Two important results from calculus

Taylor's Theorem

Theorem 1 Let f and its first n+1 derivatives be continuous in the closed interval $r\leqslant x\leqslant s$. Then for any x and any a in $r\leqslant x\leqslant s$, we have

$$egin{array}{ll} f(x) &= f(a) + f'(a)(x-a) + rac{f''(a)}{2!}(x-a)^2 \ &+ \cdots + rac{f^{(n)}(a)}{n!}(x-a)^n + R_{n+1}(x) \end{array}$$

where
$$R_{n+1}(x) = rac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

and c lies between a and x.

The formula is often written as

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n+1}(x)$$
 (1)

or, if h = x - a,

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + R_{n+1}(h)$$
(2)

Important!! You MUST know the values of

$$f(a), f'(a), \ldots$$
 analytically, NOT just by

evaluating these functions at a on your calculator!!

Examples of Taylor Series

$$egin{aligned} f(x) &= \cos(x) & 0 \leqslant x \leqslant 2\pi \ & f'(x) &= -\sin(x), \ f''(x) &= -\cos(x), \ & f^{(3)}(x) &= \sin(x), \ f^{(4)}(x) &= \cos(x) \end{aligned}$$

ightharpoonup Expand $\cos(x)$ about x=0 (so this can be used for x near 0.)

$$f(0)=1, \ f'(0)=0, \ f''(0)=-1, \ f^{(3)}(0)=0, \ f^{(4)}(0)=1$$
 $\cos(x)=1-rac{x^2}{2!}+rac{x^4}{4!}-\cos(c)rac{x^6}{6!}$

Figure 1: $\cos(x) \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

Taylor Series Cont'd

ightharpoonup Expand $\cos(x)$ about $x=rac{\pi}{2}$ (so this can be used for x near $rac{\pi}{2}$.)

$$f(rac{\pi}{2})=0, \,\,\, f'(rac{\pi}{2})=-1, \,\,\, f''(rac{\pi}{2})=0, \,\,\, f^{(3)}(rac{\pi}{2})=1, \,\,\, f^{(4)}(rac{\pi}{2})=0$$

$$\cos(x) = -(x - \frac{\pi}{2}) + \frac{1}{3!}(x - \frac{\pi}{2})^3 - \frac{\sin(c)}{5!}(x - \frac{\pi}{2})^5$$

Figure 2: $\cos(x) \approx -(x - \frac{\pi}{2}) + \frac{1}{3!}(x - \frac{\pi}{2})^3$

ightharpoonup A different view - let $h=x-rac{\pi}{2}$ (so this can be used for h near 0.)

$$f(\frac{\pi}{2})=0,\; f'(\frac{\pi}{2})=-1,\; f''(\frac{\pi}{2})=0,\; f^{(3)}(\frac{\pi}{2})=1,\; f^{(4)}(\frac{\pi}{2})=0$$
 $\cos(\frac{\pi}{2}+h)=-h+\frac{1}{3!}h^3-\frac{\sin(c)}{5!}h^5$

Introduction CS3113 5/7

Taylor Series Application

Compute an approximation to $\sqrt{4.04}$ (= 2.00997512422418). Since we know $\sqrt{4}$, we use the (2) form of the Taylor series with x=4.04, a=4, and h=x-a=0.04. Thus,

$$f(a) = a^{\frac{1}{2}}, \ f'(a) = \frac{1}{2}a^{-\frac{1}{2}}, \ \text{and} \ f''(a) = -\frac{1}{4}a^{-\frac{3}{2}}$$

$$f(4) = 4^{\frac{1}{2}} = 2, \ f'(4) = \frac{1}{2}4^{-\frac{1}{2}} = \frac{1}{4}, \ \text{and} \ f''(4) = -\frac{1}{4}4^{-\frac{3}{2}} = -\frac{1}{32}$$

$$f(a+h) \approx f(a) + f'(a)h$$

$$= 2 + \frac{1}{4}(0.04) = 2.01$$

$$\text{rel err} = \left| \frac{2.01 - \sqrt{4.04}}{\sqrt{4.04}} \right| \leqslant 0.125 \times 10^{-4}$$

$$f(a+h) \approx f(a) + f'(a)h + \frac{f''(a)}{2}h^2$$

$$= 2.01 - \frac{1}{2} \cdot \frac{1}{32}(0.04)^2$$

$$= 2.01 - 0.000025 = 2.009975$$

$$rel\ err\leqslant 6.1804\times 10^{-8}$$

Note that the first neglected term in deriving the linear approximation is

$$\frac{1}{2} \cdot \frac{1}{32} (0.04)^2 = 0.25 \times 10^{-4}$$

which approximates the absolute error for the linear approximation.

Mean Value Theorem

Theorem 2 Let f be continuous in the closed interval $a \leqslant x \leqslant b$ and differentiable in the open interval a < x < b. Then there is a point c in a < x < b at which

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

➤ Can be rewritten as

$$f(b) = f(a) + f'(c)(b - a) \qquad a < c < b$$

Introduction CS3113 7/7

Mean Value Theorem - Example

Figure 3: Mean Value Theorem

Consider the polynomial

$$p(x)=1-x+3x^3 \qquad 0.5\leqslant x\leqslant 2.5$$

Then p(x) goes through the points (0.5, 0.875) and (2.5, 45.375).

The line through these two points is given by

$$l_1(x) = -10.25 + 22.25x, \quad \text{slope} = 22.25$$

Now

$$p'(c) = -1 + 9c^2 = 22.25 \Longrightarrow c = 1.6073$$
 and $p(c) = 11.8491$

The tangent line to p(x) at x=1.6073 is given by

$$l_2(x) = -23.9128 + 22.25x, \quad \text{slope} = 22.25$$