Introduction to UNIX

CS2023 Winter 2004

Outcomes: Introduction to UNIX

* After the conclusion of this section you should be
able to

- log onto the FCS Linux system
— understand the concept of current working directory

— traverse and manipulate the UNIX filesystem

— describe the role of the shell within the UNIX
environment

— use simple commands to manipulate files (ed, 1s,
cp, rm, cat)

— use standard I/O, piping, and redirection from the
UNIX shell

Resources

* Onreserve in library: Your UNIX, The Ultimate
Guide, Sumitabha Das

e Online, from CS2023 web site:

— C Program Development at UNB
* My notes

— UNIX Quick Reference Sheet
— Linux User's Guide, by Larry Greenfield
— Developing on Linux, by Nathan Thomas, RedHat

- UNIX History: www.levenez.com/unix/

What 1s UNIX?

* A computer operating system
* A software development environment

e Built in late '60s, early '70s by Ken Thompson
and Dennis Ritchie

* Originally written in assembler, later rewritten in
C (allowing greater portability), a language
invented by Ritchie

What 1s UNIX?

e 1983: U California (Berkeley) created its own:
BSD UNIX

— TCP/IP built-in
* USL revised UNIX: System V, release 4 (SVR4)

e UNIX comes 1n several flavours:

— BSD-based: SunOS, Linux
- SVR4-based: HP-UX, CRAY UNICOS, IBM AIX

What 1s an operating system?

Operating Systems

* Interacts with:

— Applications

— Users, through a command language interpreter
* OS offers services:

— Scheduling of multiple programs
- Memory management
— Access to hardware

— Reports errors to applications

UNIX Philosophy

* Make each program do one thing well.
— Reusable software tools: 1 tool = 1 function

* Expect the output of every program to become the
input of another, yet unknown, program to
combine simple tools to perform complex tasks

* Everything seen as a file

UNIX Features

* Multi-user

e Hierarchical file system
* Multi-tasking

* Threads

* Virtual memory

* Built-in networking

e Extensive set of utilities

X Window

Kernel

Hardware

Browser

Inside UNIX

File System

* "Files have places and processes have life"
— Kaare Christian

e All files are "flat": just a sequence of bytes

* File system is hierarchical

File System

* Organized as a tree

— Each node 1s a directory

— Each directory can contain other files or directories or
both

— Root: "/"

e Each file 1n a given directory must be unique

e UNIX 1s cAsE sEnSiTi1Ve

/bin /Jusr /tmp

| | | | | |
/software /doc /john /mary /bill /carl

File System

* Files are referenced by name

— absolute reference: beginning with "/"

- relative reference: based on current directory

e Shortcuts:

"non,

- "..": parent directory

"non,

- ".": current directory

— "~": home directory

Logging In

* To log in to a Unix machine you can either:

— sit at the console (the computer itself)

— access via the net (using telnet, rsh, ssh, or
some other remote access client).

— To access machines in ITD415, use
1d415mxx.cs.unb.ca as hostname, where xx =

01-40

* The system prompts you for your username
and password.

e Usernames and passwords are case

sensitive!

Session Startup

* Once you log in, your shell will be started
and 1t will display a prompt.
* When the shell 1s started 1t looks in your

home directory for some customization
files.
— You can change the shell prompt, your PATH,

and a bunch of other things by creating
customization files.

Your Home Directory

* Every Unix process has a notion of the
“current working directory”.

* Your shell (which 1s a process) starts with
the current working directory set to your
home directory.

Interacting with the Shell

* The shell prints a prompt and waits for you
to type 1n a command.

* The shell can deal with a couple of types of
commands:

— shell internals - commands that the shell
handles directly.

— External programs - the shell runs a program
for you.

Some Simple Commands

* Here are some simple commands to get you
started:

- 1s lists file names (like DOS dir command).
- who lists users currently logged in.
- date shows the current time and date.

- pwd print working directory
 Type man cmd to get help on a command
(eg.,man 1s)

The 1S command

* The Is command displays the names of
some files.

* If you give 1t the name of a directory as a
command line parameter 1t will list all the
files 1n the named directory.

1s Command Line Options

* We can modify the output format of the 1S program
with a command line option.

* The Is command support a bunch of options:
-1 long format (include file times, owner and permissions)

- d all (shows hidden™ files as well as regular files)

- Tt sort by modification time.

*hidden files have names that start with "."

File Names

.c: C source files
.h: C header files

.0: compiled program (object file)

files that begin with "." (hidden files, e.g. .bashrc)
are not displayed by default by Is

file command: determines file type

Moving Around 1n the Filesystem

* The cd command can change the current
working directory:

cd change directory

* The general form 1is:

cd [directoryname]

cd

e With no parameter, the ¢d command
changes the current directory to your home
directory.

* You can also give cd a relative or absolute
pathname:

cd /usr
cd

Some more commands and
command line options

e 1s -R will list everything in a directory
and 1n all the subdirectories recursively (the
entire hierarchy).

— you might want to know that Ctrl-C will
cancel a command (stop the command)!

e pwd: print working directory
o df: shows what disk holds a directory.

Copying Files

* The Ccp command copies files:

cp [options] source dest

* The source 1s the name of the file you want
to copy.

e dest 1s the name of the new file.

e source and dest can be relative or absolute.

Another form of Cp

* If you specity a dest that 1s a directory, cp
will put a copy of the source in the
directory.

e The filename will be the same as the
filename of the source file.

cp [options] source destdir

Deleting (removing) Files

* The rm command deletes files:

rm [options] names...
* Tm stands for "remove".

* You can remove many files at once:

rm foo /tmp/blah ../assl/test.c

File attributes

* Every file has some attributes:

— Access Times:
e when the file was created
* when the file was last changed

* when the file was last read
- Size
— Owners (user and group)

— Permissions

File System Security

e Each file has three sets of permission bits:
— USCer
— group
— other

* Each set has three bits that represent:

— read
— write

— execute

File System Security

e If a file's permission 1s "execute”, 1s means it can
be ran as a other utility or command.

¢ Directories need to be

— readable to see the files they contain
— Executable to change directory to them

— Writable to create,edit or remove files from them.

File Time Attributes

e Time Attributes:

— when the file was last changed 1ls -1
— when the file was created* 1s -1c
— when the file was last read (accessed) 1ls -ul

*actually it's the time the file status last changed.

Other filesystem and file commands

mkdir make directory
rmdir remove directory

touch change file timestamp (can also
create a blank file)

cat concatenate files and print out to
terminal.

Shells

Also known as: Unix Command Interpreter

Shell as a user interface

* A shell 1s a command interpreter that turns
text that you type (at the command line) in
to actions:

- runs a program, perhaps the 1s program.
— allows you to edit a command line.

— can establish alternative sources of input and
destinations for output for programs.

Running a Program

* You type in the name of a program and
some command line options:

— The shell reads this line, finds the program and
runs it, feeding it the options you specified.

— The shell establishes 3 I/O channels:

e Standard Input
e Standard Output

e Standard Error

Programs and Standard 1/0

Standard Input Standard Output
(STDIN) Program ‘ > sTDOUT)

Standard Error
(STDERR)

Unix Commands

* Most Unix commands (programs):
- read something from standard input.

— send something to standard output (typically

depends on what the input 1s!).

— send error messages to standard error.

Defaults for I/O

* When a shell runs a program for you:
— standard 1nput is your keyboard.
— standard output 1s your screen/window.

— standard error 1s your screen/window.

Terminating Standard Input

* If standard input 1s your keyboard, you can
type stuff in that goes to a program.

* To end the input you press Ctrl-D (*D) on a
line by 1tself, this ends the input stream.

* The shell 1s a program that reads from
standard 1nput.

* What happens when you give the shell *D?

sh
ksh
csh

bash

Popular Shells

Bourne Shell

Korn Shell

C Shell
Bourne-Again Shell

Customization

e Each shell supports some customization.
— User prompt
— Where to find mail
— Shortcuts

* The customization takes place in startup

files — files that are read by the shell when
1t starts up

Startup files

sh,ksh:

/etc/profile (system defaults)
~/.profile

bash:
~/ .bash_profile
~/ .bashrc
~/ .bash_logout
csh:
~/.cshrc
~/.login
~/.logout

Wildcards (metacharacters) for
filename abbreviation

* When you type in a command line the shell
treats some characters as special.

* These special characters make it easy to
specity filenames.

* The shell processes what you give it, using
the special characters to replace your
command line with one that includes a
bunch of file names.

The special character *

* * matches anything.

* If you give the shell * by itself (as a
command line argument) the shell will
remove the * and replace 1t with all the
filenames in the current directory.

e “a*b” matches all files in the current
directory that start with @ and end with b.

Understanding *

e The echo command prints out whatever
you give 1t:
> echo hi
hi
* Try this:
> echo *

*and 1s

* Things to try:
ls *
ls -al *#
1ls a®
1s *b

Input Redirection

* The shell can attach things other than your
keyboard to standard input.

— A file (the contents of the file are fed to a
program as 1f you typed it).

— A pipe (the output of another program 1s fed as
input as if you typed it).

Output Redirection

* The shell can attach things other than your
screen to standard output (or stderr).

— A file (the output of a program 1is stored 1n
file).

— A pipe (the output of a program 1s fed as input
to another program).

How to tell the shell to redirect
things

e To tell the shell to store the output of your
program 1n a file, follow the command line
for the program with the “>” character
followed by the filename:

1s > lsout

the command above will create a file named

1sout and put the output of the 1s
command 1n the file.

Input redirection

To tell the shell to get standard input from
a file, use the “<*‘ character:

sort -g < nums

The command above would sort the lines
in the file nums and send the result to
stdout.

You can do both!

sort -g < nums > sortednums

tr a-z A-Z < letter > rudeletter

Input from file vs. from stdin

UNIX commands can alternatively open a

file or read from stdin
- sort -g < nums

— sort -g nums

— what 1s the difference?

Quick way to create a file:
—cat > filename

— (terminate 1input using ctrl-D)

Pipes

* A pipe 1s a holder for a stream of data.

* A pipe can be used to hold the output of
one program and feed it to the input of
another.

— —E

STDOUT STDIN

Asking for a pipe

Cél”

* Separate 2 commands with the
character.

e The shell does all the work!

who | wc -1
who | wc -1 > numusers

Pipes Examples

Count the files in a directory

o\°

ls | wc -1
Show the 10 most recently moditied files
5 1ls -1t | head

Search a file for all occurrence of the string "system"
and pause at each page

% cat filel.txt | grep "system" | more
We can combine these with redirections

$ cat filel.txt | grep "system" >
output.txt

Shell Variables

* The shell keeps track of a set of parameter
names and values.

* Some of these parameters determine the
behavior of the shell.

e We can access these variables:

— set new values for some to customize the shell.

— find out the value of some to help accomplish
a task.

Example Shell Variables
sh / ksh / bash

PWD current working directory

PATH list of places to look for commands
HOME home directory of user

MAIL where your email is stored

TERM what kind of terminal you have

HISTFILE where your command history
is saved

Displaying Shell Variables

e Prefix the name of a shell variable with "$".
e The echo command will do:

echo $HOME
echo $PATH

* You can use these variables on any
command line:

1s -al $HOME

Setting Shell Variables

* You can change the value of a shell
variable with the set command (this 1s a
shell builtin command):

export HOME=/etc
export PATH=/usr/bin:/usr/etc:/sbin
export NEWVAR="blah blah blah"

set command (shell builtin)

* The set command with no parameters will
print out a list of all the shell varibles.

* You'll probably get a pretty long list...

* Depending on your shell, you might get
other stuff as well...

The PATH

* Each time you give the shell a command
line 1t does the following:

— Checks to see 1f the command 1s a shell built-
1n.

— If not - tries to find a program whose name
(the filename) 1s the same as the command.

 The PATH variable tells the shell where to
look for programs (non built-in commands).

echo $PATH

[aubanel@id415m01 ~]$ echo $PATH

.:/fcs/bin: /homel/staff/aubanel/bin:/bin: /usr
/bin:/usr/local/bin: /usr/X11R6/bin:/fcs/jav
a/jdk/bin

e The PATH is a list of ":" delimited directories.
e The PATH is a list and a search order.

* You can add stuff to your PATH by changing the shell
startup file (~/ . bashrc)

Job Control

* The shell allows you to manage jobs
— place jobs in the background
— move a job to the foreground
— suspend a job
- kill a job

Background jobs

* If you follow a command line with "&", the
shell will run the job in the background.

— you don't need to wait for the job to complete,
you can type in a new command right away.

— you can have a bunch of jobs running at once.

— you can do all this with a single terminal
(window).

1s -1R > saved_1ls &

Listing jobs

* The command jobs will list all background
jobs:

> jobs

[1] Running 1s -1R > saved_1s &

>

* The shell assigns a number to each job (this
one 1s Jjob number 1).

Suspending and Killing the
Foreground Job

* You can suspend the foreground job by
pressing AZ (Ctrl-Z).

— Suspend means the job 1s stopped, but not
dead.

— The job will show up in the jobs output.

* You can kill the foreground job by pressing
AC (Ctrl-C).

- It's gone...

Programming

o Text editors
— emacs, vi

— Can also use any PC editor if you can get at
the files from your PC.

* Compilers: gcc.

* Debuggers: gdb

