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ABSTRACT
It is now commonplace for industrial systems to be automat-
ically controlled by computers. Furthermore, it is becom-
ing more common for industrial systems to use Model Pre-
dictive Control (MPC) software to optimize the behaviour
of a physical process through manipulation of control vari-
ables. It has been shown that MPC control can be improved
through coupling with Computer Aided Engineering (CAE)
simulations. We propose a grid architecture, GridMPC, to
provide MPC coupled with CAE simulations for the real-
time control of industrial systems. GridMPC bridges the
gap between powerful simulation tools and actual physi-
cal processes. A job management service makes comput-
ing resources available to the grid for CAE simulations and
a repository service stores the simulation results to avoid
identical queries and provide immediately the data to the
process controller. GridMPC has been built using web ser-
vices, taking security in consideration. The overhead of the
grid architecture is found to be acceptably small.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures; J.6 [Computer Applica-
tions]: Computer-Aided Engineering—Computer-aided man-
ufacturing ; J.7 [Computer Applications]: Computers in
Other Systems—Industrial Control

1. INTRODUCTION
With the development of microelectronics and the always
increasing need for precision and efficiency in manufactur-
ing systems, many industrial systems are now automatically

controlled by computers. Control software requires knowl-
edge of how the industrial process responds to changes in
control variables. This data is typically obtained from ex-
perimental open loop tests. However, the number of experi-
ments that can be run is generally limited by cost and time.
For this reason most process controllers are valid only over
a narrow range of conditions. However, by using Computer
Aided Engineering (CAE) simulation tools to generate the
open-loop data, a wide range of processing conditions can
be explored and stored. When conditions in the real process
are changed, the CAE tool is executed in order to generate
new data for the controller. This results in more efficient
and reliable control of the industrial system [6].

Manufacturers have started to make use of distributed com-
putational resources, from desktop workstations to large
parallel computers, to solve challenging problems that arise
in design and manufacturing. We propose to integrate man-
ufacturing control software into these corporate computa-
tional grids, to deal with the practical problems with the
coupling of CAE and control software. Simulation tools for
most advanced industrial processes are designed to reflect
the real process to a large degree of accuracy, and hence can
consume a significant amount of computing time. The com-
putational resources required to produce useful CAE simu-
lations are not likely to be co-located with the facility oper-
ating the controlled process. In addition, industrial systems
operate in real time, and may need data each time processing
conditions are changed. We propose our grid architecture to
address these concerns.

Computational grids enable the seamless integration of het-
erogeneous and geographically distributed software resources.
Scientific instruments are also being integrated into grid en-
vironments[5]. This work has focused so far on the use of
remote instruments as producers of data that can be stored,
analyzed, and used by software applications. The present
work incorporates physical processes as consumers of com-
putational resources.

There is an increasing body of experience supporting the



viability of using web services to build computational grids.
For example, the majority of the UK’s E-Science program
participants have built their grid infrastructure using web
services [4]. Web services are available in several mature im-
plementations, and offer the functionality required to build
grid environments. Additional web service standards have
been proposed, such as WS-ResourceFramework (WSRF)
and WS-Notification (WSN), which address the requirements
associated with transient and stateful services. These are be-
ing implemented in the Globus Toolkit[7], but other imple-
mentations are available as well, including WSRF.net [14].
The latter implementation is relevant to the present work
in that it proposes an architecture for remote job execution
in grid environments. There have been performance issues
raised about web services, but recent work has indicated
that potential limits to performance may not be serious in
practice [12].

There is an element missing in GridMPC which we are ad-
dressing in ongoing work, namely the feedback of informa-
tion on the industrial process to the CAE model. The accu-
racy of the CAE model depends on its boundary conditions,
which can be optimized using information obtained from the
industrial process via a monitoring service.

In the next section we briefly review process control. We
present an overview of our GridMPC architecture in Sec-
tion 3. Detailed descriptions of the services are given in
Section 4. Implementation details and performance tests
are presented in Section 5, and Section 6 concludes.

2. PROCESS CONTROL
Model predictive control (MPC) algorithms apply a series of
control moves to manipulated variables in order to achieve
a particular objective[10]. For example, in a heating process
the objective could be to set the temperature of an object,
and the control variables could be the flux in the heaters
that surround the object. These algorithms can be used to
control a wide variety of processes, and can handle multivari-
ate inputs and outputs. They have proved to be successful
in a number of industrial applications. One disadvantage of
MPC is that it requires a model of the process, describing
how it responds to changes in the control variables. As an
alternative to costly experimental tests, CAE simulations
can be used to construct control models. The coupling be-
tween MPC and CAE can be either active or passive. In
active coupling the CAE simulation runs concurrently with
the process. Since for most industrial applications the CAE
tools are designed to reflect the real process to a large degree
of accuracy, the CAE tool requires long simulation times,
much longer than the time scales of the process. For this
reason a passive approach to coupling is appropriate, and as
much physics as needed can be embedded in the CAE tool
without concern for computing time. In passive coupling
the CAE tool operates off-line and cycles through a wide
range of process parameters, producing a series of open loop
tests. The controller constantly access this stored data as
process conditions change. The CAE simulations and pro-
cess control cannot be completely decoupled, however, since
situtations may be encoutered which were not covered in the
off-line open loop tests. These considerations motivated the
grid architecture, which is presented in the next section.

3. GRIDMPC ARCHITECTURE
Two fundamental services are required. One service has to
interact with the computing resource (in the general case a
computer cluster) and handle submission and management
of tasks, allowing open loop simulations to be executed. In
the following it will be called the Job Management Service.
A second service has to be linked to a database, allowing
insertion or retrieval of data corresponding to the results of
open loop tests. This will be called the Open Loop Reposi-
tory Service.

Another part of the application has to be located directly on
the computer controlling the industrial process, in order to
interact with the process control software, and then call the
other services. The tasks involved in communicating with
both services are quite complex: calling the open loop repos-
itory service to search for open loop data, decide whether
a new simulation needs to be launched, wait for its results,
and insert the results in the database. This complexity led
us to separate these tasks in two parts, having on one side
a Process Control Service that handles all the communica-
tions with the Job Management Service and the Open loop
Repository Service, and on the other side a small client that
only interacts with the process control software and calls
the Process Control Service whenever the controller needs
new open loop data. Figure 1 shows the architecture of the
application and the interactions between services.

Figure 1: Grid architecture

3.1 Choice of Web Services
Having designed the general shape of the system and the
composition of the tasks, we had to define which standard
we would use. This choice had to be made mostly between
grid services using WSRF and pure Web Services. This
choice was mainly guided by the size of the architecture.

Grid environments like the Globus Toolkit[7] are aimed at
building any kind of computational grid. Even though Globus
Toolkit 4 is based on WSRF, it appeared that the rela-
tively small size of our application did not require the over-
powerful but complex tools Globus provide. Using WSRF.net
or even making our own implementation of WSRF would
have been possible, but the relative youth and the constant
evolution of this framework could have made the task more



difficult[4], which added to the complexity and overhead
WSRF appears to involve[14].

This led us to choose web services. We believe the overhead
involved by the use of web services will be acceptable for our
application and that web services provide the required func-
tionality, such as stateful transient services, to implement
our grid architecture.

3.2 Authentication and security
A key security element is that the client be authenticated
by a name and a password. However, as the number of calls
to services can be quite high, sending passwords repeatedly
through a network was not a good idea. This is why we
decided to use session tickets. Each call to any service has
to be authenticated by the session ticket as first argument.
The tickets have a limited lifetime and are managed by a
specific service called the Single Sign-On Service that was
added to the architecture. This service emits session tick-
ets when called by the clients (here authenticated by name
and password). Each other service calls the Single Sign-On
service to check the ticket it received from a client.

Figure 2: Integration of the single sign-on service in
the grid architecture

Moreover, as a matter of trust, each service wanting to au-
thenticate a ticket it received has to authenticate itself using
a server key. Lists of server keys and users accounts are kept
by the Single Sign-On service. Another element of security
is transport encryption[11]. The WS-Security standard re-
quires SOAP messages to be sent through encrypted HTTPS
protocol instead of plain text HTTP. All the messages sent
between two services and between a client and a service have
to be sent over HTTPS. Figure 2 shows how messages are
sent between services, and how the Single Sign-On service
integrates into the grid architecture.

4. DESCRIPTION OF THE SERVICES
4.1 Job Management Service
The goal of this service is not only to provide job submission
capability to GridMPC, but also to serve as a general job
submission service, capable of submitting jobs and handling
files for any application to be run on a cluster controlled by

Sun’s Grid Engine scheduler. Therefore we will present it in
greater detail than the other services. In GridMPC, the job
management service handles all the open loop simulations
that need to be launched on the cluster. The cluster the
service is linked to is a Sun V60 Cluster, Chorus, housed
by the Advanced Computing Research Laboratory[1] at the
University of New Brunswick.

The scheduling of tasks is done by Sun’s Grid Engine (SGE)
software [13]. This scheduler allows three main commands
to be run on the shell to manage jobs: qsub to submit a
job to the queue, qstat to check the status of all jobs or one
user’s jobs, and qdel to remove a job from the queue or kill
it. To submit a job, a batch file containing all information
about the job to be launched has to be given as an argument
to the qsub command.

An important point is that the only access allowed to the
cluster is an ssh connection to the master node, for security
reasons. This means that to launch a job, a user has to log in
using an ssh client, and launch the Grid Engine commands in
the shell. Moreover, there is no API allowing an application
to communicate directly with Grid Engine without the shell.

For our purpose, this means that the web service was not
installed on the master node of Chorus itself but on an-
other machine hosting an application server providing web
services. The service itself connects to the master node of
Chorus using an ssh client, and communicates with Grid En-
gine through shell commands, as presented in figure 3. An
ssh client had to be integrated into the service and handle all
communications with the cluster, using ssh to communicate
with the shell, and sftp to upload and download files.

Figure 3: Communication between Job Manage-
ment Service and the cluster

The Job Management service provides methods to handle
job submission and file transfer. All operations done on the
cluster are done under a generic grid account, but files and
jobs are registered with the session ticket used for authen-
tication, and so are associated with a user account present
on the Single Sign-On service. This allows the handling of
basic rights for users and the management of the lifetime of
objects.



Figure 4: Architecture of the Job Management Service

4.1.1 Files
The service allows users to upload files to the cluster. This
allows users to provide input files to a program, such as
meshes for CAE software. Users can also download files re-
sulting from the execution of a program. Files are stored on
the cluster under the grid account, but every virtual user
has his own directory. A list of all the files and their sta-
tus is kept by the web service in order to avoid problems
such as overwriting an existing file. Three file manipulation
methods are provided: UploadFile, DownloadFile, and
DeleteFile. A file has the same lifetime as the session. This
means that when the authentication ticket expires, files are
deleted. However, they can be kept if the user extends them
by calling the ExtendFile method.

4.1.2 Jobs
Jobs, in the form of SGE batch scripts, are submitted to
the cluster using the SubmitJob method. After job sub-
mission, GetStatus can be used to check whether the job
is queuing, transferring, running or done and KillJob can
be used to kill the job if the user does not need it anymore.
There is also a CleanSession method that can be called
to clean the user directory by killing all running jobs and
removing all output and input files.

Two final methods are provided by this service: CreatePro-

gram allows an uploaded file to be recognized as a script
submitting jobs, and DeleteProgram removes a program
from the list, but only one belonging to the user.

The internal architecture of the service is shown in Figure 4.
It includes a script run automatically to remove files whose
lifetime has expired.

4.2 Open Loop Repository service
This service stores all the results from the open loop tests.
It provides clients a way to search in the list and to insert
new elements in the list. It was decided to use a relational
database to store the open loop results. Each industrial
process supported by the system has its open loop results
stored in a specific table. Every input or output of the
process is a field of the table. The date of insertion of the
record is also added as another field for testing reasons. The
key of the table is defined with all the input fields to avoid
having two identical situations present in the table.

This service provides two methods for the clients. The first
one is Insert, which inserts an (Inputs,Outputs) pair into
the table corresponding to the process identified in the ar-
guments. The second method corresponds to a database
search. It is named getClosestValue and searches in the
table corresponding to the process for the record having the



inputs closest to the one given in the arguments. The notion
of closest is defined by considering the following distance
function.

We consider an industrial process having n inputs and m
outputs. Ii(k) is the ith input of the kth record. Di is the
ith of the desired inputs.

Distance(I(k), D) =

i=nX
i=1

| Di − Ii(k) | (1)

The record returned will be the one having the smallest dis-
tance from the desired inputs. What is exactly returned is
a vector containing: the smallest distance, the inputs corre-
sponding to this distance and the corresponding outputs of
the record chosen. If the distance is zero, it means that the
exact inputs have been found. If the distance is nonzero, we
have an approximation of the desired situation.

4.3 Process Control Service
This service provides only one method, called getOpen-
LoopData, which takes process inputs as parameters and
returns process outputs. When the client calls this method,
the Process Control Service then calls the Open loop Repos-
itory Service to check whether such a situation is present in
the database, by calling the getClosestValue method. If
it is the case, i.e. when the distance returned is null, the
Process Control Service simply gives the outputs received
from the Open Loop Repository back to the client.

If the required distance in nonzero, the Process Control ser-
vice will also return to the client the approximated data it
received, but it will also create a new thread. The data are
given back to the client so that the controller can continue
to control the industrial process in real time. The newly cre-
ated thread works in the background to fill the database with
a new record corresponding to the situation, so that if the
same situation is faced again, exact data will be available.
To do this, the thread calls the Job Management Service
SubmitJob method to launch a new open loop simulation,
wait until it is done by checking at regular intervals using
the getStatus method, download the results and then call
the Open Loop Repository service to have the data inserted
in the database.

4.4 Single Sign-On Service
This service handles authentication and session management
using session tickets. Before performing actions on the grid,
a user must obtain a ticket, which is represented here by a
random integer and has a limited lifetime. The ticket can be
extended if the operations the user has to make on the grid
last longer than the original lifetime. When all the actions
a user has to make on the grids are over, a user can destroy
its session ticket to avoid any risk of having it reused by
someone else.

As a call to any service is made with a session ticket as
argument, all other services must have a way to authenticate
these tickets. The single sign-on service provides methods
to validate a ticket and obtain its owner.

4.5 Client
The client is the only part of the architecture that is not
built with the objective to be kept as general as possible. It
is because the client will have to talk directly with process
control software, and for any kind of software a specific client
will have to be built. Moreover as soon as the open loop data
are received by the client, the manipulations made on these
data depend on the process itself and on the algorithm used
for process control.

However one part of the client is reusable. It corresponds to
the classes handling communications with the Single Sign-
On service (for session creation) and the process control
service (to get open loop data). These actions are made
available by creating an instance of a class called GridSer-
vicesHandler, and by using the local methods it provides.
Using this, users will be able to build their own client for
a particular industrial process, following the scheme repre-
sented in Figure 5.

Figure 5: Relations between client, web services and
process control software

5. IMPLEMENTATION AND TESTS
Our system was implemented on 3GHz Pentium 4 comput-
ers running Linux. The application server used was Jakarta
Tomcat [2], with Apache Axis[3] as the web services frame-
work. The entire application was programmed in the Java
language. The database system used is MySQL[8], and for
the ssh connexion to the cluster we used J2SSH java ssh
client[9]. All timing results shown are the median of 10,000
experiments, unless otherwise indicated.

Previous research has already shown that coupling CAE-
generated open loop tests with MPC leads to an improve-
ment in process control[6]. This is why we do not focus
here on quantifying this improvement, as it depends on the
process itself. Tests were made using a simple industrial
process we designed and modeled. We focused on measur-
ing the overhead of the grid architecture designed. To make
comparison possible, we also tested every case with a mod-
ified version, where the data management code from the
open loop repository service is directly plugged to the pro-
cess controller, as if the database search was done locally
by the process controler. Calculating the difference between
a normal call and this one gives the overhead of the grid
architecture.

The sequence of operations in a call to the Process Control
Service is shown in Figure 6, together with the timing of each
operation. These times were obtained with all the services
present on a single machine, to measure precisely the over-
head caused by the use of web services. Notice that most
of the overhead is caused by the transport, which includes
encoding and decoding to and from SOAP messages. These



Figure 6: Sequence of operations in a call to the Process Control Service

calls are done between the client and the Process Control
Service, and between the Process Control Service and the
Open Loop Repository service. There is also communica-
tion involved in the ticket verification step, as it involves a
call to the Single Sign-On service each time any method of
any other service is called. A ticket verification takes 57 mil-
liseconds, of which transport over the local loop represents
52 milliseconds. The overhead involved in other parts of the
application, such as loading the configuration, checking the
arguments given or storing states in files, is very small com-
pared to the time spent in transport. Given these elements,
the time for the client to call the getOpenLoopData method
of the Process Control service and get the desired data can
be broken down as follows:

TgetOpenLoopData = TTransportClient↔PCS

+ TTransportPCS↔OLR + TTransportPCS↔SSO

+ TTransportOLR↔SSO + 2TInsideSSO + TInsidePCS

+ TInsideOLR + TQuery (2)

TInsidePCS , TInsideOLR and TInsideSSO were found to be
respectively 14 ms, 9 ms and 5 ms with the hardware and
software configuration detailed above. As the calls to the
getOpenLoopData method of the Process Control Service
and to the getClosestValue of the Open Loop Repository
service have the same arguments and output types, messages
will be of same size. This leads us to conclude that with the
same network conditions, TTransportClient↔PCS is equal to
TTransportPCS↔OLR.

The time to query the database, which corresponds to the
time taken to get the data if it is directly plugged to the
process controller is quite short (3 milliseconds) in the case
where only a single record is present in database. The query

corresponds to a multi-dimensional search, on a list of (in-
put, output) pairs. In our test case there are four reals as
inputs and three time series (with 300 elements each) as
outputs. Table 1 shows that the query time remains modest
as the number of records increases, reaching 2 seconds with
400 000 records.

Records
in DB

DB size Direct query Query
through grid
architecture

1 < 1MB 3 ms 245 ms
400 000 11GB 1962 ms 2220 ms

Table 1: Influence of database size on query times

To test more realistic cases, where services are deployed on
different machines of the same type, we first measured sepa-
rately each transport time, with 1000 tests in different traffic
conditions, using two identical machines. These results are
given in Table 2. The difference between Client-SSO trans-
port and Client-PCS transport is caused by the different size
of the data. Where the SSO only returns a ticket and a date,
corresponding to two integers, the PCS has to return three
time series of 240 reals each. We then used Equation 2 to
deduce the total time needed to get open loop data. One
condition for this approach to be valid is that traffic from
different calls does not collide. This is not the case as the
data transferred have limited size and the bandwidth used
remains a small portion of the available bandwidth on the
shared resources.

Once these individual times have been measured, we can
compose some representative situations and calculate the



Resources
between
client and
server

Round trip
ping time

Transport
Client-SSO

Transport
Client-PCS

Local loop 0.04 ms 52 ms 53 ms
Single
Switch

0.5 ms 53 ms 54 ms

Switch -
Router -
Switch

1.5 ms 62 ms 89 ms

Internet* 120 ms 582 ms 727 ms
Internet +
DSL line to
client**

300 ms 1341 ms 1787 ms

Table 2: Influence of network between services
on running time (* ENSM.SE (France) - UNB
(Canada); ** Aliant DSL - UNB)

time to get open loop data in each case. Four situations
have been selected, and results are shown in Figure 7. For
each situation the value presented is the time for the client
to call the Process Control Service and get open loop data,
with a database containing only the default open loop test.
The second and third cases appear to be the most realis-
tic ones for our purpose, illustrating the case where all the
services are deployed within a manufacturer’s intranet, and
the computer controlling the machine could be on the same
intranet or accessible remotely via the Internet. In the lat-
ter case the overhead involved is within a range of a few
seconds, which is comparable to the time to query a large
dataset.

6. CONCLUSION
This study proposed a grid architecture to solve the prob-
lem raised by the dynamic use of open loop simulation to
improve the control of industrial applications. The archi-
tecture designed has been implemented using existing web
services standards without using over-powerful but complex
tools provided by the grid services framework. All the draw-
backs of using pure web services have been worked around
at the implementation level.

Our tests reveal that the overhead involved in encoding and
decoding by the use of web services is approximately 250 ms,
when all services are deployed on an intranet. This is well
within acceptable limits for the intended use of GridMPC,
such as the control of injection molding machines. This lim-
ited overhead is one of many key features of GridMPC, such
as the reusability of services and the possibility of controlling
many industrial processes at the same time.

A more significant limit to the performance of GridMPC
is the query time of the database, which in our implemen-
tation has linear complexity. In practice, a tradeoff must
be found between query time and suitability of approximate
open loop results. Further work will involve exploring better
algorithms for multidimensional searching, and the addition
of a process monitoring service to allow improved parame-
ters to be provided to the CAE simulations.

Figure 7: Description of the network architectures
considered
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