
 1

A Bottom-up Strategy for Query Decomposition

 
Abstract—In order to access data from various different data 
repositories, in Global-As-View approaches an input query is 
decomposed into several subqueries. Normally, this 
decomposition is based on a set of mappings, which describe the 
correspondence of data elements between a global schema and 
local ones. However, building mappings is a difficult task, 
especially when the number of participating local schemas is 
large. In our approach, an input query is automatically 
decomposed into subqueries without using mappings. An 
algorithm is proposed to transform a global path expression (e.g., 
an XPath query) into local path expressions (e.g., XPath queries) 
executable in local schemas. This algorithm transforms parts of a 
path expression from right to left. This transformation is applied 
from the bottom to the top of a tree and depends on structures of 
local schemas. Compared to top-down approaches as by Lausen 
and Marron (LM), our bottom-up approach can be more 
efficient. Even in the worst case, the time complexity of our 
algorithm can be n times better than that of LM, where n is the 
number of parts in a global query. In the best case, for a k-ary 
tree of height h, the time complexity of our algorithm is 
T(n,k,h)= min(n,h), whereas that of LM we have found is   

                            T(n,k,h)=n*(kh+1-1)/(k-1)  

This can reduce to a large extent the time for forming subqueries 
for local (e.g., XML) schemas.  

Index Terms—Query Decomposition, Bottom-up Strategy, 
Database Integration. 

 

I. INTRODUCTION 
NE of the most important challenges of Web applications 
is the utilization of available heterogeneous web data 

sources to automatically share or interoperate data. This could 
help users, who want to get relevant data from distributed and 
chaotic sources, to avoid generating these data from scratch. 
However, data integration (data interoperation and data 
interchange) is not an easy task. It requires several steps, such 
as: (i) creating a global schema and a set of mappings for data 
sharing between different sources, (ii) resolving data conflicts 
among different sources, (iii) decomposing queries of users, 
and (iv) optimizing these queries for efficient answering. 

In Global-As-View (GAV) integration systems [5, 11, 12], 
all participating data sources follow their own schemas, which 

typically differ from the global schema. When users pose 
queries based on this global schema, these queries cannot be 
directly employed to query local sources due to the different 
structures of the global schema and the local ones. In order to 
access data from these sources for further processing, the input 
query must be decomposed into subqueries. Each subquery 
conforms to the structure of a local source’s schema; thus, it 
can be executed to get the relevant data.    

Articles about the most recent XML-based integration 
systems include: [1, 2, 3, 6, 10, 13]. The common feature of 
these systems is that a global view (i.e., a global schema) is 
built to reconcile discrepancies among heterogeneous data 
sources. Based on this global view, a set of mappings [11, 13] 
is defined to describe the correspondences of elements between 
local sources and those of the global view. A mediator [5], the 
main component of such a system, handles query processing 
using mappings. Thus, mappings play an important role in the 
success of the systems. However, building mappings is a 
difficult task, especially when the number of participating local 
schemas is large. Normally, these mappings are handcrafted 
with the help of database experts. 

 
An introduction of our proposed approach is given in 

Section II. Section III gives a query decomposition example. 
The assumptions of our approach are stated in Section IV. 
Section V describes our algorithm for query decomposition, 
including a flowchart and examples. An extension of our 
algorithm to process other cases of input queries is given in 
Section VI. Finally, Section VII focuses on our algorithm 
analysis and comparisons. 

 

II. PROPOSED APPROACH  
In our approach, a user’s query (e.g., an XPath query [14]) is 

decomposed into subqueries without using mappings. 
Compared to the strategy proposed by Lausen and Marron [7] 
for query decomposition without using mappings, our approach 
appears to be more efficient, because instead of a top-down 
strategy, a bottom-up strategy is used for query decomposition. 
In the top-down strategy, the leftmost part (i.e., p1) of a global 
XPath query '/p1/.../pi/.../pn' is first evaluated. This 
evaluation is performed from the top to the bottom of the XML 
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tree representing the local schema. This step is recursively 
applied to all parts of the global query from left to right (i.e., 
from p1 to pn). The top-down query decomposition algorithm 
is not efficient because in an XPath query the rightmost part 
(i.e., pn) plays the most important role. It is the actual result, 
which the user wants to get from the integrated system. We 
need to determine whether or not a subquery exists for a 
specific local schema. If pn does not exist in a local schema, we 
can quickly conclude that there is no subquery for this schema. 
Therefore, in the bottom-up strategy, we first evaluate the 
rightmost part, and then sequentially proceed from the right to 
the left part of the input query, and from the bottom to the top 
of the XML tree representing the local schema. This can 
significantly reduce the time for searching information in XML 
trees. 

 

III. QUERY DECOMPOSITION EXAMPLE  
Assume that we have two local schemas (Fig. 1.b and 1.c) of 

two databases, namely SESP and BIGGER, represented in terms 
of the XML format. We also assume a global schema (Fig. 
1.a), which is the result of an integration of the two local 
schemas SESP and BIGGER. This schema integration step is out 
of scope of this paper (see [5] for details). Our task is to 
process input queries so that they can get relevant data from the 
two above local databases using the global schema. The main 
task is query decomposition. An example of an input XPath 
query is Qglobal= 
'/department/mobile/products/jammer[price<200]'
, finding the content of all jammer elements having price 
less than 200, which follows the structure of the global 
schema. Since each local schema has its own structure, the 
above query must be decomposed into two queries QSESP 
='/products/jammer[price<200]' for the SESP schema 
and QBIGGER='/department/mobile/jammer[price<200]' 
for the BIGGER schema. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. ASSUMPTIONS 
In order to apply our algorithm, we make the following 

assumptions similar to those by Lausen and Marron [7]. There 
are several data repositories participating in the system. Each 
of them, represented in XML, has its own local schema. Since 
these data repositories are created by different designers, there 
often exist some conflicts between their respective structures. 
Moreover, these schemas share a pre-defined global schema. 
For example, in Fig. 1, while in the SESP schema, products is 
the father element of jammer, in the BIGGER schema mobile 
is the father element of jammer; also, in the global schema, 
mobile is the father element of products. It is clear that there 
are conflicts between the structures of schemas SESP and 
BIGGER. However, when data between them need to be 
interoperated, they both conform to the global schema as their 
integration view. We also assume that naming conflicts among 
local schemas do not exist. This means that our algorithm 
cannot be applied directly in the presence of naming conflicts 
such as synonyms or homonyms among local schemas. Finally, 
we assume that there are two built-in functions for finding the 
occurrence and the position of a node in an XML tree. 

 

V. QUERY DECOMPOSITION ALGORITHM 
In our algorithm, local schemas are processed sequentially. 

For each local schema, the global query is transformed into a 
local query following the structure of this local schema. Thus, 
by applying this algorithm for all local schemas, local 
subqueries are obtained for these local sources. The algorithm 
given in pseudo-code below transforms an XPath query 
Qglobal='/p1/p2/…/pi/…pn-1/pn' following a global 
schema into a subquery following a local schema. The main 
idea of the algorithm is as follows. We first take the rightmost 
part Pn of the user query to evaluate. If Pn is not found on the 
local schema, we can immediately conclude that there is no 
subquery for the local schema and stop the algorithm. 
Otherwise, if Pn is found at a node in the tree (the local 
schema), we mark that node so that the next search will only 
be performed on its ancestor nodes (the nodes on the branch 
from the marked node to the root of the tree). Sequentially, we 
take Pi (i=(n-1)..1) of the query to evaluate. We check 
whether Pi exists in the local schema or not. Note that, instead 
of searching the whole tree, we only need to search the 
ancestor nodes of the previously found node, which we have 
marked. This can significantly reduce the time for searching a 
node on a tree. If Pi is found, the local query will be a 
concatenation of Pi and Pn. In the algorithm (Fig. 2), ⊕ 

denotes a concatenation.  
Since the algorithm searches for Pn in the XML tree of a 

local schema from the bottom up to the root, Anchor is used 
to mark a node in the tree from where the algorithm can start 
to search. At the initial state of our algorithm, Anchor = 
LeftmostLeafNode means that we begin to search from the 
leftmost leaf node of the tree. The function Check(Pi ,  
Anchor) in line 14 of the pseudo-code in Fig. 2 checks 
whether Pi exists from the Anchor up to the root node. The 
main task of Check(P, Anchor) is to find a node P in the 
local schema (i.e., a tree) from a current node Anchor up to 
the root node such that the number of visited nodes in the 

a. Global schema 

b. SESP schema 

c. BIGGER schema 

Fig. 1. Example of a global schema and two local schemas (from [7]) 
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worst case is equal the number of nodes in the tree. This 
ensures that the time complexity of our algorithm (in Fig. 2) 
for k-ary tree in the worst case is 

 
          T(n,k,h)= 
 
In order to achieve this goal, we construct a queue Q. If it is 

the first time search is performed on the tree, we begin our 
search with leaf nodes. Each time we visit a node, if that node 
is not P (i.e., we still have not found P in the tree) we check if 
its father node is already in Q. If the father node is not in Q, we 
insert the father node in Q. After processing all the leaf nodes, 
we only need to process the nodes in Q (i.e., all father nodes of 
leaf nodes). Similarly, if this strategy is iteratively applied for 
every node in Q, we can visit all nodes from the bottom to the 
top of the tree. Note that in this case each node is visited only 
once. (If the previous search has found a node, we simply 
search on the ancestors of that previously marked node, i.e., 
Anchor). This function is detailed in Fig. 3.  
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Input 
 A local schema S  
 A user query Qglobal based on a global schema  
Output 
 A decomposed query Subquery for S 
 
Algorithm 
 
Function BottomUpDecomposition(S, Qglobal) 
Anchor:= LeftmostLeafNode; 
Subquery:=''; 
i:=|Qglobal|; 
repeat 
  if Check(Pi ,  Anchor)  
  { 
    if Subquery=''  
 Subquery:=Pi 
    else 
    { 
       if Pi=Anchor  
   Subquery:=Pi⊕'/'⊕Subquery 
       else  
   Subquery:=Pi⊕'//'⊕Subquery; 
    } 
 
    if IsRoot(Pi) 
 Subquery:='/'⊕Subquery   
    else 
    { 
  if (i>1)  
  % pi is not the leftmost part of Qglobal 
 Anchor:=father(Pi) 
  else  
 Subquery:='//'⊕Subquery  
    }  
  } 
  else  
  % Pi does not exist 
    if (Subquery <> '') and (i=1)  

 Subquery:='//'⊕Subquery; 
i:=i-1; 
until (i=0) or (Subquery='') or IsRoot(Pi+1); 
return Subquery; 

 
 

The flowchart in Fig. 4 illustrates the algorithm given in 
Fig.2. In order to explain our algorithm, we will walk though it 
using the two local schema examples of Fig. 1. 
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Input 
 P: a node to be found and  
 Anchor: current anchor   
Output 
 Return true if P is found and  
  false if P is not found; and  

Anchor 
 
 
Algorithm 
 
Function Check (P, Anchor)  
 
Q:=nil; // khoi tao queue Q 
QQ.next:=Q; // the end node of Q 
Dad=''; 
% we assume root.next=nil; 
if Anchor = LeftmostLeafNode 
{ 
 while (Anchor  <> nil and Anchor.value <>P)  
      { if Anchor.father.value <>Dad 

{ 
      QQ.next:=Anchor.father; 
      QQ:= Anchor.father; 

    Dad:=Anchor.father.value; 
} 

      Anchor:=Anchor.next 
} 
  

 if (Anchor <> nil)  return true; 
 Anchor:=Q; 
 while (Anchor<>nil and Anchor.value <> P) 
    {  
      if Anchor.father.value <>Dad 
        { 

QQ.next:=Anchor.father; 
QQ:= Anchor.father; 
Dad:=Anchor.father.value; 

        } 
       Anchor:=Anchor.next;  
     } 
  if Anchor<>nil  
     return true % we found P 
  else  
     return false % we did not find P 

 
} 
else % Anchor is not at the leaf node 
{ 
 while ((Anchor<>nil ) and (Anchor.value <>P))
 Anchor:=Anchor.father; 
 if (Anchor<>nil ) 
 return true % we found P 
 else  
       return false; % we did not find P 
} 
return; 

 
 
 
 
 
 Fig. 2.  Pseudo-code of the algorithm for finding a subquery

Fig. 3.  Pseudo-code of the algorithm for checking the existence of a node
from the bottom to the top in a tree 

h+1k -1
k-1
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Example1 
In this example, from a global query Qglobal= 

'/department/mobile/products/jammer', we produce a 
subquery for the local schema SESP (Fig. 1.b) using the  
algorithm of Figure 4. We initialize Subquery:='' and 
Anchor:= LeftmostLeafNode. We start the algorithm with 
P4:='jammer'. Since P4 is found in schema SESP, P4 is a part 
of the transformed query. Because Subquery='', we obtain 
Subquery:='jammer'. Now, we have i>1,   
Subquery:='jammer', P4 not the root of SESP, and 
Anchor='product'. Therefore we continue the loop. 
Iteratively, we take P3 := 'products' from the query Qglobal.  
Since P3 is found in the SESP schema, P3 is a part of the 
transformed query. Because P3=Anchor, we obtain 
Subquery:=P3⊕'/'⊕'jammer' (i.e., 
Subquery:='products/jammer'). Now, P3 = 'products' 
is the root node of the SESP schema and we stop the algorithm. 
We find that the local query for the SESP schema is 
Subquery:='products/jammer'. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example2  
In this example, we produce a subquery for the schema 

BIGGER (Fig. 1.c). Given Qglobal:='/department/mobile 
/products/jammer', like in example 1, we initiate 
Subquery='' and Anchor= LeftmostLeafNode. We take 
the rightmost part P4:='jammer' from the query Qglobal . 
Now, P4 is found and Subquery=''. So, we assign 
Subquery='jammer'. Because Subquery <>'' and P4 is 
not the root node, we continue our algorithm by searching from 
the mobile node up to the root node 
(Anchor:=father('jammer'):='mobile'). In the next 
step, we have P3='products'. We find that P3 does not exist 
in BIGGER, Subquery <>'' and i>1. Therefore, the next step 
is now performed with P2:='mobile'. Because P2 is found in 
the schema, Subquery <>'' and P2 is not the root node, the 
subquery becomes 'mobile/jammer' and we go to the next 
step with P1:='department', and Anchor='department'. 
P1 is found in BIGGER. Since department is the root node of the 
BIGGER schema, stop the algorithm. The subquery found for 

Fig. 4.  Flowchart of the algorithm in Fig. 2 for finding a subquery

Check(Pi, Anchor) 

Pi exists in the local 
schema S from Anchor up 

to the root node

Pi is matched with the 
root of S 

Subquery:='/'⊕Subquery 

Subquery:=Pi⊕'/'⊕Subquery  

Anchor:=father(Pi)in S 

Yes  

i>1 

No 

Yes 

Anchor:=LeftmostLeafNode 
Subquery:='' 
i:= |Qglobal| 

Stop

Subquery='' 

Yes  
No  

Subquery:=Pi Pi=Anchor 

Yes  

Subquery:=Pi⊕'//'⊕Subquery  

No 

Return Subquery

Yes  

No 

No 

Subquery='' 

i=1 

Subquery:='//'⊕Subquery 

Yes 

No Yes 

No  

 

i := i-1 
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the BIGGER schema is 
Subquery:='/department/mobile/jammer'. 

 

VI. ADDITIONAL CASES OF INPUT QUERIES 

A. Constraints in Queries 
We can apply our algorithm to process XPath queries that 

contain constraints (filter expressions). For example, if we have 
a query Qglobal := 
'/department/mobile/products/jammer[price<200]'
, we have to find the corresponding element of price for 
subqueries following local schemas. Since price is a child 
element of jammer, we can apply our algorithm by examining 
price before jammer. This reduces considerable time for 
forming a subquery because we can avoid transforming the 
whole query if price does not exist in a local schema. For 
example, if we apply the Qglobal query to the schema in Fig. 5, 
we can quickly recognize that the corresponding subquery for 
this schema does not exist when we first transform price. 

 
 
 
 
 
 
 
 
 
 
 
 
 
However, if constraints of input queries are more general 

(e.g., [/price<200] or [//price<200]), we can separately 
apply our algorithm for those constraints before transforming 
the whole query. 

B. Conflicts Between Schemas 
Our algorithm shows mismatches between the global schema 

and local ones just happen with structures. Other naming 
conflicts [4], such as synonyms and homonyms, are not 
mentioned. However, we can resolve those conflicts using a 
dictionary, which contains names of elements in the global 
schema and their corresponding ones in local schemas. Using 
the dictionary, we first translate the name of each element of 
the global query into its corresponding name in the local 
schema, and then apply the algorithm to it. For example, in Fig. 
6, there are naming conflicts between the global schema and 
the local schema F such as name and fullname, and jammer 
and jammerp. In this case, we can use a dictionary (Fig. 6.c) to 
resolve the conflicts. Thus, when finding a subquery for the 
schema F, instead of using name to search in schema F, we use 
fullname with the support of the dictionary. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C. Leaf Nodes with the Same Label 
In some special cases, there are leaf nodes with the same 

label. For example, name is found in several leaf nodes of both 
the global schema (Fig. 7.a) and the local schema (Fig. 7.b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This situation is actually a homonym conflict, a special type 

of the naming conflict. As stated in Section IV, our algorithm 
cannot be applied directly in the presence of naming conflicts. 
For example, given a query Qglobal :='jammer1/name', we 
need to decompose a local query for G. When applying our 
proposed algorithm, fortunately, if Anchor first points to 
name, which is the child node of jammer1 in G, we obtain that 
a local query for G is Subquery :='//jammer1/name'. 
Otherwise, if Anchor points to name, which is the child node 
of jammer2 in G, we only obtain Subquery :='//name'. 
This local query '//name' will provide more solutions than 
we want (extracted data are name of both jammer1 and 
jammer2 in G). However, with the top-down strategy [7], the 
local query produced is Subquery :='//jammer1/name', 
which is a better solution. It is worth emphasizing that such 
homonym conflicts do not occur often. Normally, these 

Fig. 5.  A local schema without the price leaf node (adapted from [7])  
  

a. Global schema

b. Local schema F 

Fig. 6. Naming conflicts between a global schema and a local schema
(adapted from [7]) 

Global schema Schema F 
name fullname 
jammer jammerp 
… … 

c. Dictionary 

a. Global schema 

b. Local schema G

jammer1 jammer2

name name

jammer1 jammer2 jammer3 

name name name 

Fig. 7. Homonym conflicts in a global schema and a local schema 
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conflicts must be solved during the schema integration 
processes. A possible solution is to rename the homonymous 
terms (nodes). This is, however, out of scope of this paper (see 
[4, 5] for details). 

 

VII. ALGORITHM ANALYSIS  
In [7], the authors transform a global XPath query into local 

subqueries for local schemas using three operators, namely no 
transformation, subquery generalization and 
subquery elimination. These operators are used to 
compute and select suitable elements from the global query to 
form local subqueries. In their top-down algorithm, the 
leftmost part (i.e., p1) of an XPath query 
‘/p1/.../pi/.../pn’ is first evaluated using these three 
operators applied to nodes in a local schema. The result from 
this step is a context C1 of p1 in the local schema, such as either 
no transformation (if p1 is found at the root node), 
subquery generalization (if p1 is found, but not at the 
root node) or subquery elimination (if p1 is not found). 
This step is recursively applied to all parts of the global query 
from left to right (i.e., from p1 to pn). Thus, the result of their 
algorithm is a sequence of contexts C1,...,Ci,...,Cn of the 
query ‘/p1/.../pi/.../pn’. From this sequence of contexts, 
the corresponding subquery of the input query will be 
produced. Since each pi (i=1..n) has to be evaluated by all 
three operators to select the best context, the time to search for 
information in the local schema is computed as follows. 

Suppose the local schema is represented in terms of a binary 
tree with h as the height of the tree. Let T(1,2,h) and 
T(n,2,h) represent the time complexity of the evaluation of 
an arbitrary pi and a whole query with n parts for a binary tree 
of height h, respectively.  For each pi (i=1..n) of the global 
query, the three operators, namely no transformation, 
subquery generalization and subquery elimination, 
are applied 1, 2h+1-1 and 1 times, respectively, to evaluate pi. 
Therefore,  

T(1,2,h)=1 + (2h+1 -1) +1 = 2h+1 +1 
 and 

T(n,2,h)=n*(2h+1 +1). 
In general, we find that the time complexity of the algorithm 

in [7] for the whole query given a full k-ary tree is  
 

T(n,k,h)=    
 

 
However, as we have discussed in Section II, this top-down 
query decomposition algorithm is not efficient because in an 
XPath query the rightmost part (i.e., pn) plays the most 
important role. It is the actual result (e.g., jammer), which the 
user wants to get from the integrated system. This can 
determine whether or not a subquery exists for a specific local 
schema. If there exists no pn in a local schema, we can quickly 
conclude that there is no subquery for this schema. Thus, in our 
approach, we first evaluate the rightmost part, and then 
sequentially proceed from the right to the left parts of the input 
query and from the bottom to the top of the XML tree 

representing the local schema. The worst case of our algorithm 
falls into a situation where there exists no subquery for a local 
schema. In this case, the rightmost part Pn of the global query 
has to be compared to all nodes of the local schema (i.e., 
2h+1-1 nodes for a binary tree). Therefore, the time complexity 
of our algorithm is T(n,2,h)=2h+1-1 for a binary tree and  

  T(n,k,h)=                    for a full k-ary tree.  

In the best case, the rightmost part Pn matches with a leaf 
node of the tree at the first and the same for all Pi nodes at the 
upper levels of the tree. Therefore, the time complexity of our 
algorithm in this case is T(n,2,h) = min(n,h) for a binary 
tree and also T(n,k,h)=  min(n,h) for a full k-ary tree. 
Here, the time complexity is min(n,h) because our algorithm 
can stop when either all n parts of Qglobal are processed or all 
nodes from the bottom to the top of a tree (with the height h) 
are traversed. 

 

VIII. CONCLUSION 
We have proposed a bottom-up algorithm for query 

decomposition without predefined mappings. The algorithm 
can be applied to distributed XML-based data repositories, 
which may contain conflicts between their respective 
structures. Having the same motivation as [7] but following a 
different strategy, we have proposed a more efficient query 
decomposition algorithm. Our contributions are as follows: (i) 
a more efficient algorithm for query decomposition is 
proposed, that is n times better than that of [7] in the worst case 
and in the best case its time complexity is only T(n,k,h)= 
min(n,h), compared to  

T(n,k,h) =           

of [7], (ii) a global query is efficiently processed based on its 
constraints, because our algorithm can stop as soon as a local 
schema is found not to satisfy these constraints,  (iii) our 
algorithm can work with naming conflicts between local 
schemas and the global one using a dictionary. Our algorithm 
can also be extended to work not only with XPath queries, but 
also with general path expressions like those in Object-
Oriented Databases [8, 9]. 
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