
Introduction to UNIX

CS2023 Winter 2004

Outcomes: Introduction to UNIX

� After the conclusion of this section you should be
able to

� log onto the FCS Linux system

� understand the concept of current working directory

� traverse and manipulate the UNIX filesystem

� describe the role of the shell within the UNIX
environment

� use simple commands to manipulate files (cd, ls,
cp, rm, cat)

� use standard I/O, piping, and redirection from the
UNIX shell

Resources

� On reserve in library: Your UNIX, The Ultimate
Guide, Sumitabha Das

� Online, from CS2023 web site:

� C Program Development at UNB

� My notes

� UNIX Quick Reference Sheet

� Linux User's Guide, by Larry Greenfield

� Developing on Linux, by Nathan Thomas, RedHat

� UNIX History: www.levenez.com/unix/

What is UNIX?

� A computer operating system

� A software development environment

� Built in late '60s, early '70s by Ken Thompson
and Dennis Ritchie

� Originally written in assembler, later rewritten in
C (allowing greater portability), a language
invented by Ritchie

What is UNIX?

� 1983: U California (Berkeley) created its own:
BSD UNIX

� TCP/IP built-in

� USL revised UNIX: System V, release 4 (SVR4)

� UNIX comes in several flavours:

� BSD-based: SunOS, Linux

� SVR4-based: HP-UX, CRAY UNICOS, IBM AIX

What is an operating system?

Operating Systems

� Interacts with:

	 Applications

	 Users, through a command language interpreter

� OS offers services:

	 Scheduling of multiple programs

	 Memory management

	 Access to hardware

	 Reports errors to applications

UNIX Philosophy

 Make each program do one thing well.

� Reusable software tools: 1 tool = 1 function

 Expect the output of every program to become the
input of another, yet unknown, program to
combine simple tools to perform complex tasks

 Everything seen as a file

UNIX Features

� Multi-user

� Hierarchical file system

� Multi-tasking

� Threads

� Virtual memory

� Built-in networking

� Extensive set of utilities

Inside UNIX

Shell

Hardware

Kernel
ls

cp

grepps

tar

who

X Window

Compiler

Browser

User

User

File System

 "Files have places and processes have life"

� Kaare Christian

 All files are "flat": just a sequence of bytes

 File system is hierarchical

File System

� Organized as a tree

� Each node is a directory

� Each directory can contain other files or directories or
both

� Root: "/"

� Each file in a given directory must be unique

� UNIX is cAsE sEnSiTiVe

 / (root)
 |

 | | |
 /bin /usr /tmp
 |
 |

 | | |
 /public /misc /staff
 | |
 ------------ -------------------
 | | | | | |
 /software /doc /john /mary /bill /carl

File System

� Files are referenced by name

� absolute reference: beginning with "/"

� relative reference: based on current directory

� Shortcuts:

� "..": parent directory

� ".": current directory

� "~": home directory

Logging In

� To log in to a Unix machine you can either:

� sit at the console (the computer itself)

� access via the net (using telnet, rsh, ssh, or
some other remote access client).

� To access machines in ITD415, use
id415mxx.cs.unb.ca as hostname, where xx =
01-40

� The system prompts you for your username
and password.

� Usernames and passwords are case
sensitive!

Session Startup

� Once you log in, your shell will be started
and it will display a prompt.

� When the shell is started it looks in your
home directory for some customization
files.

 You can change the shell prompt, your PATH,
and a bunch of other things by creating
customization files.

Your Home Directory

! Every Unix process has a notion of the
“current working directory”.

" Your shell (which is a process) starts with
the current working directory set to your
home directory.

Interacting with the Shell

The shell prints a prompt and waits for you
to type in a command.

$ The shell can deal with a couple of types of
commands:

% shell internals - commands that the shell
handles directly.

& External programs - the shell runs a program
for you.

Some Simple Commands

' Here are some simple commands to get you
started:

()+* lists file names (like DOS dir command).

, - .+/ lists users currently logged in.

0 1+2 354 shows the current time and date.

6 78 9

print working directory

: Type ;< = > ? to get help on a command
(eg., @A B CED)

The command

F The ls command displays the names of
some files.

G If you give it the name of a directory as a
command line parameter it will list all the
files in the named directory.

 Command Line Options

H We can modify the output format of the

I+J program
with a command line option.

K The ls command support a bunch of options:

L M

 long format (include file times, owner and permissions)

N O

all (shows hidden* files as well as regular files)

P Q

 sort by modification time.

*hidden files have names that start with "."

File Names

R .c: C source files

S .h: C header files

T .o: compiled program (object file)

U files that begin with "." (hidden files, e.g. .bashrc)
are not displayed by default by ls

V file command: determines file type

Moving Around in the Filesystem

W The cd command can change the current
working directory:

X change directory

Y The general form is:

Z [\E] ^ Z _a`] bc d ^ e

f With no parameter, the g command
changes the current directory to your home
directory.

h You can also give i a relative or absolute
pathname:

j k lm

j n n

Some more commands and
command line options

o pEq r s

 will list everything in a directory
and in all the subdirectories recursively (the
entire hierarchy).

t you might want to know that Ctrl-C will
cancel a command (stop the command)!

u v : print working directory

w : shows what disk holds a directory.

Copying Files

x The y command copies files:

z {E| } ~| �� � � | � � z � � � }

� The source is the name of the file you want
to copy.

� dest is the name of the new file.

� source and dest can be relative or absolute.

Another form of

� If you specify a dest that is a directory, cp
will put a copy of the source in the
directory.

� The filename will be the same as the
filename of the source file.

� �E� � �� �� � � � � � � � � � � � �

Deleting (removing) Files

� The �� command deletes files:

�� �E� � �� �� �¡ � ¢ � £ £ £

¤ ¥¦ stands for "remove".

§ You can remove many files at once:

¨© ª¬« « ­ © ® ¯° ± ² ³ ³ ±´ ´ µ ­5¶ ´ ­ ³ ·

File attributes

¸ Every file has some attributes:

¹ Access Times:

º when the file was created

» when the file was last changed

¼ when the file was last read

½ Size

¾ Owners (user and group)

¿ Permissions

File System Security

À Each file has three sets of permission bits:

Á user

Â group

Ã other

Ä Each set has three bits that represent:

Å read

Æ write

Ç execute

File System Security

È If a file's permission is "execute", is means it can
be ran as a other utility or command.

É Directories need to be

Ê readable to see the files they contain

Ë Executable to change directory to them

Ì Writable to create,edit or remove files from them.

File Time Attributes

Í Time Attributes:

Î when the file was last changed
Ï+Ð Ñ Ï

Ò when the file was created*
Ó+Ô Õ Ó+Ö

× when the file was last read(accessed)

Ø+Ù Ú Û Ø

*actually it's the time the file status last changed.

Other filesystem and file commands

Ü Ý ÞEß make directory

à áâ ã á remove directory

ä åaæ ç è change file timestamp (can also
create a blank file)

é êë ì

concatenate files and print out to
terminal.

Shells

Also known as: Unix Command Interpreter

Shell as a user interface

í A shell is a command interpreter that turns
text that you type (at the command line) in
to actions:

î runs a program, perhaps the
ï+ð program.

ñ allows you to edit a command line.

ò can establish alternative sources of input and
destinations for output for programs.

Running a Program

ó You type in the name of a program and
some command line options:

ô The shell reads this line, finds the program and
runs it, feeding it the options you specified.

õ The shell establishes 3 I/O channels:

ö Standard Input

÷ Standard Output

ø Standard Error

Programs and Standard I/O

Program
Standard Input

(STDIN)
Standard Output

(STDOUT)

Standard Error
(STDERR)

Unix Commands

ù Most Unix commands (programs):

ú read something from standard input.

û send something to standard output (typically
depends on what the input is!).

ü send error messages to standard error.

Defaults for I/O

ý When a shell runs a program for you:

þ standard input is your keyboard.

ÿ standard output is your screen/window.

� standard error is your screen/window.

Terminating Standard Input

� If standard input is your keyboard, you can
type stuff in that goes to a program.

� To end the input you press Ctrl-D (^D) on a
line by itself, this ends the input stream.

� The shell is a program that reads from
standard input.

� What happens when you give the shell ^D?

Popular Shells

� Bourne Shell

� Korn Shell

�� C Shell

	
 Bourne-Again Shell

Customization

� Each shell supports some customization.

� User prompt

 Where to find mail

� Shortcuts

� The customization takes place in startup
files – files that are read by the shell when
it starts up

Startup files

� ��� � � ���
��� ��� ��� �� ! " � # �$ � � � % & � �' (" � �)

* ��+ � �� ! " �

, ' � � �
* ��+ , ' � �- � � � ! " �

* ��+ , ' � � ��

* ��+ , ' � �- "�� .� (�

� � ���
* ��+ � � � ��

* ��+ "�� . ! /

* ��+ "�� .� (�

Wildcards (metacharacters) for
filename abbreviation

0 When you type in a command line the shell
treats some characters as special.

1 These special characters make it easy to
specify filenames.

2 The shell processes what you give it, using
the special characters to replace your
command line with one that includes a
bunch of file names.

The special character *

3 * matches anything.

4 If you give the shell * by itself (as a
command line argument) the shell will
remove the * and replace it with all the
filenames in the current directory.

5 6 7 8 9

matches all files in the current
directory that start with : and end with .

Understanding *

; The <= > command prints out whatever
you give it:

? @A BDC BE

B E
F Try this:

G HI JDK L

* and

M Things to try:

NDO P

NDO Q R N P

NDO R P

NDO P S

Input Redirection

T The shell can attach things other than your
keyboard to standard input.

U A file (the contents of the file are fed to a
program as if you typed it).

V A pipe (the output of another program is fed as
input as if you typed it).

Output Redirection

W The shell can attach things other than your
screen to standard output (or stderr).

X A file (the output of a program is stored in
file).

Y A pipe (the output of a program is fed as input
to another program).

How to tell the shell to redirect
things

Z To tell the shell to store the output of your
program in a file, follow the command line
for the program with the “>” character
followed by the filename:

[]\ ^ []\ _` a
the command above will create a file named b]c de f

 and put the output of the

g]h
command in the file.

Input redirection

• To tell the shell to get standard input from
a file, use the “<“ character:

ij k l m n op q i
• The command above would sort the lines

in the file nums and send the result to
stdout.

You can do both!

rs t u v w xy z r { r s t u}| xy z r

u t ~ v � � v � w �| u u | t { t y | �| u u}| t

Input from file vs. from stdin

• UNIX commands can alternatively open a
file or read from stdin

– �� � � � � � �� � �

– �� � � � � �� � �

– what is the difference?

• Quick way to create a file:
– �� � � �� �D� �� ��
– (terminate input using ctrl-D)

Pipes

 A pipe is a holder for a stream of data.

¡ A pipe can be used to hold the output of
one program and feed it to the input of
another.

prog1 prog2¢£ ¤ ¥¦ £ ¢ £ ¤§ ¨

Asking for a pipe

© Separate 2 commands with the “|”
character.

ª The shell does all the work!

« ¬ ­ « ® ¯ °

« ¬ ­ « ® ¯ ° ± ²³ ´³ µ ¶· µ

Pipes Examples
Count the files in a directory

% ls | wc -l

Show the 10 most recently modified files
% ls -lt | head

Search a file for all occurrence of the string "system"
and pause at each page
% cat file1.txt | grep "system" | more

We can combine these with redirections
% cat file1.txt | grep "system" >
output.txt

Shell Variables

¸ The shell keeps track of a set of parameter
names and values.

¹ Some of these parameters determine the
behavior of the shell.

º We can access these variables:

» set new values for some to customize the shell.

¼ find out the value of some to help accomplish
a task.

Example Shell Variables

½ ¾

 current working directory

¿À ÁÂ

 list of places to look for commands

Ã Ä

 home directory of user

ÅÆ Ç

 where your email is stored

ÈÉ Ê

 what kind of terminal you have

ËÌ ÍÎ Ï Ì ÐÑ

 where your command history
is saved

Displaying Shell Variables

Ò Prefix the name of a shell variable with "$".

Ó The ÔÕ Ö command will do:

×Ø Ù Ú Û

×Ø Ù ÜÝ Þ Ú

ß You can use these variables on any
command line:

à]á â ã à ä å

Setting Shell Variables

æ You can change the value of a shell
variable with the set command (this is a
shell builtin command):

çè éê ë ì í îï ðòñ ç ìôó

çè éê ë ì õö ÷ íñ ø ù ë úû üý ø ù ë ç ì ó ý ù ú û ü

çè éê ë ì þ ðÿ �ö �ñ � ú� � � ú� � � ú� � � �

� � � command (shell builtin)

	 The
 � �

 command with no parameters will
print out a list of all the shell varibles.

 You'll probably get a pretty long list…

� Depending on your shell, you might get
other stuff as well...

The

� Each time you give the shell a command
line it does the following:

� Checks to see if the command is a shell built-
in.

� If not - tries to find a program whose name
(the filename) is the same as the command.

� The

�� ��

 variable tells the shell where to
look for programs (non built-in commands).

echo

��� � �� �� �� ! " #$ % & # ' () � * +�,)- ./ 0

1 2 3 4 *5 3 � � 2 3 +, %� # 35 6� 4 4 3� � �� � � � 3 � � 2 3 � � 2 3 �5 7

3 � � 2 3 �5 7 3 � , *� � 3 � � 2 3 �5 7 38 # #9 : 3 � � 2 3 4 *5 3; � <

� 3 ; ! = 3 � �

> The

?@ AB

 is a list of ":" delimited directories.

C The

DE FG

 is a list and a search order.

H You can add stuff to your PATH by changing the shell
startup file (I J KL MN

)

Job Control

O The shell allows you to manage jobs

P place jobs in the background

Q move a job to the foreground

R suspend a job

S kill a job

Background jobs

T If you follow a command line with "&", the
shell will run the job in the background.

U you don't need to wait for the job to complete,
you can type in a new command right away.

V you can have a bunch of jobs running at once.

W you can do all this with a single terminal
(window).

XZY [X\] Y ^_ ` a
b

XZY c

Listing jobs

d The command jobs will list all background
jobs:

e fZg hZi

jk l mon p p q pr si t s m e i uv w x
y

si z

e
{ The shell assigns a number to each job (this

one is job number 1).

Suspending and Killing the
Foreground Job

| You can suspend the foreground job by
pressing ^Z (Ctrl-Z).

} Suspend means the job is stopped, but not
dead.

~ The job will show up in the
�Z� �Z� output.

� You can kill the foreground job by pressing
^C (Ctrl-C).

� It's gone...

Programming

� Text editors

� emacs, vi

� Can also use any PC editor if you can get at
the files from your PC.

� Compilers: gcc.

� Debuggers: gdb

