
 1

Abstract—This paper proposes an XML Declarative

Description (XDD) - based integration framework for XML
databases. All data components and processing components of
the framework, such as databases, ontologies, queries and
schema integration components can be formulated by XDD.
Since the boundary between the system’s components is
removed, the interoperation capacity between them is enhanced,
thus reducing the overhead of the system’s communication.
Moreover, an important achievement of this framework is that it
can integrate n schemas at a time and simultaneously decompose
a query into n subqueries.

Index Terms — Database Integration, XML Declarative

Description, Schema Integration, Query Decomposition.

I. INTRODUCTION

HE advent of the XML language has laid the foundation
for the Semantic Web revolution and has opened many

chances for web metadata applications described in terms of
XML Schema. Since distributed XML databases [14] of these
applications usually belong to a specific domain (e.g.,
databases of banking systems), their integration is a
demanding task. An integrated XML database system creates
a global schema for all participating XML databases while
query processing helps its users to get required and integrated
data through the global schema, thus reducing computer usage
of clients who want to find information.

 Most of the previously developed integration systems, such
as TSIMMIS [6], HERMES [10], and FLORID [1] deal with
conventional data models. In TSIMMIS [6], an internal data
model, namely OEM, is proposed, which is used to represent
data objects from heterogeneous data sources. In HERMES
[10], all components of the system are composed by a Prolog-
like language. Several toolkits are used to access data sources
and interact with components of the system. The FLORID
system [1] uses F-Logic, a combination of an object-oriented
database and a deductive rule language, to model schemas,
data and queries.
 Having inherited strong characteristics from these novel
models, recent integration systems, such as LoPix [15], HERA
[9] strengthen them by incorporating XML, well-suited to

presenting semi-structured data. LoPix [15] uses XPathLog,
an XPath-based language to integrate overlapping XML trees
(by fusing and linking synonym nodes in XML trees), from
which an XTreeGraph data model (possibly be cyclic) is
created. The XTreeGraph plays the role of a global schema,
where users can pose queries to get answers. Here, XPathlog
is a modeling language. It models XML trees, user queries and
supports inference mechanism. The HERA system [9] is
designed as an integration architecture based on semantic
integration and on demand of information retrieval. The
system uses RDF as an underlying model, which contains a
hierarchical structure of concepts, relations as well as facts
and axioms. For more literature survey, see [3, 4].

From these surveyed integration systems, one can easily
see that they share a main theme. Usually, a data model is
used to model components of an integration framework. This
enhances the communication between the system’s
components. If an integration system uses a variety of tools
and (rule) languages, its internal structure is heterogeneous
within itself requiring information to be reconciled before
passing from some components to other ones.

In this paper, we show how to use XML Declarative
Description (XDD) [13] to model all components of our XML
database integration framework. The purpose of using XDD is
two-fold. First, XDD can express both data components and
processing components of an integration framework, such as
facts (databases), rules (including constraints), ontologies (i.e.,
taxonomies and rules), and a mediator in a unified manner. All
components of the framework can therefore interact with each
other harmoniously to reduce the overheads of the
components’ communication. Second, since most integration
systems [1, 7, 9, 10, 11, 15] can only integrate two schemas at
a time, the complexity of these systems is extremely high,
namely approximately (n-1)! times, to modify and
reconstruct mappings and to resolve conflicts (n is the number
of participating schemas). Our system can both integrate n
schemas and decompose a query into n subqueries at a time
(one-shot strategy [3]). Details are referred to sections III.B.
1) and III.B.2).

Section II provides a brief introduction about XDD. Section
III proposes an XDD-based integration system where its data
components and processing components are modeled by XDD
uniformly. Section IV describes a system prototype and gives

A Unified Framework for
the Semantic Integration of XML Databases

Doan Dai Duong and Le Thi Thu Thuy
 The University of New Brunswick

 {Duong_Dai.Doan, Thuy_Thi_Thu.Le}@unb.ca

T

 2

initial experimental results.

II. XML DECLARATIVE DESCRIPTION (XDD)

 In order to represent a set of similar XML documents, as
well as to create inferential mechanisms on them, XDD – a
combination between conventional XML elements and
variables (name, string, pair of attribute, XML expression and
intermediate expression or $N, $S, $P, $E, and $I variables,
respectively) - is used with high expressive power. Table 1
shows variables in the XDD language.

TABLE 1. VARIABLES IN THE XDD LANGUAGE

Variable Instantiate to

$N Element or attribute names

$S Strings

$P Sequences of zero or more attribute value pairs

$E Sequences of zero or more XML expressions

$I Part of XML expressions

 In XDD, an ordinary XML element without variables is
called a ground XML expression. One containing variables is
called a non-ground XML expression, used to model a set of
similar ground XML expressions or ordinary XML
documents. Besides XML expressions, an important concept
of XDD language is an XDD clause or an XDD rule. An XDD
clause has the following form:

 H ← B1, … , Bm, C1, …, Cn

where H is the head and the set {B1, …, Bm, C1, …, Cn} is the
body. H, Bi (i=1..m) are XML expressions while the Cj
(j=1..n) denote constraints or restrictions on the XML
expressions. When an XDD clause does not include a body, it
is referred to as a fact or an XML unit clause (H←.) or (H).

III. AN XDD-BASED INTEGRATION SYSTEM

 A framework for the XML database integration system is
proposed (Fig. 1). It consists of two main components: data
components and processing components, discussed in the
following sections.

A. Modeling of Data

1) XML Databases
 A database includes two parts: intension and extension.
The intension defines internal structures of a database like its
schemas, logical specifications, relationships, indexes and
constraints. The extension contains actual data values called
occurrences or instances. While the extension changes with
time, the intension is supposed to be time invariant [3]. In our

framework, the extension and intension are modeled as
ground XML expressions and non-ground XML expressions
(or unit and non-unit clauses), respectively. Keeping in mind
that since the XDD clause’s format is: H ← B1, … , Bm, C1,
…, Cn, where C1, …, Cn are constraints, data integrity can be
formally expressed. With these characteristics, data from
XML databases can be extracted and processed directly by
using XDD rule-based components of the system. Details of
these expressive processes are discussed in more depth in [5].

2) XML Query
 In XDD, a query is modeled in three parts: a constructor,
patterns and filters corresponding to the three parts (H, Bi, Cj)
of an XDD rule (H ← B1 …, Bm, C1,…,Cn). When executed,
the patterns will match with facts in participating XML
databases. If these facts satisfy the filters (constraints of the
query), they will be extracted as answers of the query in terms
of the constructor. The following example (Fig. 2) shows an
XML query modeled by XDD.

<Answer>
<name>$S:name</name>
<nationality>$S:nation
</nationality>

</Answer>

<Student>

<name>$S:name</name>
<nationality>$S:nation
</nationality>
<GPA>$S:gpa</GPA>
$E:properties

</Student>
 [$S:gpa>3.5]

%
%
%
%
%
%
%

List name and
nationali
ty of all
students
whose gpa
are greater
than 3.5.

Fig. 2. Query modeled by XDD language

 In this example, the body of the rule contains two parts, the
pattern and the filter corresponding to

Fig.1. System’s architecture

 3

<Student>...</Student> and [$S:gpa >3.5],
respectively. The pattern will match with contents of XML
databases (i.e. any Student expression contains three sub-
elements, namely name, nationality and gpa).
Because of the generality of the rule (the Student
expression may contain extra information), the
$E:properties variable is used whose values can be zero
or more XML expressions. The filter describes the selection
condition (value of the gpa element must be greater than 3.5).
When executed, actual data are bound to $S:name and
$S:nation variables and returned to users in terms of the
structure of the constructor (the head of the rule).

3) Ontology and Mapping

• Ontology
 Ontology is a significant component of an integration
system. It is represented in terms of a hierarchy of concepts,
which is extremely useful for supplying semantic information
to combine local schemas into an integrated schema and for
yielding mappings to describe correspondences between the
local schemas and the integrated one. Many types of
ontologies are suggested, such as RDF1 or OWL2, which
describe many types of relationships among classes and
properties. However, their expressive knowledge
representation will be increased if they can be combined with
a rule language to fully express inferential mechanisms, which
are often found in human thinking. In our framework, we
consider an ontology represented in terms of XML as a set of
ground XML expressions; thus, no further transformation is
required since a set of ground XML expressions is a well-
formed XML document. For example, to express statements:
 A fullname is a union of a firstname and a
lastname. A name is a fullname.

and a rule:
 If class A is equivalent to class B, then the
content of class B is also the content of class
A.

 These are then marked up by OWL modeled by XDD as
three clauses c1, c2 and c3 as follows:

c1
<owl:Class rdf:ID="name">
 <rdfs:equivalentClass
 rdf:resource="#fullname"/>
</owl:Class> .

c2
<owl:Class rdf:ID="fullname">
 <rdfs:unionOf>
 <owl:Thing rdf:about="Fname"/>
 <owl:Thing rdf:about="Lname"/>
 </rdfs:unionOf>
</owl:Class> .

1 http://www.w3.org/TR/REC-rdf-syntax/
2 http://www.w3.org/TR/owl-xmlsyntax/

c3
 <owl:Class rdf:ID=”$S:ClassA">
 <rdfs:unionOf>
 $E:expr1
 </rdfs:unionOf>
 </owl:Class>

 <owl:Class rdf:ID="$S:ClassA">
 <rdfs:equivalentClass
 rdf:resource="$S:ClassB"/>
 </owl:Class>

 <owl:Class rdf:ID="$S:ClassB">
 <rdfs:unionOf>
 $E:expr1
 </rdfs:unionOf>

 </owl:Class>

c4
<owl:Class rdf:ID="name">
 <rdfs:unionOf>
 <owl:Thing rdf:about="Fname"/>
 <owl:Thing rdf:about="Lname"/>
 </rdfs:unionOf>
</owl:Class> .

Fig. 3. Ontology modeled by the XDD language.

 In this example, the unit clauses c1 and c2 represent
explicit information or data instances of the ontology, while
the non-unit clause c3 represents implicit information. The
clause c4 is produced from specialized operators – binding
variables to values – ($S:ClassA, “name”), ($S:ClassB,
“fullname”) and ($S:expr1 to the content of
$S:ClassB) applied to the unit clauses c1 and c2. Of course,
the clause c4 can be derived from the two clauses c1 and c2 if
being reasoned by an OWL engine. However, by adding an
extra rule c3, we have shown that we can use XDD to model
and process an OWL ontology efficiently without using any
OWL engine.

<Mapping>
 <global>
 <student>
 <country>$S:country</country>
 </student>
 </global>
 <local>
 <SATstudent source="A">
 <country>$S:country</country>
 </SATstudent>
 <SOMstudent source="B">
 <nation>$S:country</nation>
 </SOMstudent>
 </local>
</Mapping>

• Mapping
 While the ontology supplies information for the integration
processes, a set of mappings modeled by XDD supports
decomposing XML queries and converting data. Each
mapping is modeled by a non-ground XML expression. It
describes a correspondence between an object in the

Fig. 4. Example of a mapping

 4

integrated schema and its corresponding objects in the local
schemas by using two XML sub-expressions [8]. Fig. 4 shows
an example of a mapping, specifying that the country
element in the integrated schema has two corresponding
elements country and nation in source A and source B,
respectively.
 In our system, mappings are combined with special rules to
produce information for both query decomposition and data
conversion presented in detail in the two subsections 2) and 3)
of sections B.

B. Modeling of Processing Components

In the previous section, we present the data components of

the system including the databases, queries, schemas,
mappings and ontology modeled by the XDD language. This
section will show how we build processing components such
as a schema integration, a query decomposition and a data
conversion based on the XDD language.

1) Schema Integration Component
 Schema integration is a crucial component of the
integration system. It harmonizes conflicts between schemas
of participating databases. The result of this process is an
integrated schema for all local sources and a set of mappings
describing correspondences between objects in the local
schema and the integrated one.
 In our system, conflict resolution between various schemas
is done at one time (the one-shot strategy). This strongly
affects the way we solve conflicts. In order to do this, the local
schemas are labeled by name (to be distinguished later) and
are joined into a document to be harmonized simultaneously.
Each local schema is considered as a big ground XML
expression represented by an XML expression variable (i.e.,
$E_variable). An XET (XML Equivalent
Transformation) engine [2] (built for the XDD language) can
thus process all these documents simultaneously as variables.
By following the one-shot strategy, the complexity of the
system is greatly reduced.
 When integrating XML schemas, we encounter many types
of conflicts such as Name, Structure, Constraint and Data
type. Each of them is then sub-divided into many types of

conflicts (e.g. synonym, homonym, missing items and
aggregation conflicts). For example, Fig. 5 shows the two
schemas of XML databases SAT and SOM and the integrated
schema, which is the result of the integration processes.
Rectangle nodes represent elements, and oval nodes attributes.
In this example, the two elements SATstudent and
SOMstudent in the schemas SAT and SOM represent the same
element student; thus, they should be relabeled student in
the integrated schema. Fig. 6 shows an XDD rule for solving the
synonym conflict. It specifies that if $S:name1 and
$S:name2 in schemas $S:A and $S:B are synonyms, they
are then replaced by $S:common_name (suggested by a
term dictionary) in the integrated schema and the content of
$S:common_name is the union of all children elements.
When we apply this rule to the example in Fig. 5, $S:name1,
$S:name2 and $S:common_name correspond to
SATstudent, SOMstudent and student, respectively.
We therefore obtain student in the integrated schema.

 Another complex type of conflict is the aggregation
conflict, happening when elements or attributes in one schema
are the result of aggregation of some elements or attributes in
another schema. For instance, the element fullname in the
schema SAT is the aggregation of the elements Lname and
Fname in the schema SOM. The resolution of this problem is
based on information from the ontology and the definition of a
new data type name from the existing elements. Details of
conflicts and their resolution are discussed in depth in [5].

student

id name

Lname Fname

country

SATstudent

key fullname country

SOMstudent

id

Lname Fname

nation

Schema SAT

Schema SOM

Integrated schema

Fig. 5. Schemas of two XML databases SAT and SOM and the integrated schema

<xsd:element name=$S:common_name source="integrated">
 $E:exp
</xsd:element>

 <xsd:element name=$S:name1 source=$S:A>
 $E:exp1
 </xsd:element>
 <xsd:element name=$S:name2 source=$S:B>
 $E:exp2
 </xsd:element>
 [synonyms($S:common_name,$S:name1, $S:name2),
 $E:exp=Union($E:exp1, $E:exp2)]

Fig. 6. XDD rule for solving the synonym conflict

 5

2) Query Decomposition Component
 In our approach, a global XML query modeled by XDD
can be simultaneously decomposed into n sub-queries
conforming to specific structures of local sources [8]. For
instance, in Fig. 7, a user’s query QI based on the integrated
schema is decomposed into two sub-queries QSAT and QSOM
conforming to the schemas SAT and SOM, respectively.

 To achieve this power, the query decomposition
component consists of a set of decomposition rules. The body
of a decomposition rule contains two XML expressions (Fig.
8).

<$N:LocalTag source=$S:source>
 $E:exp1

<$N:tag2>$E:content</$N:tag2>
$E:exp2

</$N:LocalTag>

 <$N:GlobalTag>
$E:exp1
<$N:tag1>$E:content</$N:tag1>
$E:exp2

</$N:GlobalTag>

<Mapping>
 <global>

 <$N:GlobalTag>
 <$N:tag1>$E:content</$N:tag1>

 </$N:GlobalTag>
</global>
<local>

 $E:exp3
 <$N:LocalTag source=$S:source>
 <$N:tag2>$E:content</$N:tag2>
 </$N:LocalTag>
 $E:exp4

</local>
</Mapping>

Fig. 8. Rule for query decomposition

 The first one is a user query conforming to the structure of
the integrated schema, while the second one is a general form
of a mapping which shows corresponding objects (tags,
attributes) between local sources and the global one. When the
body of the rule matches with the global part of mappings

, sub-queries corresponding to local sources are
returned. The rule (Fig. 8.) can be interpreted as follows: If a
user query contains a $N:tag1 element whose corresponding
element in a local schema $S:source via the mapping is
$N:tag2. It then replaces $N:tag2 with $N:tag1 in the
user query, yielding a decomposed query.
 In the above query decomposition rule, values of the
variables $N:tag1, $N:tag2, $E:exp1, $E:exp2,
$E:exp3 and $E:exp4 are changed automatically,
depending on values of $S:source in the mappings. By
using this rule recursively, sub-queries for local sources are
automatically produced.

3) Data Conversion Component
 Users interact with the integrated schema and therefore
like to get results in terms of the integrated schema format.
Since data directly extracted from local sources still follow
structures of the local schemas, they must be converted to the
integrated schema format. In order to do this, the mappings
are used again. This work is similar to query decomposition
by using XDD rules but in the opposite direction. Using the
combination of mappings and XDD rules, all extracted data
are converted to the integrated schema format directly and
simultaneously. It is worth emphasizing that the mappings
constructed in the system are very useful. They are
constructed at one time when integrating schemas but can be
applied successfully to both the query decomposition and the
data conversion by combining with the processing rules.

IV. SYSTEM PROTOTYPE AND EXPERIMENTAL RESULTS

A. XML Equivalent Transformation (XET) – An XDD-Based
Engine

 From the XDD theory, a logic programming language is
created named XET (XML Equivalent Transformation) [2].
XET runs on the ground of ETI3 and Java. It transforms XDD
clauses into S-expressions [13] so that these S-expressions can
be executed in an ETI engine. In our system, all components
are carefully pre-designed in XDD before being transformed
into XET.

B. System Prototype

 A system prototype named XSIS [12] - standing for XML
Schema Integration System - is implemented in a local
network under the Window environment. It consists of two
main independent components, namely a mediator and a query

 <student id=$S:id>
 <name>
 <Lname>$S:lname</Lname>
 <Fname>$S:fname</Fname>
 </name>
 <country>$S:country</country>
 </student>

 <SATstudent key=$S:id >
 <fullname>$S:fullname
 </fullname>
 <country>$S:country</country>
 </SATstudent>

 <SOMstudent id=$S:id >
 <Lname>$S:lname</Lname>
 <Fname>$S:fname</Fname>
 <nation>$S:nation</nation>
 </SOMstudent>

QI

QSAT

QSOM

Fig. 7. Example of query decomposition

1

2

3

4

 6

handler. Each component, in turn, contains many independent
subcomponents, in which the output of one component is the
input of another.

Fig. 9. Mediator of the system

 The mediator (Fig. 9.) corresponding to the schema
integration component in our framework, includes twelve
subcomponents, which are mostly used to solve conflicts.
Besides cleaning and union schemas as well as normal form
conversion [5], six types of conflicts are solved including
synonym, homonym, data type, number occurring, missing
item, and aggregation conflicts to produce an integrated
schema. This integrated schema is then refined by removing
redundant (duplicated) information.

3 http://assam.cims.hokudai.ac.jp/eti

The query handler processes a user query based on the
integrated schema and returns integrated data to user. It
consists of five components, namely query decomposition,
query executor, data conversion, data cleaner, and data
integration, which are used for decomposing and executing
queries, converting, cleaning and integrating extracted data
respectively. Underlying each subcomponent is a set of XET
rules written for a specific task. Java is used for linking these
independent components. Although the XET language lacks
some features such as file operations, its extensive built-in
functions along with its intrinsic simplicity and flexibility
proved to be an overwhelming advantage for the rapid
prototype. A graphical user interface (GUI) is also implemented
using Java libraries to provide a visual human interaction with
the system.

C. Experiment Results

 In order to verify the effectiveness of our approach, test
cases (Fig. 10.) have been designed containing many types of
conflicts discussed in section III.B. 1) as follows:
- Synonym conflict: Student_Library (Fig. 10.a) vs.
School_Library (Fig. 10.b).
- Homonym conflict: name (Fig. 10.b) vs. name (Fig. 10.c).
- Datatype conflict: IDREF (Fig. 10.a) vs. IDREFS (Fig. 10.c)
of address.
- Number occurring conflict: maxOccurrs=”1” (Fig. 10.a) vs.
maxOccurrs=”2” (Fig. 10.b) of School_Library (see XML
source codes in [12]).

 10.a. Schema1 10.b. Schema 2 10.c. Schema 3

Fig. 10. XML schema integration usecase

10.d. Integrated schema

 7

- Missing item conflicts: the subelements of Library
(converted from Student_Library - Fig. 10.a) vs. the
subelements of Library (converted from School_Library - Fig.
10.b), similarly to the element School.
- Aggregation conflict: Address (Fig. 10.a, Fig. 10.c) vs. City,
Street (Fig. 10.b).
 Moreover, unlike other approaches in which designed test
cases normally follow a specific structure to be easily
processed by a specific rule language, these test cases
(schemas) are composed as schemas in real commercial
applications are. These XML schemas can be arbitrarily
declared to be nesting (Fig. 10.b), modulating (Fig. 10.c) or
mixing (Fig. 10.a) which makes integration tasks more
complicated. This problem has been discussed previously in
[5]. Readers are referred to XML source codes in [12] for
further details.
 From the incoming schemas, we successfully produce an
integrated schema (Fig. 10.d). For example, using a term
dictionary and the rule for solving the synonym conflict (Fig.
6.), Student_Library (Fig. 10.a) and School_Library (Fig.
10.b) are replaced by Library. Homonym conflict, name (Fig.
10.b) vs. name (Fig. 10.c), is solved by tracking back to
ancestor nodes (Borrower and Professor, respectively). The
term name is therefore replaced by Borrower_Name and
Professor_Name. Since IDREF is a special case of IDREFS,
it is replaced by IDREFS, similarly to maxOccurrs. Missing
item conflicts are resolved by combining all subelements and
attributes of the same element from incoming schemas. All
these conflicts are solved by the mediator consisting of XET
rules. Note that as stated in the introduction of this paper, by
using generalized rules, our integration framework can
integrate not only three schemas but also n schemas at a time.
 In addition to producing an integrated schema, we process
a user query efficiently by using the query handler. A user
poses a query conforming to the format of the integrated
schema (e.g., Professor_Name). This query is decomposed
into subqueries by the query decomposition component
(similarly to Fig.7. and Fig. 8) and then routed to appropriate
local data sources (e.g., Prof_name and name to the sources in
Fig. 10.b. and 10.c, respectively) where they are executed (using
the query executor component). Extracted data are then
converted by the data conversion component and returned to
the user in a user-friendly format conforming to the structure
of the integrated schema (e.g., Professor_Name) [8]. These
underlying processes are totally transparent to the user.

V. CONCLUSION

 In this paper, we use XDD to model all data components
and processing components of an XML database integration
framework. This offers many advantages. First, all
components of the system modeled by a unified rule-based
language can communicate and exchange data easily. Second,
a special structure for XDD-based bidirectional mappings is

designed. With this kind of construction, mappings are
combined with special rules to produce information efficiently
for both query decomposition and data conversion, avoiding
data redundancy. Finally, our framework is one among a very
few rule-based integration frameworks that can integrate n
participating schemas and also decompose a query into n
subqueries at a time. It is worth emphasizing that most other
researchers integrate schemas in a pair-wise fashion even
though they know that the time complexity of their systems is
high, approximately (n-1)! times to resolve conflicts and
reconstruct mappings. The reason is that before XDD there
were not many well-suited languages supporting the one-shot
strategy. Further more, even though XDD is designed to
model XML documents, it is an art to flexibly make use of
XDD and its variables, especially $E:expression, to create a
special and robust framework which is capable of processing
n XML documents at a time.

 In order to verify the effectiveness of our framework, a
prototype has been built and tested [12]. With the current
implementation, we have demonstrated that we are able to use
XDD rules to produce a minimal and complete integrated
schema from distributed XML schemas. Based on this
integrated schema and a set of bidirectional mappings, our
framework can process a global query efficiently and return
user-friendly results.

REFERENCES
[1] B. Ludascher, R. Himmeroder, G. Lausen, W. May, and C. Schlepphorst.

“Managing semistructured data with FLORID: a Deductive object-
oriented perspective”. Journal of Information Systems, Vol. 23, No. 8
(1998) 1-25.

[2] C. Anutariya, V. Wuwongse, and V. Wattanapailin. “An Equivalent-
Transformation-Based XML Rule Language”. Proc. of the International
Workshop on Rule Markup Languages for Business Rules in the
Semantic Web, Sardinia, Italy (2002).

[3] C. Batini, M. Lenzerini and S. B. A. Navathe. “Comparative Analysis of
Methodologies for Database Schema Integration”. ACM Computing
Surveys. Vol. 18, No. 4 (1986) 323-364.

[4] D. AnHai and A. Y. Halevy. “Semantic integration research in the
Database Community”. AI Magazine, special issue on Semantic
integration (2005).

[5] D. D. Duong and V. Wuwongse. “XML Database Schema Integration
Using XDD”. Proc. of Advances in Web-Age Information Management
Conference, China. Springer Verlag, Vol. 2762 (2003) 92-103.

[6] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajamaran, Y.
Sagiv, J. Ullman, V. Vassalos and J. Widom. “The TSIMMIS Approach
to Mediation: Data Models and Languages”. Journal of Intelligent
Information Systems, Vol. 8 (1997) 117-132.

[7] K. R. Bouguettaya and M. Parazoglou. “On Building a Hyperdistributed
Database”. Journal of Information Systems. Vol. 20, No.7 (1995) 557-
577.

[8] L. T. T. Thuy and D. D. Duong. “Query Decomposition Using the XML
Declarative Description Language”. Proc. of International Conference
of Computational Science and Its Applications, Singapore. Springer
Verlag, Vol. 3481 (2005) 1066-1075.

[9] R. Vdovjak, F. Frasincar, G. J. Houben and P. Barna. “Engineering
semantic web information systems in HERA”. Journal of Web
Engineering, Rinton Press, Vol. 2(1&2) (2003) 003-026.

[10] S. Adali and V. S. Subrahmanian. “Amalgamating Knowledge Bases, II
- Distributed Mediators”. International Journal of Intelligent and
Cooperative Information Systems(IJICIS), Vol. 3(4) (1994) 349-383.

[11] S. Busse, R. D. Kutsche, and U. Leser. ”Strategies for the Conceptual
Design of Federated Information Systems”. Engineering Federated
Information Systems, Proc. of the 3rd Workshop EFIS (2000) 23-32.

 8

[12] The XSIS system. Available online
http://v37s3b4h7dn47s37hg1br4h7rs7n3du7s8nu.unbf.ca/~b89ct/XSIS/i
ndex.html

[13] V. Wuwongse, C. Anutariya, K. Akama and E. Nantajeewarawat. “XML
Declarative Description (XDD): A Language for the Semantic Web”.
IEEE Intelligent Systems, Vol. 16, No. 3 (2001) 54-65.

[14] V. Wuwongse, K. Akama, C. Anutariya and E. Nantajeewarawat. “A
Data Model for XML Databases”. Journal of Intelligent Information
Systems. Vol. 20, No. 1 (2003) 63-80.

[15] W. May. “Logic-based XML data integration: a semi-materializing
approach”. Journal of Applied Logic, Vol. 3, No. 1 (2005) 271–307.

