Datalog

S. Costantini
stefcost@di.univaq.it
A Logical Rule

» The next example of a rule uses the relations `frequents(Drinker,Bar)`, `likes(Drinker,Beer)`, and `sells(Bar,Beer,Price)`.

» The rule is a query asking for “happy” drinkers --- those that frequent a bar that serves a beer that they like.
Anatomy of a Rule

happy(D) :- frequents(D,Bar), likes(D,Beer), sells(Bar,Beer,P)

Head = “consequent,” a single subgoal

Body = “antecedent” = AND of subgoals.

Read this symbol “if”
Subgoals Are Atoms

» An atom is a predicate, or relation name with variables or constants as arguments.

» The head is an atom; the body is the AND of one or more atoms (AND denoted by “,”).
Example: Atom

`sells(Bar, Beer, P)`

The predicate = name of a relation

Arguments are variables
Meaning of Rules

- A variable appearing in the head is called *distinguished*; otherwise it is *nondistinguished*.
- Rule meaning: The head is true of the distinguished variables if there exist values of the nondistinguished variables that make all subgoals of the body true.
 - Distinguished variables are *universally quantified*
 - Non-distinguished variables are *existentially quantified*
Example: Meaning

happy(D) :- frequents(D, Bar), likes(D, Beer), sells(Bar, Beer, P).

Distinguished variable
Nondistinguished variables

Meaning: drinker D is happy if there exist a Bar, a Beer, and a price P such that D frequents the Bar, likes the Beer, and the bar sells the beer at price P.
Datalog Terminology: Atoms

» An atom is a predicate, or relation name with variables or constants as arguments.

» The head is an atom; the body is the AND of one or more atoms.

» Conventions:
 › Databases: Predicates begin with a capital, variables begin with lower-case. Example: \(P(x,'a')\) where ‘a’ is a constant, i.e., a data item.
 › Logic Programming: Variables begin with a capital, predicates and constants begin with lower-case. Example: \(p(X,a)\).
Datalog

Terminology:

\[p \leftarrow q, \text{not } r. \quad \text{or} \quad p \leftarrow q, \text{not } r. \]

is a rule, where \(p \) is the head, or conclusion, or consequent, and \(q, \text{not } r \) is the body, or the conditions, or the antecedent. \(p, q \) and \(r \) are atoms.

A rule without body, indicated as

\[p \leftarrow. \quad \text{or} \quad p. \]

Is called a unit rule, or a fact.

This kind of rules are also called Horn Clauses.
Datalog

Terminology:

\(p \leftarrow q, \text{ not } r \)

Atoms in the body can be called *subgoals*. Atoms which occur positively in the body are *positive literals*, and the negations are *negative literals*.

We say that \(p \) *depends* on \(q \) and not \(r \).

The same atom can occur in a rule both as a positive literal, and inside a negative literal (e.g. rule \(p \leftarrow \text{not } p \)).
Datalog Programs

» A Datalog theory, or “program”, is a collection of rules.

» In a program, predicates can be either
 1. EDB = Extensinal Database = facts.
 2. IDB = Intensional Database = relation defined by rules.
Datalog Theory, or Program: Example

\[p(X) \leftarrow r(X), q(X). \]
\[r(Z) \leftarrow s(Z). \]
\[s(a). \]
\[s(b). \]
\[q(b). \]

» In every rule, each variable stands for the same value.
» Thus, variables can be considered as “placeholders” for values.
» Possible values are those that occur as constants in some rule/fact of the program itself.
Datalog

Datalog Theory (or “Program”)
\[p(X) \leftarrow r(X), q(X). \]
\[r(Z) \leftarrow s(Z). \]
\[s(a). \]
\[s(b). \]
\[q(b). \]

Its **grounding** can be obtained by:
» considering the constants, here a,b.
» substituting variables with constants in any possible (coherent) way)
» E. g., the atom \(r(Z) \) is transformed by grounding over constants a, b into the two **ground** atoms \(r(a), r(b) \).
Grounding

\[p(X) \leftarrow r(X), q(X). \]
\[r(Z) \leftarrow s(Z). \]
\[s(a). \]
\[s(b). \]
\[q(b). \]

- E.g., the atom \(r(Z) \) is transformed by grounding over constants \(a, b \) into the two ground atoms \(r(a), r(b) \).
- Rule \(r(Z) \leftarrow s(Z) \). is transformed into the two rules
 \[r(a) \leftarrow s(a). \]
 \[r(b) \leftarrow s(b). \]
Datalog

Grounding of the program
p(a) ← r(a),q(a).
p(b) ← r(b),q(b).
r(a) ← s(a).
r(b) ← s(b).
s(a).
s(b).
q(b).

Semantics: Least Herbrand Model
M = \{s(a),s(b),q(b),r(a),r(b),p(b)\}
A shortcut of the grounded program

\[p_1 \leftarrow r_1, q_1. \]
\[p_2 \leftarrow r_2, q_2. \]
\[r_1 \leftarrow s_1. \]
\[r_2 \leftarrow s_2. \]
\[s_1. \]
\[s_2. \]
\[q_2. \]

\[M = \{ s_1, s_2, q_2, r_1, r_2, p_2 \} \]
Datalog semantics

» Without negation (no negative literal in the body of rules): Least Herbrand Model
 › The head of a rule is in the Least Herbrand Model only if the body is in the Least Herbrand Model.
 › The head of a rule is concluded true (or simply concluded) if all literals in its body can be concluded.
 › Equivalently, the head of a rule is derived if all literals in its body can be derived.

» With negation: several proposals.
Least Herbrand Model: How to find it

\[
p \leftarrow g,h.
g \leftarrow r,s.
m \leftarrow p,q.
r \leftarrow f.
s.
f.
h.
\]

Step 1: facts
M_0 = \{s,f,h\}

Step 2: M_1 = M_0 plus what I can derive from facts
M_1 = \{s,f,h,r\}

Step 3: M_2 = M_1 plus what I can derive from M_1
M_2 = \{s,f,h,r,g\}

Step 4: M_3 = M_2 plus what I can derive from M_2
M_3 = \{s,f,h,r,g,p\}

If you try to go on, no more added conclusions: fixpoint
Least Herbrand Model: Intuition

\[\text{in}(alan, r123). \]
\[\text{part_of}(r123, cs_building). \]
\[\text{in}(X, Y) \leftarrow \text{part_of}(Z, Y) \land \text{in}(X, Z). \]

\[\text{in}(alan, cs_building) \]
Least Herbrand Model: Intuition

» Every constant and predicate of a program has an “interpretation”.

» The computer cannot guess the “mental” view of a program.

» Principle: do not add more than required, do not “guess” details.
 › Then, every predicate and constant is by default interpreted into itself.
 › The “minimal” interpretation is chosen.
Datalog and Transitivity

» Rule

\[\text{in}(X, Y) :\text{-} \text{part_of}(Z, Y), \text{in}(X, Z) \]
defines \text{in} as the \textit{transitive closure} of \textit{part_of}

» In the example: Least Herbrand Model

\{ \text{in}(\text{alan}, \text{r123}), \text{part_of}(\text{r123}, \text{cs_building}), \\
\text{in}(\text{alan}, \text{cs_building}) \}
Arithmetic Subgoals

» In addition to relations as predicates, a predicate for a subgoal of the body can be an arithmetic comparison.

› We write such subgoals in the usual way, e.g.: $x < y$.
Example: Arithmetic

» A beer is “cheap” if there are at least two bars that sell it for under $2.

cheap(Beer) :- sells(Bar1,Beer,P1),
 sells(Bar2,Beer,P2), p1 < 2.00
 p2 < 2.00, bar1 <> bar2
Negated Subgoals

» We may put not in front of a subgoal, to negate its meaning.

» Example: Think of arc(a,b) as arcs in a graph.
 › s(X,Y) says that:
 - there is a path of length 2 from X to Y
 - but there is no arc from X to Y.

s(X,Y) :- arc(X,Z), arc(Z,Y), not arc(X,Y)
Negation

» Negation in Datalog is *default negation*:
 › Let a be a ground atom, i.e., an atom where every variable has a value.
 › Assume that we are not able to conclude a.
 › Then, we *assume* that not a holds.

» We conclude not a by using the *Closed World Assumption*: all the knowledge we have is represented in the program.
Safe Rules

» A rule is *safe* if:
 1. Each distinguished variable,
 2. Each variable in an arithmetic subgoal,
 3. Each variable in a negated subgoal,
 also appears in a nonnegated, relational subgoal.

» We allow only safe rules.
Example: Unsafe Rules

- Each of the following is unsafe and not allowed:
 1. \(s(X) :- r(Y)\).
 2. \(s(X) :- r(Y), \text{not } r(X)\).
 3. \(s(X) :- r(Y), X < Y\).

- In each case, too many \(x\)'s can satisfy the rule, in the first two rules all constants occurring in the program. Meaningless!
Expressive Power of Datalog

» Without recursion, Datalog can express all and only the queries of core relational algebra (subset of P).
 › The same as SQL select-from-where, without aggregation and grouping.

» But with recursion, Datalog can express more than these languages.

» Yet still not Turing-complete.
Recursion: Example

parent(X,Y):- mother(X,Y).
parent(X,Y):- father(X,Y).
ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- parent(X,Z),ancestor(Z,Y).
mother(a,b).
father(c,b).
mother(b,d).
... other facts ...

» A parent X of Y is either a mother or a father (disjunction as alternative rules);
» An ancestor is either a parent, or the parent of an ancestor (the ancestor X of Y is the parent of some Z who in turn is an ancestor of Y).
Stratified Negation

» Stratification is a constraint usually placed on Datalog with recursion and negation.
» It rules out negation wrapped inside recursion.
» Gives the sensible IDB relations when negation and recursion are separate.
Problematic Recursive Negation

\[p(X) :- q(X), \neg p(X) \]
\[q(1). \]
\[q(2). \]

Try to compute Least Herbrand Model:

Initial: \(M = \{q(1),q(2) \} \)

Round 1: \(M = \{q(1), q(2), p(1), p(2)\} \)

Round 2: \(M = \{q(1),q(2) \} \)

Round 3: \(M = \{q(1), q(2), p(1), p(2)\}, \text{ etc., etc. ...} \)
Strata

» Intuitively, the *stratum* of an IDB predicate \(P \) is the maximum number of negations that can be applied to an IDB predicate used in evaluating \(P \).

» Stratified negation = “finite strata.”

» Notice in \(p(x) <- q(x) \), not \(p(x) \), we can negate \(p \) an infinite number of times for deriving \(p(x) \) (loop on its negation: \(p \) depend on not \(p \) that depends on \(p \) that depends on not \(p \)...).

» Stratified negation: a predicate does not depend (directly or indirectly) on its own negation.
Monotonicity

» If relation P is a function of relation Q (and perhaps other relations), we say P is monotone in Q if inserting tuples into Q cannot cause any tuple to be deleted from P.

» Examples:
 › $P = Q \cup R$.
 › $P = \text{SELECT}_{a=10}(Q)$.
Nonmonotonicity

Example:

usable(X):- tool(X), not broken(X).
tool(computer1).
tool(my_car).

Adding facts to broken can cause some tools to be not usable any more.
Nonmonotonicity

Example:

\[
\text{flies}(X) :\text{- } \text{bird}(X), \text{ not penguin}(X).
\]
\[
\text{bird(tweety)}.
\]

Since we don’t know whether tweety it is a penguin, we assume (by default negation) that it is not a penguin. Then we conclude that tweety flies. If later we are told that tweety is a penguin, this conclusion does not hold any more.
Datalog with negation (Datalog\(\neg\))

» How to deal with
 › Unstratified negation
 › Nonmonotonicity

» One possibility: don’t accept them

» Another possibility: extend the approach (e.g., Answer Set Semantics)
Datalog with negation (Datalog\(\neg\)): Answer Set Semantics

Inference engine: answer set solvers
\[\rightarrow \text{SMODELS, Dlv, DeRes, CCalc, NoMore, etc.} \]
interfaced with relational databases

Complexity: existence of a stable model NP-complete

Expressivity:
« all decision problems in NP and
« all search problems whose associated decision problems are in NP
Answer Set/Stable model semantics

\[
p : \neg p, \neg a. \\
a : \neg b. \\
b : \neg a. \\
\]

Classical minimal models \(\{b,p\}\) NOT STABLE,
\[\{a\}\] STABLE

\[
p : \neg p. \\
p : \neg a. \\
a : \neg b. \\
b : \neg a. \\
\]

Classical minimal models \(\{b,p\}\) STABLE,
\[\{a,p\}\] NOT STABLE
Answer Set semantics

\[\begin{align*}
p &\leftarrow q, \text{not } s. \\
q. \\
r &\leftarrow a. \\
r &\leftarrow b. \\
a &\leftarrow \text{not } b. \\
b &\leftarrow \text{not } a. \\
\end{align*}\]

Classical minimal models \{p,q,r,a\} and \{p,q,r,b\}, \{s,q,r,a\} and \{s,q,r,b\}.

Answer Sets (Stable Models) \{p,q,r,a\} and \{p,q,r,b\}.
Answer Set semantics

Relation to classical logic: every answer set is a minimal model
not all minimal models are answer sets.

Underlying concept:
a minimal model is an answer set only if no atom which is true in the model depends
(directly or indirectly) upon the negation of another atom which is true in the model.
Drawbacks of Answer Set Semantics

For atom A, $REL_RUL(A)$ may have answer sets where A is true/false, while the overall program does not.

$p :- \neg p, \neg a.$
$q :- \neg q, \neg b.$
$a :- \neg b.$
$b :- \neg a.$

$REL_RUL(a) = \{a :- \neg b. b :- \neg a.\}$
with stable models $\{a\}$ and $\{b\}.$

Overall program: no stable models.
Drawbacks of Answer Set Semantics

\(P_1 \) and \(P_2 \) with answer sets,
\(P_1 \cup P_2 \) may not have answer sets.

\[p \leftarrow \neg p. \]
\[p \leftarrow \neg a. \]
Stable model \{p\}.

\[a \leftarrow \neg b. \]
Stable model \{a\}.

If you merge the two programs, no answer sets!
Answer Set Programming (ASP)

» New programming paradigm for Datalog.
» Datalog program (with negation) describes the problem, and constraints on the solution.

» Answer sets represents the solutions.
Example: 3-coloring in ASP

Problem:
assigning colors red/blue/green to vertices of a graph, so as no adjacent vertices have the same color.

node(0..3).
col(red).
col(blue).
col(green).
edge(0,1).
edge(1,2).
edge(2,0).
edge(1,3).
edge(2,3).
Example: 3-coloring in Logic Programming

... Inference Engine ...

Expected solutions:

color(0,red), color(1,blue), color(2,green), color(3,red)
color(0,red), color(1,green), color(2,blue), color(3,red)
color(0,blue), color(1,red), color(2,green), color(3,blue)
color(0,blue), color(1,green), color(2,red), color(3,blue)
color(0,green), color(1,blue), color(2,red), color(3,green)
color(0,green), color(1,red), color(2,blue), color(3,green)
3-coloring in Answer Set Programming

color(X,red) | color(X,blue) | color(X,green) :- node(X).

:- edge(X,Y), col(C), color(X,C), color(Y,C).
3-coloring in Answer Set Programming

Using the SMODELS inference engine we obtain:

```
lparse < 3col.txt | smodels0
```

Answer1
```
color(0,red), color(1,blue), color(green), color(3,red)
```

Answer2
```
 color(0,red), color(1,green), color(blue), color(3,red)
```

...
Answer Set Programming

Constraints

 :- v,w,z.
rephrased as
 p :- not p, v,w,z.
Answer Set Programming

Disjunction

\[v \mid w \mid z. \]

rephrased as

\[v :~ not \; w, \; not \; z. \]
\[w :~ not \; v, \; not \; z. \]
\[z :~ not \; v, \; not \; w. \]
Answer Set Programming

Choice (XOR)

\[v + w + z. \]

rephrased as

\[v | w | z. \]

\[:- w, z. \]

\[:- v, z. \]

\[:- v, w. \]
Answer Set Programming

Classical Negation \(\neg p \)

- \(p :\neg q, r. \)

rephrased as

\(p' :\neg q, r. \)

\(:- p, p' \)
Answer Set Programming

A party: guests that hate each other cannot seat together, guests that love each other should sit together

table(1..3).
guest(1..5).

hates(1,3). hates(2,4).
hates(1,4). hates(2,3).
hates(4,5). hates(1,5).
likes(2,5).
Answer Set Programming

% Choice rules

1{at_table(P,T) : table(T)}1 :- guest(P).
0{at_table(P,T) : guest(P)}3 :- table(T).

n{p(X,Y) : d1(X)}m :- d2(Y).

Meaning: forall Y which is a d2 we admit only answer sets with at least n atoms and at most m atoms of the form p(X,Y), where X is a d1
Answer Set Programming

% hard constraint

:- hates(P1,P2), at_table(P1,T), at_table(P2,T),
guest(P1), guest(P2), table(T).

% should be a soft constraint!

:- likes(P1,P2), at_table(P1,T1), at_table(P2,T2),
 T1 != T2,
guest(P1), guest(P2), table(T1), table(T2).