and wishes to target a variety of operating systems should utilize Cg. 

Starting in 2006, GLSL would be ideal as by that time wide support for GLSL should be 

available. 

 Despite what language is ultimately chosen, the language specification documents 

available for each language should  be thoroughly reviewed before shader development is 

begun. As this report has detailed, there are many small aspects of each of the three 

shading languages that should be carefully considered. 

As programmable pipeline and shading technologies continue to be refined and 

standardized with support provided from additional vendors, shading languages will 

prove essential for opening up new techniques within the field of computer graphics and 

imaging. 
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Appendix I: Shading Language  Execution Time Test Case 1: 
Vertex-Bound Source Code 
 
 
The following source code listing provides the information necessary to create and run 
the vertex-bound shader used in Test Case 1.  For brevity only the initiation and per-
frame update code used in the C++ test application framework on which the graphical 
shaders’ usage depends is provided. This source can be easily integrated into any 
windowing system that provides the ability to set up a DirectX or OpenGL window 
context and handle user events. Further error checking of many of the function results 
should also be used. The number of frame per second (FPS) can be measured by 
implementing a simple timer that records the number of times that a complete frame can 
be drawn in one second.   
 
Source code for the test vertex shader is supplied in its entirety for all three graphical 
shading languages. 
 
User Application Global Variables: 
 
/*********************************************************************/ 
 
/* Used by HLSL*/ 
//DirectX 9 device 
LPDIRECT3D9             g_pD3D          = NULL; 
LPDIRECT3DDEVICE9       g_pd3dDevice    = NULL; 
 
//Pointer to vertex shader 
LPDIRECT3DVERTEXSHADER9      g_pVertexShader = NULL;  
LPDIRECT3DVERTEXDECLARATION9 g_pVertexDeclaration = NULL; 
 
//Shader constant table – stores the locations of all user configurable 
//variables that exist inside the shader  
LPD3DXCONSTANTTABLE          g_pConstantTableVS = NULL; 
 
/*********************************************************************/ 
 
/* Used by Cg*/ 
CGprofile   g_CGprofile;             //Cg Shader profile   
CGcontext   g_CGcontext;             //Cg context 
CGprogram   g_CGprogram;             //Cg shader program 
 
CGparameter g_CGparam_ModelViewMatrix;     
CGparameter g_CGparam_Timer;         //Cg Parameters used to send  
CGparameter g_CGparam_Vertical;      //values to the compiled 
CGparameter g_CGparam_Horizontal;    //shader each frame  
CGparameter g_CGparam_TimeScale;     // 
 
/*********************************************************************/ 
 
/* Used by GLSL*/ 
GLhandleARB g_programObj;            //Handle to GLSL program object 
GLhandleARB g_vertexShader;          //Handle to compiled GLSL vertex  
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                                     //shader 
GLuint g_location_Timer;             //Binding to uniform variable in  
GLuint g_location_Vertical;          //the compiled vertex shader.  
GLuint g_location_Horizontal;        //Allows updated values to be sent 
GLuint g_location_TimeScale;         //to the active shader each frame 
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User Application Shader Initialization (Performed once upon application 
creation): 
 
//Load/Compile the vertex shader for each shading language 
switch(Language) 
{ 

case HLSL: 
{ 
    //Since our vertex shader uses explicit binding semantics we   
    //have to create a vertex declaration using those semantics. 
 
    D3DVERTEXELEMENT9 declaration[]={{0,0,D3DDECLTYPE_FLOAT3,      
                    D3DDECLMETHOD_DEFAULT,D3DDECLUSAGE_POSITION,   
                    0},{0,12,D3DDECLTYPE_D3DCOLOR,  
                    D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR,     
                    0},{0,16,D3DDECLTYPE_FLOAT2,    
                    D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD,  
                  0},D3DDECL_END()}; 
 
     //Set this declaration 
     g_pd3dDevice->CreateVertexDeclaration(declaration,  
                                        &g_pVertexDeclaration); 
 
 HRESULT hr; 
      LPD3DXBUFFER pCode;       //The buffer the shader’s code is  
                                //loaded into.                 
      DWORD dwShaderFlags = 0; 
 LPD3DXBUFFER pBufferErrors = NULL; 

 
//Assemble the vertex shader from the file.  
// “main” – specifies the shaders entry point 
// “vs_1_1” – specifies the vertex shader level to try  
//              and compile for 
//Any uniform values in the shader source will have 
//location entries made in the g_pConstantTableVS object 
hr = D3DXCompileShaderFromFile("wobble_vert.hlsl", NULL,  
      NULL,"main","vs_1_1", dwShaderFlags, &pCode,                        
      &pBufferErrors, &g_pConstantTableVS ); 

 
// Create the vertex shader 
g_pd3dDevice->CreateVertexShader( 

(DWORD*)pCode->GetBufferPointer(),                       
&g_pVertexShader); 

pCode->Release(); 
break; 

} 
case CG: 
{ 
      //Choose a vertex profile (in this case OpenGL assembly  
      //profile) 

g_CGprofile = CG_PROFILE_ARBVP1; 
 
 //Create a Cg Context 
 g_CGcontext = cgCreateContext(); 
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 //Create the vertex shader program using the created  
//context. We read in the string source from 
//“wobble_vert.cg”. The translator will try and compile 
this //to work with the specified profile. 

 g_CGprogram = cgCreateProgramFromFile( g_CGcontext, 
         CG_SOURCE, " wobble_vert.cg",  

g_CGprofile, NULL, NULL); 
 

 //Load the program using Cg's interface 
 cgGLLoadProgram(g_CGprogram); 
 
      // Get handles to the uniform variables we will set later 
      g_CGparam_ModelViewMatrix = cgGetNamedParameter(  
                          g_CGprogram, "modelViewProjMatrix"); 

 
 g_CGparam_Timer = cgGetNamedParameter(g_CGprogram,  
                        "Timer"); 
 g_CGparam_Vertical = cgGetNamedParameter(g_CGprogram,  
                        "Vertical"); 
 
 g_CGparam_Horizontal = cgGetNamedParameter(g_CGprogram,  
                        "Horizontal"); 
 
 g_CGparam_TimeScale = cgGetNamedParameter(g_CGprogram,  
                        "TimeScale"); 
 

break; 
} 
case GLSL: 
{ 

         //Create the vertex shader object 
   g_vertexShader =glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB); 
 
   //User defined function that reads in shader source strings   
   //from “wobble_vert.glsl” text file 
   unsigned char *vertexShaderSource = readShaderSource(   
                                       "wobble_vert.glsl"); 
 
   //Covert to string array parameter for next function call 
   vertexShaderStrings[0] = (char*)vertexShaderAssembly; 
 
   //Send the read in vertex shader source to vertex program  
   //object. 
   glShaderSourceARB(g_vertexShader,1,vertexShaderStrings,  
                      NULL); 
 
   //Now that the program has source code, compile the shader 
   glCompileShaderARB(g_vertexShader); 

          
         //Create a  GLSL program object and attach the compiled shader 
         g_programObj = glCreateProgramObjectARB(); 
         glAttachObjectARB(g_programObj, g_vertexShader ); 
     
         //Link the GLSL program object containing the compiled GLSL  
         //vertex shader. 
         glLinkProgramARB(g_programObj); 
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         //Get handles to all the uniform variables we will set later  
         g_location_Timer = glGetUniformLocationARB(g_programObj,  
                                                    "Timer"); 
         g_location_Vertical = glGetUniformLocationARB(g_programObj,  
                                                    "Vertical"); 
         g_location_Horizontal = glGetUniformLocationARB(g_programObj,  
                                                    "Horizontal"); 
         g_location_TimeScale = glGetUniformLocationARB(g_programObj,  
                                                     "TimeScale"); 
         break; 

} 
} 
 
 
Per Frame (Performed once per frame): 
 
//Each redraw of the window we activate the shaders and pass in any  
//dynamic variable values they may use. 
switch(Language) 
{ 

case HLSL: 
{ 

. 

. 

. 

. 

. 
Update any DirectX states 

. 

. 

. 

. 

. 
 

      //Get the current Model View Projection Matrix 
D3DXMATRIX worldViewProjection = g_matWorld * g_matView * 
g_matProj; 

  
      //Pass it into the constants table  

g_pConstantTableVS->SetMatrix( g_pd3dDevice, 
"worldViewProj", &worldViewProjection ); 
 
//Set the Horizontal, Vertical, Timer, and TimerScale 
//values in the shaders constant table 
g_pConstantTableVS->SetFloat(g_pd3dDevice,   

"Horizontal",0.14f); 
g_pConstantTableVS->SetFloat(g_pd3dDevice,   

"Vertical",7.5f); 
g_pConstantTableVS->SetFloat(g_pd3dDevice,   

"TimeScale",5.4f); 
g_pConstantTableVS->SetInt(g_pd3dDevice,   

"Timer",deltaMilliseconds); 
 
 

      //Set vertex declaration and make wobble vertex shader   
      //active 
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      g_pd3dDevice->SetVertexDeclaration( g_pVertexDeclaration ); 
      g_pd3dDevice->SetVertexShader( g_pVertexShader ); 
 

. 

. 

. 

. 

. 
Draw Sphere 

. 

. 

. 

. 
            //Deactivate current vertex shader 

g_pd3dDevice->SetVertexShader(NULL); 
 

 
} 
case CG: 
{ 

. 

. 

. 

. 
Update any DirectX/OpenGL states 

. 

. 

. 

. 
      //Enable vertex Profile used by the wobble vertex shader 
      CgGL.cgGLEnableProfile(g_CGprofile); 
         
      //Activate the wobble vertex shader 
 CgGL.cgGLBindProgram(g_CGprogram); 

         
       // Set the "modelViewProjMatrix" parameter in the vertex    
            //shader to the current concatenated 
       // modelview and projection matrix 
       CgGL.cgGLSetStateMatrixParameter(g_CGparam_ModelViewMatrix,  
                               CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,  
                               CgGL.CG_GL_MATRIX_IDENTITY); 
         

//Set the Horizontal, Vertical, Timer, and TimerScale 
//values used by the vertex shader 

       CgGL.cgGLSetParameter1i(g_CGparam_Timer,deltaMilliseconds); 
      CgGL.cgGLSetParameter1f(g_CGparam_Horizontal,0.14f); 
      CgGL.cgGLSetParameter1f(g_CGparam_Vertical,7.5f); 
      CgGL.cgGLSetParameter1f(g_CGparam_TimeScale,5.4f);   

. 

. 

. 

. 
Draw Sphere 

. 

. 

. 

. 
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//Disable the vertex shader profiles 
 CgGL.cgGLDisableProfile(g_CGprofile); 
 

 
} 
case GLSL: 
{ 

. 

. 

. 

. 
Update any OpenGL states 

. 

. 

. 

. 

. 
//Enable the GLSL shader program containing the compiled 
//wobble vertex shader 
glUseProgramObjectARB(g_programObj);         

             
//Set the Horizontal, Vertical, Timer, and TimerScale 
//values used by the vertex shader 

       glUniform1iARB(g_location_Timer,deltaMilliseconds); 
      glUniform1fARB(g_location_Horizontal,0.14f); 
      glUniform1fARB(g_location_Vertical,7.5f); 
      glUniform1fARB(g_location_TimeScale,5.4f);   

. 

. 

. 

. 

. 
Draw Sphere 

. 

. 

. 

. 
// Disable the GLSL shader objects 

 glUseProgramObjectARB(NULL); 
} 

} 
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HLSL Shader Source: 
 
/********************************************************************** 
Vertex-Bound Test: HLSL Vertex Shader     
Source file: “wobble_vert.hlsl” 
**********************************************************************/ 
 
/* Uniforms – changed at most once per frame*/ 
float4x4 matViewProjection; 
float Timer; 
float Horizontal; 
float Vertical; 
float TimeScale; 
 
/* Vertex data from application*/ 
struct VS_INPUT  
{ 
   float4 Position : POSITION0; 
    
}; 
 
/* Data passed out from vertex shader */ 
struct VS_OUTPUT  
{ 
   float4 Position : POSITION0; 
    
}; 
 
VS_OUTPUT vs_main( VS_INPUT Input ) 
{ 
    VS_OUTPUT Output; 
 
    //Scale down time 
    float timeNow = (Timer)*TimeScale; 
 
    //Store current incoming vertex 
    float4 Po = float4(Input.Position.xyz,1); 
 
    //Calulate offset values for “wobble” effect 
    float iny = Po.y * Vertical + timeNow; 
    float wiggleX = sin(iny) * Horizontal*30; 
    float wiggleY = cos(iny) * Horizontal*30;  
 
    //Apply wobble offsets to current vertex’s x and y coordinates 
    Po.y = Po.y + wiggleY/5; 
    Po.x = Po.x + wiggleX; 
 
    //Transform this new vertex position into clip space and store 
    //in output structures position member 
    Output.Position = mul(matViewProjection,Po); 
   return( Output ); 
} 
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Cg Shader Source: 
 
/********************************************************************** 
Vertex-Bound Test: Cg Vertex Shader     
Source file: “wobble_vert.cg” 
**********************************************************************/ 
 
uniform float4x4 WorldViewProj; 
uniform float Timer; 
uniform float Horizontal; 
uniform float Vertical; 
uniform float TimeScale; 
 
/* Vertex data from application*/ 
struct appdata { 
    float3 Position : POSITION; 
}; 
 
/* Data passed out from vertex shader */ 
struct vertexOutput { 
    float4 HPosition : POSITION; 
}; 
 
/*Entry point of vertex shader*/ 
vertexOutput main(appdata IN) { 
     
    //Our output structure 
    vertexOutput OUT; 
 
    //Scale down time 
    float timeNow = Timer*TimeScale; 
 
    //Store current incoming vertex 
    float4 Po = float4(IN.Position.xyz,1); 
 
    //Calulate offset values for “wobble” effect 
    float iny = Po.y * Vertical + timeNow; 
    float wiggleX = sin(iny) * Horizontal; 
    float wiggleY = cos(iny) * Horizontal;  
 
    //Apply wobble offsets to current vertex’s x and y coordinates 
    Po.y = Po.y + wiggleY/5; 
    Po.x = Po.x + wiggleX; 
 
    //Transform this new vertex position into clip space and store 
    //in output structures position member 
    OUT.HPosition = mul(Po, WorldViewProj); 
    return OUT; 
} 
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GLSL Shader Source: 
 
/********************************************************************** 
Vertex-Bound Test: GLSL Vertex Shader     
Source file: “wobble_vert.glsl” 
**********************************************************************/ 
 
 
/* Uniforms – changed at most once per frame*/ 
uniform int TIME_FROM_INIT;          //Timer (allows animated effect)  
uniform float TimeScale;             //Speed up/slow down wobble effect 
uniform float Horizontal;            //Amplitude 
uniform float Vertical;              //Wave length 
 
/*Entry point of vertex shader*/ 
void main() 
{ 
    //Scale down time 
    float r = float(TIME_FROM_INIT) / 650.0; 
    float timeNow = r*TimeScale; 
 
    //Store current incoming vertex  
    vec4 Po = vec4(gl_Vertex.xyz,1); 
 
    //Calulate offset values for “wobble” effect 
    float iny = Po.y * Vertical + timeNow; 
    float wiggleX = sin(iny) * Horizontal; 
    float wiggleY = cos(iny) * Horizontal; 
 
    //Apply wobble offsets to current vertex’s x and y coordinates 
    Po.y = Po.y + wiggleY / 5.0; 
    Po.x = Po.x + wiggleX; 
       
    //Transform this new vertex position into clip space and store in    
    //GLSL vertex output variable 
    gl_Position = gl_ModelViewProjectionMatrix*Po; 
} 
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Appendix II: Shading Language Execution Time Test Case 2: 
Pixel-Bound Source Code 
 
The following source code listing provides the information necessary to create and run 
the pixel-bound shader used in Test Case 2.  For brevity, only the initiation and per- frame 
update code used in the C++ test application framework on which the graphical shaders’ 
usage depends is provided. This source can be easily integrated into any windowing 
system that provides the ability to set up a DirectX or OpenGL window context and 
handle user events. Further error checking of many of the function results should also be 
used. The number of frame per second (FPS) can be measured by implementing a simple 
timer that records the number of times that a complete frame can be drawn in one second. 
 
Source code for the test vertex shader and pixel shader are supplied in their entirety for 
all three graphical shading languages. 
 
 
User Application Global Variables: 
 
/*********************************************************************/ 
 
/* Used by HLSL*/ 
//DirectX 9 device 
LPDIRECT3D9             g_pD3D          = NULL; 
LPDIRECT3DDEVICE9       g_pd3dDevice    = NULL; 
 
//Pointer to vertex shader 
LPDIRECT3DVERTEXSHADER9      g_pVertexShader = NULL;  
LPDIRECT3DVERTEXDECLARATION9 g_pVertexDeclaration = NULL; 
//Shader constant table – stores the locations of all user configurable 
//variables that exist inside the vertex shader  
LPD3DXCONSTANTTABLE          g_pVertexConstantTableVS = NULL; 
 
//Pointer to pixel shader 
LPDIRECT3DPIXELSHADER9       g_pPixelShader      = NULL; 
//Shader constant table – stores the locations of all user configurable 
//variables that exist inside the pixel shader  
LPD3DXCONSTANTTABLE          g_pPixelConstantTablePS  = NULL; 
 
/*********************************************************************/ 
 
/* Used by Cg*/ 
CGcontext   g_CGcontext;             //Cg context 
CGprofile   g_CGvertexprofile;       //Cg vertex shader profile   
CGprofile   g_CGpixelprofile;        //Cg pixel shader profile   
CGprogram   g_CGvertexprogram;       //Cg vertex shader program 
CGprogram   g_CGpixelprogram;        //Cg pixel shader program 
 
 
CGparameter g_CGparam_LightColor;         //Cg Parameters used to send  
CGparameter g_CGparam_LightPosition;      //values to the compiled 
CGparameter g_CGparam_ModelViewMatrix;    //shader each frame  
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/*********************************************************************/ 
 
/* Used by GLSL*/ 
GLhandleARB g_programObj;            //Handle to GLSL program object 
GLhandleARB g_vertexShader;          //Handle to compiled GLSL vertex  
                                     //shader 
GLhandleARB g_pixelShader;           //Handle to compiled GLSL pixel  
                                     //shader 
 
GLuint g_location_LightColor;        //Binding to uniform variable in  
                                     //the compiled pixel shader. 
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User Application Shader Initialization (Performed once upon application 
creation): 
 
//Load/Compile the vertex & pixel shaders for each shading language  
switch(Language) 
{ 

case HLSL: 
{ 
    //Since our vertex shader uses explicit binding semantics we   
    //have to create a vertex declaration using those semantics. 
 
    D3DVERTEXELEMENT9 declaration[]={{0,0,D3DDECLTYPE_FLOAT3,      
                    D3DDECLMETHOD_DEFAULT,D3DDECLUSAGE_POSITION,   
                    0},{0,12,D3DDECLTYPE_D3DCOLOR,  
                    D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR,     
                    0},{0,16,D3DDECLTYPE_FLOAT2,    
                    D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD,  
                  0},D3DDECL_END()}; 
 
     //Set this declaration 
     g_pd3dDevice->CreateVertexDeclaration(declaration,  
                                        &g_pVertexDeclaration); 
 
 HRESULT hr; 
      LPD3DXBUFFER pCode;       //The buffer the shader’s code is  
                                //loaded into.                 
      DWORD dwShaderFlags = 0; 
 LPD3DXBUFFER pBufferErrors = NULL; 

 
//Assemble the vertex shader from the file.  
// “main” – specifies the shaders entry point 
// “vs_1_1” – specifies the vertex shader level to try  
//              and compile for 
//Any uniform values in the shader source will have 
//location entries made in the g_pVertexConstantTableVS 
//object 
hr = D3DXCompileShaderFromFile("normal_map_vert.hlsl",  
                     NULL,NULL,"main","vs_1_1",  
                     dwShaderFlags, &pCode,                          
                     &pBufferErrors,    
                     &g_pVertexConstantTableVS ); 

 
// Create the vertex shader 
g_pd3dDevice->CreateVertexShader( 

(DWORD*)pCode->GetBufferPointer(),                       
&g_pVertexShader); 

pCode->Release(); 
 
//Assemble the pixel shader from the file.  
// “main” – specifies the shaders entry point 
// “ps_2_0” – specifies the pixel shader level to try  
//              and compile for 
//Any uniform values in the shader source will have 
//location entries made in the g_pPixelConstantTableVS 
//object 
hr = D3DXCompileShaderFromFile("normal_map_pixel.hlsl",  
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                     NULL,NULL,"main","ps_2_0",  
                     dwShaderFlags, &pCode,                          
                     &pBufferErrors,  
                     &g_pPixelConstantTableVS ); 

 
// Create the pixel shader 
g_pd3dDevice->CreatePixelShader( 

(DWORD*)pCode->GetBufferPointer(),                       
&g_pPixelShader); 

pCode->Release(); 
 

break; 
} 
case CG: 
{ 
      //Choose a vertex & pixel profile (in this case OpenGL   
      //assembly profile) 

g_CGvertexprofile = CG_PROFILE_ARBVP1; 
g_CGpixelprofile = CG_PROFILE_ARBFP1; 

 
 //Create a Cg Context 
 g_CGcontext = cgCreateContext(); 

 
 //Create the vertex shader program using the created  

//context. We read in the string source from  
//“normal_map_vert.cg”. The translator will try and  
//compile this to work with the specified profile. 

 g_CGvertexprogram = cgCreateProgramFromFile(g_CGcontext, 
         CG_SOURCE, "normal_map_vert.cg",  

g_CGvertexprofile, NULL, NULL); 
 

 //Create the pixel shader program using the created  
//context. We read in the string source from  
//“normal_map_pixel.cg”. The translator will try and 
//compile this to work with the specified profile. 

 g_CGpixelprogram = cgCreateProgramFromFile(g_CGcontext, 
         CG_SOURCE, "normal_map_pixel.cg",  

g_CGpixelprofile, NULL, NULL); 
 

 //Load the programs using Cg's interface 
 cgGLLoadProgram(g_CGvertexprogram); 
      cgGLLoadProgram(g_CGpixelprogram); 
 
 // Get handles to the uniform variables we will set later 
 g_CGparam_LightColor = cgGetNamedParameter(g_CGprogram,  
                        "fLightDiffuseColor"); 
 g_CGparam_LightPosition = cgGetNamedParameter(g_CGprogram,  
                        "vLightPosition"); 
 
 g_CGparam_ModelViewMatrix = cgGetNamedParameter(  
                          g_CGprogram, "modelViewProjMatrix"); 
 

break; 
} 
case GLSL: 
{ 

         //Create the vertex shader object 
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   g_vertexShader=glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB); 
    
   //Create the pixel shader object 
   g_pixelShader=glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB); 
 
   //User defined function that reads in shader source strings   
   //from “normal_map_vert.glsl” text file 
   unsigned char *vertexShaderSource = readShaderSource(   
                                       "normal_map_vert.glsl"); 
 
   //User defined function that reads in shader source strings   
   //from “normal_map_pixel.glsl” text file 
   unsigned char *pixelShaderSource = readShaderSource(   
                                       "normal_map_pixel.glsl"); 
 
 
   //Covert to string array parameter for next function call 
   vertexShaderStrings[0] = (char*)vertexShaderAssembly; 
   pixelShaderStrings[0] = (char*)pixelShaderAssembly; 
 
   //Send the read in vertex shader source to vertex program  
   //object. 
   glShaderSourceARB(g_vertexShader,1,vertexShaderStrings,  
                      NULL); 
 
   //Send the read in pixel shader source to fragment program  
   //object. 
   glShaderSourceARB(g_pixelShader,1,pixelShaderStrings,  
                      NULL); 
 
   //Now that the program has source code, compile the shaders 
   glCompileShaderARB(g_vertexShader); 
   glCompileShaderARB(g_pixelShader); 

          
         //Create a GLSL program object and attach the compiled shaders 
         g_programObj = glCreateProgramObjectARB(); 
         glAttachObjectARB(g_programObj, g_vertexShader); 
         glAttachObjectARB(g_programObj, g_pixelShader); 
 
         //Link the GLSL program object containing the compiled GLSL  
         //vertex & pixel shader. 
         glLinkProgramARB(g_programObj); 
 
         //Get handles to all the uniform variables we will set later  
         g_location_LightColor = glGetUniformLocationARB(g_programObj,                                                   
                                              " fLightDiffuseColor"); 
         break; 

} 
} 
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Per Frame (Performed once per frame): 
 
//Each redraw of the window we activate the shaders and pass in any  
//dynamic variable values they may use. 
switch(Language) 
{ 

case HLSL: 
{ 

. 

. 

. 

. 

. 
Update any DirectX states 

. 

. 

. 

. 

. 
 

      //Get the current Model View Projection Matrix 
D3DXMATRIX worldViewProjection = g_matWorld * g_matView * 
g_matProj; 

  
      //Pass it into the constants table  

g_pVertexConstantTableVS->SetMatrix( g_pd3dDevice, 
"worldViewProj", &worldViewProjection ); 
 
//Set the light position in the vertex shader 
float* lightPos={vLightPos.x, vLightPos.y, vLightPos.z}; 
g_pVertexConstantTableVS->SetFloat(g_pd3dDevice,   

"vLightPosition",lightPos,3); 
             
            //Set the diffuse light color in the pixel shader 

float* lightColor={1.0,1.0,1.0}; 
g_pPixelConstantTableVS->SetFloat(g_pd3dDevice,   

"fLightDiffuseColor", 
lightColor,3); 

            
      //Set vertex declaration and vertex shader   
      //active 
      g_pd3dDevice->SetVertexDeclaration(g_pVertexDeclaration); 
      g_pd3dDevice->SetVertexShader(g_pVertexShader); 
 

//Make pixel shader active 
g_pd3dDevice->SetPixelShader(g_pPixelShader); 

 
. 
. 
. 
. 
. 

Set Textures & Draw Sphere 
. 
. 
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. 

. 
            //Deactivate current vertex & pixel shader 

g_pd3dDevice->SetVertexShader(NULL); 
g_pd3dDevice->SetPixelShader(NULL); 
break; 

} 
case CG: 
{ 

. 

. 

. 

. 
Update any DirectX/OpenGL states 

. 

. 

. 

. 
      //Enable vertex Profile used by the normal mapping vertex   
      //and pixel shaders 
      CgGL.cgGLEnableProfile(g_CGvertexprofile); 
      CgGL.cgGLEnableProfile(g_CGpixelprofile); 
         
      //Activate the normal mapping vertex & pixel shaders 
 CgGL.cgGLBindProgram(g_CGvertexprogram); 

CgGL.cgGLBindProgram(g_CGpixelprogram); 
        

       // Set the "modelViewProjMatrix" parameter in the vertex    
            //shader to the current concatenated 
       // modelview and projection matrix 
       CgGL.cgGLSetStateMatrixParameter(g_CGparam_ModelViewMatrix,  
                               CgGL.CG_GL_MODELVIEW_PROJECTION_MATRIX,  
                               CgGL.CG_GL_MATRIX_IDENTITY); 
         
            //Set the light properties 
            CgGL.cgGLSetParameter3f(g_CGparam_LightPosition,  
                         vLightPos.x, vLightPos.y, vLightPos.z); 
       CgGL.cgGLSetParameter3f(g_CGparam_LightColor, 1.0f, 1.0f,   
                                    1.0f); 

. 

. 

. 

. 
Set Textures & Draw Sphere 

. 

. 

. 

. 

. 
//Disable the vertex shader profiles 

 CgGL.cgGLDisableProfile(g_CGvertexprofile); 
      CgGL.cgGLDisableProfile(g_CGpixelprofile); 

break; 
 

} 
case GLSL: 
{ 
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. 

. 

. 

. 
Update any OpenGL states 

. 

. 

. 

. 

. 
//Enable the GLSL shader program containing the compiled 
//normal mapping vertex & pixel shader 
glUseProgramObjectARB(g_programObj);         

             
      glUniform3fARB(g_location_LightColor,1.0f,1.0f,1.0f); 

. 

. 

. 

. 

. 
Set Light, Textures & Draw Sphere 

. 

. 

. 

. 
// Disable the GLSL shader objects 

 glUseProgramObjectARB(NULL); 
break; 

} 
} 
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HLSL Shader Source: 
 
/********************************************************************** 
Pixel-Bound Test: HLSL Vertex Shader     
Source file: “normal_map_vert.hlsl” 
**********************************************************************/ 
 
float4x4 modelViewProjMatrix; 
float3 vLightPosition; 
 
/* Incoming vertex data*/ 
struct VS_INPUT { 

float4 position  : POSITION;     //The position of the current  
   //vertex.  

float2 texCoords : TEXCOORD0;    //Diffuse texture coordinates  
float3 vNormal   : TEXCOORD1;    //Vertex normal 
float3 vTangent  : TEXCOORD2;    //Vertex tangent 
float3 vBinormal : TEXCOORD3;    //Vertex binormal 

}; 
 
/* Data passed out from pixel shader */ 
struct VS_OUT { 

float4 positionOUT : POSITION;   //The transformed vertexfloat2 
texCoordsOUT       : TEXCOORD0;  //Send tex. coords to pixel the 

   //shader 
 float3 vLightVector: TEXCOORD1;  //Send the transformed light  

   //vector to the pixel shader 
}; 
 
 
VS_OUT main(appdata IN)  
{ 
      VS_OUT OUT; 
 // Calculate the light vector 
 OUT.vLightVector = IN.vLightPosition – IN.position.xyz; 
 
 //Transform the light vector from object space into tangent  
      //space 

float3x3 TBNMatrix = float3x3(IN.vTangent, IN.vBinormal,  
IN.vNormal); 
 

 OUT.vLightVector.xyz = mul(TBNMatrix,OUT.vLightVector); 
  
 // Transform the current vertex from object space to clip space,  
 OUT.positionOUT = mul(modelViewProjMatrix,position); 
  
 // Send the texture map coords to the fragment shader 
 OUT.texCoordsOUT = IN.texCoords; 
 

return OUT; 
} 
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/********************************************************************** 
Pixel-Bound Test: HLSL Pixel Shader     
Source file: “normal_map_pixel.hlsl” 
**********************************************************************/ 
 
float3 fLightDiffuseColor; 
sampler baseTexture;    
sampler normalTexture; 
 
/* Incoming pixel data*/ 
struct PS_IN { 

float4 colorIN : COLOR0; 
 float2 texCoords : TEXCOORD0;    //The texture map's texcoords 
 float3 vLightVector : TEXCOORD1; //The transformed light vector  

   //(in tangent space) 
}; 
 
/* Data passed out from pixel shader */ 
struct PS_OUT { 

float4 colorOUT : COLOR0; //The final color of the current pixel 
}; 
 
 
PS_OUT main(appdata PS_IN) 
{ 
      PS_OUT OUT; 
 

//We must normalize the light vector as it's linearly 
//interpolated across the surface and its length may change 

 IN.vLightVector = normalize(IN.vLightVector); 
 

//Since the normals in the normal map are in the (color) range 
//[0, 1] we need to uncompress them to real normal vector 
//directions in the range [-1,1].  

 float3 vNormal = 2.0f * (tex2D(normalTexture, IN.texCoords).rgb  
– 0.5f); 

  
//Calculate the diffuse component and store it as the final 
//color in colorOUT 
//The diffuse component is defined as: I = Dl * Dm * clamp(L•N, 
//0, 1). saturate() works like clamp().  
OUT.colorOUT.rgb = fLightDiffuseColor * tex2D(baseTexture,   
     IN.texCoords).rgb * saturate(dot(IN.vLightVector, vNormal)); 
 
return OUT; 

} 
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Cg Shader Source: 
 
/********************************************************************** 
Pixel-Bound Test: Cg Vertex Shader     
Source file: “normal_map_vert.cg” 
**********************************************************************/ 
 
/* Incoming vertex data*/ 
struct appdata { 

float4 position  : POSITION;     //The position of the current  
   //vertex.  

float2 texCoords : TEXCOORD0;    //Diffuse texture coordinates  
float3 vNormal   : TEXCOORD1;    //Vertex normal 
float3 vTangent  : TEXCOORD2;    //Vertex tangent 
float3 vBinormal : TEXCOORD3;    //Vertex binormal 

}; 
 
/* Data passed out from pixel shader */ 
struct vertexOutput { 

float4 positionOUT : POSITION;   //The transformed vertexfloat2 
texCoordsOUT       : TEXCOORD0;  //Send tex. coords to pixel the 

   //shader 
 float3 vLightVector: TEXCOORD1;  //Send the transformed light  

   //vector to the pixel shader 
}; 
 
 
vertexOutput main(appdata IN,  

const uniform float4x4 modelViewProjMatrix,  
   const uniform float3 vLightPosition)  
{ 
      vertexOutput OUT; 
 // Calculate the light vector 
 OUT.vLightVector = IN.vLightPosition – IN.position.xyz; 
 
 //Transform the light vector from object space into tangent  
      //space 

float3x3 TBNMatrix = float3x3(IN.vTangent, IN.vBinormal,  
IN.vNormal); 
 

 OUT.vLightVector.xyz = mul(TBNMatrix, OUT.vLightVector); 
  
 // Transform the current vertex from object space to clip space,  
 OUT.positionOUT = mul(modelViewProjMatrix, position); 
  
 // Send the texture map coords to the fragment shader 
 OUT.texCoordsOUT = IN.texCoords; 
 

return OUT; 
} 
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/********************************************************************** 
Pixel-Bound Test: Cg Pixel Shader     
Source file: “normal_map_pixel.cg” 
**********************************************************************/ 
 
/* Incoming pixel data*/ 
struct appdata { 

float4 colorIN : COLOR0; 
 float2 texCoords : TEXCOORD0;    //The texture map's texcoords 
 float3 vLightVector : TEXCOORD1; //The transformed light vector  

   //(in tangent space) 
}; 
 
/* Data passed out from pixel shader */ 
struct pixelOutput { 

float4 colorOUT : COLOR0; //The final color of the current pixel 
}; 
 
 
pixelOutput main(appdata IN, uniform sampler2D baseTexture : TEXUNIT0,   

          uniform sampler2D normalTexture : TEXUNIT1,    
          uniform float3 fLightDiffuseColor) 

{ 
      pixelOutput OUT; 
 

//We must normalize the light vector as it's linearly 
//interpolated across the surface and its length may change 

 IN.vLightVector = normalize(IN.vLightVector); 
 

//Since the normals in the normal map are in the (color) range 
//[0, 1] we need to uncompress them to real normal vector 
//directions in the range [-1,1].  

 float3 vNormal = 2.0f * (tex2D(normalTexture, IN.texCoords).rgb  
– 0.5f); 

  
//Calculate the diffuse component and store it as the final 
//color in colorOUT 
//The diffuse component is defined as: I = Dl * Dm * clamp(L•N, 
//0, 1). saturate() works like clamp().  
OUT.colorOUT.rgb = fLightDiffuseColor * tex2D(baseTexture, 
IN.texCoords).rgb * saturate(dot(IN.vLightVector, vNormal)); 
 
return OUT; 

} 
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GLSL Shader Source: 
 
/********************************************************************** 
Pixel-Bound Test: GLSL Vertex Shader     
Source file: “normal_map_vert.glsl” 
**********************************************************************/ 
 
//Varying datatype allows sharing of this value between vertex and 
//pixel shader in same pipeline 
varying vec3 vLightVector;       //Tangent-space light position 
 
void main() 
{ 
 //Calculate the light vector 
 vLightVector = gl_LightSource[0].position.xyz - gl_Vertex.xyz; 
 

//Transform the light vector from object space into tangent 
//space. Our tangent, binormal, and normal vectors are passed in 
//through the APIs multitexture texture coordinate calls 
mat3 TBNMatrix=float3x3(gl_MultiTexCoord2.xyz,  

gl_MultiTexCoord3.xyz, 
gl_MultiTexCoord1.xyz); 
 

 vLightVector.xyz = vLightVector*TBNMatrix; 
  

Pass through our diffuse texture coordinates to the pixel shader 
 gl_TexCoord[0] = gl_MultiTexCoord0;  
 
 // Transform the current vertex from object space to clip space,  
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
} 
 
 
 
/********************************************************************** 
Pixel-Bound Test: GLSL Pixel Shader     
Source file: “normal_map_pixel.glsl” 
**********************************************************************/ 
 
//Uniforms set by user application 
uniform vec3 fLightDiffuseColor;    //Diffuse color of light 
uniform sampler2D baseTexture;      //Diffuse map texture unit handle 
uniform sampler2D normalTexture;    //Normal map texture unit handle 
 
//Set by vertex shader 
varying vec3 vLightVector;          //Tangent-space light position 
 
void main() 
{ 

// We must remember to normalize the light  
 vLightVector = normalize(vLightVector); 
 

//Since the normals in the normal map are in the color range 
//[0, 1] we need to uncompress them to real normal vector 
//directions in the range [-1,1].  
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vec3 vNormal = 2.0f * (texture2D(normalTexture,  
     gl_TexCoord[0].xy).rgb - 0.5f); 

  
//Calculate the diffuse component and store it as the final 
//fragment color. 
// The diffuse component is defined as: I = Dl * Dm * clamp(L•N, 
//0, 1) 
vec3 result = fLightDiffuseColor *  

  texture2D(baseTexture, gl_TexCoord[0].xy).rgb *    
  clamp(dot(vLightVector, Normal),0.0,1.0); 

 
 gl_FragColor = vec4(result,1.0); //Must include alpha value 
} 
 

 


