
 1

A Bottom-up Strategy for Query Decomposition

Abstract—In order to access data from various different data
repositories, in Global-As-View approaches an input query is
decomposed into several subqueries. Normally, this
decomposition is based on a set of mappings, which describe the
correspondence of data elements between a global schema and
local ones. However, building mappings is a difficult task,
especially when the number of participating local schemas is
large. In our approach, an input query is automatically
decomposed into subqueries without using mappings. An
algorithm is proposed to transform a global path expression (e.g.,
an XPath query) into local path expressions (e.g., XPath queries)
executable in local schemas. This algorithm transforms parts of a
path expression from right to left. This transformation is applied
from the bottom to the top of a tree and depends on structures of
local schemas. Compared to top-down approaches as by Lausen
and Marron (LM), our bottom-up approach can be more
efficient. Even in the worst case, the time complexity of our
algorithm can be n times better than that of LM, where n is the
number of parts in a global query. In the best case, for a k-ary
tree of height h, the time complexity of our algorithm is
T(n,k,h)= min(n,h), whereas that of LM we have found is

 T(n,k,h)=n*(kh+1-1)/(k-1)

This can reduce to a large extent the time for forming subqueries
for local (e.g., XML) schemas.

Index Terms—Query Decomposition, Bottom-up Strategy,
Database Integration.

I. INTRODUCTION
NE of the most important challenges of Web applications
is the utilization of available heterogeneous web data

sources to automatically share or interoperate data. This could
help users, who want to get relevant data from distributed and
chaotic sources, to avoid generating these data from scratch.
However, data integration (data interoperation and data
interchange) is not an easy task. It requires several steps, such
as: (i) creating a global schema and a set of mappings for data
sharing between different sources, (ii) resolving data conflicts
among different sources, (iii) decomposing queries of users,
and (iv) optimizing these queries for efficient answering.

In Global-As-View (GAV) integration systems [5, 11, 12],
all participating data sources follow their own schemas, which

typically differ from the global schema. When users pose
queries based on this global schema, these queries cannot be
directly employed to query local sources due to the different
structures of the global schema and the local ones. In order to
access data from these sources for further processing, the input
query must be decomposed into subqueries. Each subquery
conforms to the structure of a local source’s schema; thus, it
can be executed to get the relevant data.

Articles about the most recent XML-based integration
systems include: [1, 2, 3, 6, 10, 13]. The common feature of
these systems is that a global view (i.e., a global schema) is
built to reconcile discrepancies among heterogeneous data
sources. Based on this global view, a set of mappings [11, 13]
is defined to describe the correspondences of elements between
local sources and those of the global view. A mediator [5], the
main component of such a system, handles query processing
using mappings. Thus, mappings play an important role in the
success of the systems. However, building mappings is a
difficult task, especially when the number of participating local
schemas is large. Normally, these mappings are handcrafted
with the help of database experts.

An introduction of our proposed approach is given in

Section II. Section III gives a query decomposition example.
The assumptions of our approach are stated in Section IV.
Section V describes our algorithm for query decomposition,
including a flowchart and examples. An extension of our
algorithm to process other cases of input queries is given in
Section VI. Finally, Section VII focuses on our algorithm
analysis and comparisons.

II. PROPOSED APPROACH
In our approach, a user’s query (e.g., an XPath query [14]) is

decomposed into subqueries without using mappings.
Compared to the strategy proposed by Lausen and Marron [7]
for query decomposition without using mappings, our approach
appears to be more efficient, because instead of a top-down
strategy, a bottom-up strategy is used for query decomposition.
In the top-down strategy, the leftmost part (i.e., p1) of a global
XPath query '/p1/.../pi/.../pn' is first evaluated. This
evaluation is performed from the top to the bottom of the XML

Le Thi Thu Thuy1, Doan Dai Duong1 , Virendrakumar C. Bhavsar1 and Harold Boley2

1 Faculty of Computer Science, University of New Brunswick
Fredericton, New Brunswick, Canada

{Thuy_Thi_Thu.Le, Duong_Dai.Doan, bhavsar}@unb.ca

2 Institute for Information Technology - e-Business
National Research Council of Canada, Fredericton, New Brunswick, Canada

harold.boley@nrc-cnrc.gc.ca

O

 2

tree representing the local schema. This step is recursively
applied to all parts of the global query from left to right (i.e.,
from p1 to pn). The top-down query decomposition algorithm
is not efficient because in an XPath query the rightmost part
(i.e., pn) plays the most important role. It is the actual result,
which the user wants to get from the integrated system. We
need to determine whether or not a subquery exists for a
specific local schema. If pn does not exist in a local schema, we
can quickly conclude that there is no subquery for this schema.
Therefore, in the bottom-up strategy, we first evaluate the
rightmost part, and then sequentially proceed from the right to
the left part of the input query, and from the bottom to the top
of the XML tree representing the local schema. This can
significantly reduce the time for searching information in XML
trees.

III. QUERY DECOMPOSITION EXAMPLE
Assume that we have two local schemas (Fig. 1.b and 1.c) of

two databases, namely SESP and BIGGER, represented in terms
of the XML format. We also assume a global schema (Fig.
1.a), which is the result of an integration of the two local
schemas SESP and BIGGER. This schema integration step is out
of scope of this paper (see [5] for details). Our task is to
process input queries so that they can get relevant data from the
two above local databases using the global schema. The main
task is query decomposition. An example of an input XPath
query is Qglobal=
'/department/mobile/products/jammer[price<200]'
, finding the content of all jammer elements having price
less than 200, which follows the structure of the global
schema. Since each local schema has its own structure, the
above query must be decomposed into two queries QSESP
='/products/jammer[price<200]' for the SESP schema
and QBIGGER='/department/mobile/jammer[price<200]'
for the BIGGER schema.

IV. ASSUMPTIONS
In order to apply our algorithm, we make the following

assumptions similar to those by Lausen and Marron [7]. There
are several data repositories participating in the system. Each
of them, represented in XML, has its own local schema. Since
these data repositories are created by different designers, there
often exist some conflicts between their respective structures.
Moreover, these schemas share a pre-defined global schema.
For example, in Fig. 1, while in the SESP schema, products is
the father element of jammer, in the BIGGER schema mobile
is the father element of jammer; also, in the global schema,
mobile is the father element of products. It is clear that there
are conflicts between the structures of schemas SESP and
BIGGER. However, when data between them need to be
interoperated, they both conform to the global schema as their
integration view. We also assume that naming conflicts among
local schemas do not exist. This means that our algorithm
cannot be applied directly in the presence of naming conflicts
such as synonyms or homonyms among local schemas. Finally,
we assume that there are two built-in functions for finding the
occurrence and the position of a node in an XML tree.

V. QUERY DECOMPOSITION ALGORITHM
In our algorithm, local schemas are processed sequentially.

For each local schema, the global query is transformed into a
local query following the structure of this local schema. Thus,
by applying this algorithm for all local schemas, local
subqueries are obtained for these local sources. The algorithm
given in pseudo-code below transforms an XPath query
Qglobal='/p1/p2/…/pi/…pn-1/pn' following a global
schema into a subquery following a local schema. The main
idea of the algorithm is as follows. We first take the rightmost
part Pn of the user query to evaluate. If Pn is not found on the
local schema, we can immediately conclude that there is no
subquery for the local schema and stop the algorithm.
Otherwise, if Pn is found at a node in the tree (the local
schema), we mark that node so that the next search will only
be performed on its ancestor nodes (the nodes on the branch
from the marked node to the root of the tree). Sequentially, we
take Pi (i=(n-1)..1) of the query to evaluate. We check
whether Pi exists in the local schema or not. Note that, instead
of searching the whole tree, we only need to search the
ancestor nodes of the previously found node, which we have
marked. This can significantly reduce the time for searching a
node on a tree. If Pi is found, the local query will be a
concatenation of Pi and Pn. In the algorithm (Fig. 2), ⊕

denotes a concatenation.
Since the algorithm searches for Pn in the XML tree of a

local schema from the bottom up to the root, Anchor is used
to mark a node in the tree from where the algorithm can start
to search. At the initial state of our algorithm, Anchor =
LeftmostLeafNode means that we begin to search from the
leftmost leaf node of the tree. The function Check(Pi ,
Anchor) in line 14 of the pseudo-code in Fig. 2 checks
whether Pi exists from the Anchor up to the root node. The
main task of Check(P, Anchor) is to find a node P in the
local schema (i.e., a tree) from a current node Anchor up to
the root node such that the number of visited nodes in the

a. Global schema

b. SESP schema

c. BIGGER schema

Fig. 1. Example of a global schema and two local schemas (from [7])

 3

worst case is equal the number of nodes in the tree. This
ensures that the time complexity of our algorithm (in Fig. 2)
for k-ary tree in the worst case is

 T(n,k,h)=

In order to achieve this goal, we construct a queue Q. If it is

the first time search is performed on the tree, we begin our
search with leaf nodes. Each time we visit a node, if that node
is not P (i.e., we still have not found P in the tree) we check if
its father node is already in Q. If the father node is not in Q, we
insert the father node in Q. After processing all the leaf nodes,
we only need to process the nodes in Q (i.e., all father nodes of
leaf nodes). Similarly, if this strategy is iteratively applied for
every node in Q, we can visit all nodes from the bottom to the
top of the tree. Note that in this case each node is visited only
once. (If the previous search has found a node, we simply
search on the ancestors of that previously marked node, i.e.,
Anchor). This function is detailed in Fig. 3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

Input
 A local schema S
 A user query Qglobal based on a global schema
Output
 A decomposed query Subquery for S

Algorithm

Function BottomUpDecomposition(S, Qglobal)
Anchor:= LeftmostLeafNode;
Subquery:='';
i:=|Qglobal|;
repeat
 if Check(Pi , Anchor)
 {
 if Subquery=''
 Subquery:=Pi
 else
 {
 if Pi=Anchor
 Subquery:=Pi⊕'/'⊕Subquery
 else
 Subquery:=Pi⊕'//'⊕Subquery;
 }

 if IsRoot(Pi)
 Subquery:='/'⊕Subquery
 else
 {
 if (i>1)
 % pi is not the leftmost part of Qglobal
 Anchor:=father(Pi)
 else
 Subquery:='//'⊕Subquery
 }
 }
 else
 % Pi does not exist
 if (Subquery <> '') and (i=1)

 Subquery:='//'⊕Subquery;
i:=i-1;
until (i=0) or (Subquery='') or IsRoot(Pi+1);
return Subquery;

The flowchart in Fig. 4 illustrates the algorithm given in
Fig.2. In order to explain our algorithm, we will walk though it
using the two local schema examples of Fig. 1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Input
 P: a node to be found and
 Anchor: current anchor
Output
 Return true if P is found and
 false if P is not found; and

Anchor

Algorithm

Function Check (P, Anchor)

Q:=nil; // khoi tao queue Q
QQ.next:=Q; // the end node of Q
Dad='';
% we assume root.next=nil;
if Anchor = LeftmostLeafNode
{
 while (Anchor <> nil and Anchor.value <>P)
 { if Anchor.father.value <>Dad

{
 QQ.next:=Anchor.father;
 QQ:= Anchor.father;

 Dad:=Anchor.father.value;
}

 Anchor:=Anchor.next
}

 if (Anchor <> nil) return true;
 Anchor:=Q;
 while (Anchor<>nil and Anchor.value <> P)
 {
 if Anchor.father.value <>Dad
 {

QQ.next:=Anchor.father;
QQ:= Anchor.father;
Dad:=Anchor.father.value;

 }
 Anchor:=Anchor.next;
 }
 if Anchor<>nil
 return true % we found P
 else
 return false % we did not find P

}
else % Anchor is not at the leaf node
{
 while ((Anchor<>nil) and (Anchor.value <>P))
 Anchor:=Anchor.father;
 if (Anchor<>nil)
 return true % we found P
 else
 return false; % we did not find P
}
return;

 Fig. 2. Pseudo-code of the algorithm for finding a subquery

Fig. 3. Pseudo-code of the algorithm for checking the existence of a node
from the bottom to the top in a tree

h+1k -1
k-1

 4

Example1
In this example, from a global query Qglobal=

'/department/mobile/products/jammer', we produce a
subquery for the local schema SESP (Fig. 1.b) using the
algorithm of Figure 4. We initialize Subquery:='' and
Anchor:= LeftmostLeafNode. We start the algorithm with
P4:='jammer'. Since P4 is found in schema SESP, P4 is a part
of the transformed query. Because Subquery='', we obtain
Subquery:='jammer'. Now, we have i>1,
Subquery:='jammer', P4 not the root of SESP, and
Anchor='product'. Therefore we continue the loop.
Iteratively, we take P3 := 'products' from the query Qglobal.
Since P3 is found in the SESP schema, P3 is a part of the
transformed query. Because P3=Anchor, we obtain
Subquery:=P3⊕'/'⊕'jammer' (i.e.,
Subquery:='products/jammer'). Now, P3 = 'products'
is the root node of the SESP schema and we stop the algorithm.
We find that the local query for the SESP schema is
Subquery:='products/jammer'.

Example2
In this example, we produce a subquery for the schema

BIGGER (Fig. 1.c). Given Qglobal:='/department/mobile
/products/jammer', like in example 1, we initiate
Subquery='' and Anchor= LeftmostLeafNode. We take
the rightmost part P4:='jammer' from the query Qglobal .
Now, P4 is found and Subquery=''. So, we assign
Subquery='jammer'. Because Subquery <>'' and P4 is
not the root node, we continue our algorithm by searching from
the mobile node up to the root node
(Anchor:=father('jammer'):='mobile'). In the next
step, we have P3='products'. We find that P3 does not exist
in BIGGER, Subquery <>'' and i>1. Therefore, the next step
is now performed with P2:='mobile'. Because P2 is found in
the schema, Subquery <>'' and P2 is not the root node, the
subquery becomes 'mobile/jammer' and we go to the next
step with P1:='department', and Anchor='department'.
P1 is found in BIGGER. Since department is the root node of the
BIGGER schema, stop the algorithm. The subquery found for

Fig. 4. Flowchart of the algorithm in Fig. 2 for finding a subquery

Check(Pi, Anchor)

Pi exists in the local
schema S from Anchor up

to the root node

Pi is matched with the
root of S

Subquery:='/'⊕Subquery

Subquery:=Pi⊕'/'⊕Subquery

Anchor:=father(Pi)in S

Yes

i>1

No

Yes

Anchor:=LeftmostLeafNode
Subquery:=''
i:= |Qglobal|

Stop

Subquery=''

Yes
No

Subquery:=Pi Pi=Anchor

Yes

Subquery:=Pi⊕'//'⊕Subquery

No

Return Subquery

Yes

No

No

Subquery=''

i=1

Subquery:='//'⊕Subquery

Yes

No Yes

No

i := i-1

 5

the BIGGER schema is
Subquery:='/department/mobile/jammer'.

VI. ADDITIONAL CASES OF INPUT QUERIES

A. Constraints in Queries
We can apply our algorithm to process XPath queries that

contain constraints (filter expressions). For example, if we have
a query Qglobal :=
'/department/mobile/products/jammer[price<200]'
, we have to find the corresponding element of price for
subqueries following local schemas. Since price is a child
element of jammer, we can apply our algorithm by examining
price before jammer. This reduces considerable time for
forming a subquery because we can avoid transforming the
whole query if price does not exist in a local schema. For
example, if we apply the Qglobal query to the schema in Fig. 5,
we can quickly recognize that the corresponding subquery for
this schema does not exist when we first transform price.

However, if constraints of input queries are more general

(e.g., [/price<200] or [//price<200]), we can separately
apply our algorithm for those constraints before transforming
the whole query.

B. Conflicts Between Schemas
Our algorithm shows mismatches between the global schema

and local ones just happen with structures. Other naming
conflicts [4], such as synonyms and homonyms, are not
mentioned. However, we can resolve those conflicts using a
dictionary, which contains names of elements in the global
schema and their corresponding ones in local schemas. Using
the dictionary, we first translate the name of each element of
the global query into its corresponding name in the local
schema, and then apply the algorithm to it. For example, in Fig.
6, there are naming conflicts between the global schema and
the local schema F such as name and fullname, and jammer
and jammerp. In this case, we can use a dictionary (Fig. 6.c) to
resolve the conflicts. Thus, when finding a subquery for the
schema F, instead of using name to search in schema F, we use
fullname with the support of the dictionary.

C. Leaf Nodes with the Same Label
In some special cases, there are leaf nodes with the same

label. For example, name is found in several leaf nodes of both
the global schema (Fig. 7.a) and the local schema (Fig. 7.b).

This situation is actually a homonym conflict, a special type

of the naming conflict. As stated in Section IV, our algorithm
cannot be applied directly in the presence of naming conflicts.
For example, given a query Qglobal :='jammer1/name', we
need to decompose a local query for G. When applying our
proposed algorithm, fortunately, if Anchor first points to
name, which is the child node of jammer1 in G, we obtain that
a local query for G is Subquery :='//jammer1/name'.
Otherwise, if Anchor points to name, which is the child node
of jammer2 in G, we only obtain Subquery :='//name'.
This local query '//name' will provide more solutions than
we want (extracted data are name of both jammer1 and
jammer2 in G). However, with the top-down strategy [7], the
local query produced is Subquery :='//jammer1/name',
which is a better solution. It is worth emphasizing that such
homonym conflicts do not occur often. Normally, these

Fig. 5. A local schema without the price leaf node (adapted from [7])

a. Global schema

b. Local schema F

Fig. 6. Naming conflicts between a global schema and a local schema
(adapted from [7])

Global schema Schema F
name fullname
jammer jammerp
… …

c. Dictionary

a. Global schema

b. Local schema G

jammer1 jammer2

name name

jammer1 jammer2 jammer3

name name name

Fig. 7. Homonym conflicts in a global schema and a local schema

 6

conflicts must be solved during the schema integration
processes. A possible solution is to rename the homonymous
terms (nodes). This is, however, out of scope of this paper (see
[4, 5] for details).

VII. ALGORITHM ANALYSIS
In [7], the authors transform a global XPath query into local

subqueries for local schemas using three operators, namely no
transformation, subquery generalization and
subquery elimination. These operators are used to
compute and select suitable elements from the global query to
form local subqueries. In their top-down algorithm, the
leftmost part (i.e., p1) of an XPath query
‘/p1/.../pi/.../pn’ is first evaluated using these three
operators applied to nodes in a local schema. The result from
this step is a context C1 of p1 in the local schema, such as either
no transformation (if p1 is found at the root node),
subquery generalization (if p1 is found, but not at the
root node) or subquery elimination (if p1 is not found).
This step is recursively applied to all parts of the global query
from left to right (i.e., from p1 to pn). Thus, the result of their
algorithm is a sequence of contexts C1,...,Ci,...,Cn of the
query ‘/p1/.../pi/.../pn’. From this sequence of contexts,
the corresponding subquery of the input query will be
produced. Since each pi (i=1..n) has to be evaluated by all
three operators to select the best context, the time to search for
information in the local schema is computed as follows.

Suppose the local schema is represented in terms of a binary
tree with h as the height of the tree. Let T(1,2,h) and
T(n,2,h) represent the time complexity of the evaluation of
an arbitrary pi and a whole query with n parts for a binary tree
of height h, respectively. For each pi (i=1..n) of the global
query, the three operators, namely no transformation,
subquery generalization and subquery elimination,
are applied 1, 2h+1-1 and 1 times, respectively, to evaluate pi.
Therefore,

T(1,2,h)=1 + (2h+1 -1) +1 = 2h+1 +1
 and

T(n,2,h)=n*(2h+1 +1).
In general, we find that the time complexity of the algorithm

in [7] for the whole query given a full k-ary tree is

T(n,k,h)=

However, as we have discussed in Section II, this top-down
query decomposition algorithm is not efficient because in an
XPath query the rightmost part (i.e., pn) plays the most
important role. It is the actual result (e.g., jammer), which the
user wants to get from the integrated system. This can
determine whether or not a subquery exists for a specific local
schema. If there exists no pn in a local schema, we can quickly
conclude that there is no subquery for this schema. Thus, in our
approach, we first evaluate the rightmost part, and then
sequentially proceed from the right to the left parts of the input
query and from the bottom to the top of the XML tree

representing the local schema. The worst case of our algorithm
falls into a situation where there exists no subquery for a local
schema. In this case, the rightmost part Pn of the global query
has to be compared to all nodes of the local schema (i.e.,
2h+1-1 nodes for a binary tree). Therefore, the time complexity
of our algorithm is T(n,2,h)=2h+1-1 for a binary tree and

 T(n,k,h)= for a full k-ary tree.

In the best case, the rightmost part Pn matches with a leaf
node of the tree at the first and the same for all Pi nodes at the
upper levels of the tree. Therefore, the time complexity of our
algorithm in this case is T(n,2,h) = min(n,h) for a binary
tree and also T(n,k,h)= min(n,h) for a full k-ary tree.
Here, the time complexity is min(n,h) because our algorithm
can stop when either all n parts of Qglobal are processed or all
nodes from the bottom to the top of a tree (with the height h)
are traversed.

VIII. CONCLUSION
We have proposed a bottom-up algorithm for query

decomposition without predefined mappings. The algorithm
can be applied to distributed XML-based data repositories,
which may contain conflicts between their respective
structures. Having the same motivation as [7] but following a
different strategy, we have proposed a more efficient query
decomposition algorithm. Our contributions are as follows: (i)
a more efficient algorithm for query decomposition is
proposed, that is n times better than that of [7] in the worst case
and in the best case its time complexity is only T(n,k,h)=
min(n,h), compared to

T(n,k,h) =

of [7], (ii) a global query is efficiently processed based on its
constraints, because our algorithm can stop as soon as a local
schema is found not to satisfy these constraints, (iii) our
algorithm can work with naming conflicts between local
schemas and the global one using a dictionary. Our algorithm
can also be extended to work not only with XPath queries, but
also with general path expressions like those in Object-
Oriented Databases [8, 9].

REFERENCES
[1] C. Baru, A. Gupta, B. Ludaescher, R. Marciano, Y. Papakonstantinou,

and P. Velikhov, “XML-Based Information Mediation with MIX,” In
Demo Session. ACM-SIGMOD'99, Philadelphia, PA, 1999.

[2] C. Baru, B. Ludaescher, Y. Papakonstantinou, P. Velikhov, and V.
Vianu, “Features and Requirements for an XML View Definition
Language: Lessons from XML Information Mediation,” W3C's
QueryLanguage Workshop, 1998.

[3] Y. Bi and J. Lamb, “Facilitating Integration of Distributed Statistical
Databases Using Metadata and XML,” Available online:
http://webfarm.jrc.cec.eu.int/ETK-NTTS/Papers/final_papers/en187.pdf,
2001. Last accessed on September 8, 2006.

[4] D.D. Duong and L.T.T. Thuy, “Classification and Reconcilement of
Conflicts between Heterogeneous XML Schemas,” Proceeding of the
10th Conference on Artificial Intelligence and Applications, TAAI,
2005.

[5] D.D. Duong and V. Wuwongse, “XML Database Schema Integration
Using XDD,” Proceedings of Advances in Web-Age Information

h+1k -1
k-1

h+1k -1
n*

k-1

h+1k -1
n*

k-1

 7

Management Conference, China: Lecture Notes in Computer Science,
Springer Verlag, vol. 2762, 2003, pp. 92-103.

[6] P. Gianolli and J. Mylopoulos, “A semantic approach to XML based
data integration” Proceedings of the 20th. International Conference on
Conceptual Modeling (ER), Yokohama, Japan, 2001.

[7] G. Lausen and P.J. Marron, “Adaptive evaluation techniques for
querying XML-based E-Catalogs,” DBLP, 2002, pp. 19-28.

[8] Ludascher, R. Himmeroder, G. Lausen, W. May and C. Schlepphorst,
“Managing semistructured data with FLORID: a Deductive object-
oriented perspective,” Journal of Information Systems, vol. 23, no. 8,
1998, pp. 1-25.

[9] W. May, “Logic-based XML data integration: a semi-materializing
approach,” Journal of Applied Logic, vol. 3, No. 1, 2005, pp. 271–307.

[10] The MIX (Mediator of Information using XML). Available online at:
 http://db.ucsd.edu/Projects/MIX/, 1999. Last accessed on September 8,
 2006.
[11] L.T.T. Thuy and D.D. Duong, “Query Decomposition Using the XML

Declarative Description Language” Proceedings of International
Conference of Computational Science and Its Applications, Singapore:
Lecture Notes in Computer Science, Springer Verlag, vol. 3481, 2005,
pp. 1066-1075.

[12] L.T.T. Thuy and D.D. Duong, “Integration of XML Databases,” The
Journal of Hue University – Vietnam, vol. 22, 2004, pp 45-52.

[13] L.T.T. Thuy and V. Wuwongse, “Query Processing of Integrated XML
Databases” Proceedings of the 5th International Conference on
Information Integration and Webbased Applications & Services, Jakarta,
Indonesia, 2003, pp. 335-344.

[14] XML Path Language (XPath). Available online at:
http://www.w3.org/TR/xpath. Last accessed on September 8, 2006

