
A RIF-Style Semantics for RuleML-Integrated

Positional-Slotted, Object-Applicative Rules

Harold Boley

Institute for Information Technology
National Research Council of Canada
Fredericton, NB, E3B 9W4, Canada

Abstract. In F-logic and RIF, objects (frames) are de�ned entirely sep-
arately from function and predicate applications. In POSL and RuleML,
these fundamental notions are integrated by permitting applications with
optional object identi�ers and, orthogonally, arguments that are po-
sitional or slotted. The resulting positional-slotted, object-applicative
(psoa) terms are given a novel formalization, reducing the number of
RIF terms by generalizing its positional and slotted (named-argument)
terms as well as its frame terms and class memberships. Like multi-slot
frames accommodate for (Web-)distributed slotted descriptions of the
same object identi�er (IRI), multi-tuple psoa terms (e.g., shelves) do
for positional descriptions. The syntax and semantics of these integrated
terms and rules over them are de�ned as PSOA RuleML in the style
of RIF-BLD. The semantics provides a novel �rst-order model-theoretic
foundation, blending frame slotribution, as in F-logic and RIF (as well as
shelf tupribution) with integrated psoa terms, as in POSL and RuleML.

1 Introduction

Logic-based (e.g., FOL, Horn, LP) as well as object-oriented (and frame-based)
paradigms (e.g., CLOS, RDF, N3) have been employed for knowledge repre-
sentation and problem solving in AI, the (Semantic) Web, and IT at large.
In search for a uni�ed paradigm for AI/(Sem)Web languages, there have been
various approaches to combining these paradigms in Description Logics (DLs),
Object-Oriented Databases (OODBs) / Deductive Object-Oriented Databases
(DOODs), and object-oriented logic languages such as LIFE [AK93] and
F-logic [KLW95]. The W3C Rule Interchange Format (RIF) [BK10a] adopted a
semantics based on F-logic with a serialization syntax based on RuleML [BPS10].

While F-logic and RIF have accommodated the standard �rst-order model-
theoretic semantics [CL73] for the incorporation of objects (frames), these are
added separately from function and predicate applications to arguments. The
resulting complexity of the object-extended semantics can be reduced by inte-
grating objects with applications. In this paper we present an integration based
on the positional-slotted, object-applicative rules of POSL and RuleML [Bol10].
F-logic's model-theoretic semantics in the style of RIF is also the starting point
of our integrated semantics. Our integration permits applications with optional
object identi�ers and, orthogonally, arguments that are positional or slotted.

2 Harold Boley

Structured by these independent dimensions of de�ning features, language con-
structs can then be freely combined.

The integration is based on positional-slotted, object-applicative (psoa)
terms and rules over them. A psoa term applies a function or predicate sym-
bol, possibly instantiated by an object, to zero or more positional or slotted
(named) arguments. In the interpretation of a psoa term as an atomic formula,
the predicate symbol is both the class (type) of the object and the relation be-
tween the arguments, which describe the object. Each argument of a psoa term
can be a psoa term that applies a function symbol.

The intuition behind the fundamental distinctions in the taxonomy of
psoa terms is as follows. Psoa terms that apply a predicate symbol (as a
relation) to positional arguments can be employed to make factual assertions.
An example, in simpli�ed RIF (presentation) syntax,1 is the term
married(Joe Sue) for the binary predicate married applied to Joe and Sue,
where the positional (left-to-right) order can be used to identify the husband, as
the �rst argument, and wife, as the second argument.

Psoa terms that apply a predicate symbol (as a class) to slotted arguments
correspond to typed attribute-value descriptions. An example is the psoa term
family(husb->Joe wife->Sue) or family(wife->Sue husb->Joe) for the family-
typed attribute-value pairs (slots) {<husb,Joe>, <wife,Sue>}. Such a de-
scription can be easily extended with further slots, e.g. by adding one or more
children, as in family(husb->Joe wife->Sue child->Pete).2 Usually, slotted
terms describe an object symbol, i.e. an object identi�er (OID), maintaining ob-
ject identity even when slots of their descriptions are added or deleted. This leads
to (typed) frames in the sense of F-logic. For example, using RIF's membership
syntax #, the OID inst1, as a member of the class family, can be described
by inst1#family(husb->Joe wife->Sue), by inst1#family(husb->Joe wife->Sue

child->Pete), etc. Psoa terms can also specialize to class membership terms,
e.g. inst1#family(), abridged inst1#family, represents inst1 ∈ family.

While positional and slotted, object-oriented and applicative terms have
mostly been treated separately, psoa terms integrate them, allowing for all in-
termediate forms. Like OID-describing slotted terms constitute a (multi-slot)
`frame', positional terms that describe an object constitute a (single-tuple) `shelf',
similar to a (one-dimensional) array describing its name. Thus, in the family

example, the husb and wife slots can be positionalized as in the earlier married
example: inst1#family(Joe Sue) describes inst1 with the argument tuple
[Joe Sue]. Combined positional-slotted psoa terms are allowed, as in XML ele-
ments (tuple subelements, slots attributes), optionally describing an object,
as always required by RDF descriptions (object subject, slots properties).3

1 In this introduction, we omit RIF's namespace pre�xes for simplicity.
2 As in RDF and RIF, attributes are multi-valued by default, allowing, e.g.,
family(... child->Pete child->Jane). Duplications of entire slots are also
syntactically permitted, e.g., family(... child->Pete child->Pete), but will be
semantically treated as duplicate-free, e.g., family(... child->Pete).

3 See earlier XML/RDF uni�cation: http://www.dfki.uni-kl.de/~boley/xmlrdf.html.

Semantics for Positional-Slotted, Object-Applicative Rules 3

For example, inst1#family(Joe Sue child->Pete) describes inst1 with two
positional and one slotted argument.

On the other hand, the positional married example could be made slotted,
leading to married(husb->Joe wife->Sue), and even be used to describe a
(marriage) object: positionally, as in inst2#married(Joe Sue), or slotted, as in
inst2#married(husb->Joe wife->Sue).

Summarizing, an object's description or an application's arguments can con-
sist of slots as well as a tuple of values. This includes object-describing atomic
formulas playing the role of frames, shelves, or the combination of both.

A frame without an explicit class is semantically treated as typing its object
with the root class > (syntactically, Top). For example, the (untyped) frame
inst3[color->red shape->diamond] in square-bracketed F-logic/RIF syntax
is equivalent to our parenthesized inst3#Top(color->red shape->diamond).4

An atomic formula without an OID is treated as having an implicit OID.
An OID-less application is objecti�ed by a syntactic transformation as follows:
The OID of a ground fact is a new constant generated by the `new local constant'
(a stand-alone _); the OID of a non-ground fact or of an atomic formula in a
rule conclusion, f(...), is a new, existentially scoped variable ?i, leading to
Exists ?i (?i#f(...)); the OID of any other atomic formula is a new variable
generated by the `anonymous variable' (a stand-alone ?). Objecti�cation allows
compatible semantics for an atom constructed as a RIF-like slotted (named-
argument) term and a corresponding frame, solving an issue with RIF's named-
argument terms.5

For example, the slotted-fact assertion family(husb->Joe wife->Sue) is
syntactically objecti�ed to the assertion _#family(husb->Joe wife->Sue), and
� if _1 is the �rst new constant from _1, _2, . . . � to _1#family(husb->Joe wife->Sue).
This typed frame, then, is semantically slotributed to _1#family(husb->Joe) and
_1#family(wife->Sue). The query family(husb->Joe) is syntactically objecti�ed
to the query ?#family(husb->Joe), i.e. � if ?1 is the �rst new variable in ?1, ?2, . . . �
to ?1#family(husb->Joe). Posed against the fact, it succeeds with the �rst slot,
unifying ?1 with _1. Slotribution (`slot distribution') avoids POSL's `rest-slot'
variables [Bol10]: a frame's OID `distributes' over the slots of a description.

Rules can be de�ned on top of psoa terms in a natural manner. A rule derives
(a conjunction of possibly existentially scoped) conclusion psoa atoms from (a
formula of) premise psoa atoms. Let us consider an introductory example with
a rule deriving family frames; this will be modi�ed in Example 4 of Section 4.

Example 1 (Rule-de�ned anonymous family frame). A Group is used to collect
a rule and two facts. The Forall quanti�er declares the original universal argu-
ment variables as well as the generated universal OID variables ?2, ?3, ?4. The
:- in�x separates the conclusion from the premises of a rule, which derives an
anonymous/existential family frame from a married relation And from a kid

relation of the husb Or wife (the left-hand side is objecti�ed on the right).

4 Top will allow us to always use parenthesized typed frames, and to reserve square
brackets for enclosing positional tuples.

5
See Dave Reynolds' point: http://lists.w3.org/Archives/Public/public-rif-wg/2008Jul/0000.html.

4 Harold Boley

Group (
Forall ?Hu ?Wi ?Ch (

family(husb->?Hu wife->?Wi child->?Ch) :-
And(married(?Hu ?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
married(Joe Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi)

Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch))))
_1#married(Joe Sue)
_2#kid(Sue Pete)

)

Semantically, this example is modeled by predicate extensions corresponding
to the following set of ground facts (the subdomain of individuals D ind will be
de�ned in Section 3.1):

{o#family(husb->Joe wife->Sue child->Pete) } ∪
{_1#married(Joe Sue), _2#kid(Sue Pete)}, where o ∈ D ind.

A language incorporating this integration, PSOA RuleML, is de�ned here.
The rest of the paper is organized as follows. Section 2 gives the human-readable
presentation syntax of PSOA RuleML. Section 3 gives its model-theoretic seman-
tics. Section 4 concludes the paper and discusses future work.

2 The Presentation Syntax

The presentation syntax of PSOA RuleML is built on the one of RIF-BLD and
described in �mathematical English�. An EBNF syntax is then given, although
it cannot fully capture the presentation syntax, as the latter is not context-free.

2.1 Alphabet of PSOA RuleML

De�nition 1 (Alphabet). The alphabet of the presentation language of PSOA
RuleML consists of the following disjoint sets:

� A countably in�nite set of constant symbols Const (including the root
class Top ∈ Const and the positive-integer-enumerated local constants
_1, _2, . . .∈ Const as well as individual, function, and predicate symbols).

� A countably in�nite set of variable symbols Var (including the positive-
integer-enumerated variables ?1, ?2, . . .∈ Var).

� The connective symbols And, Or, and :-.
� The quanti�ers Exists and Forall.
� The symbols =, #, ##, ->, External, Import, Prefix, and Base.
� The symbols Group and Document.
� The auxiliary symbols (,), <, >, ��, and _.

Constants have the form "literal" ��symspace, where literal is a sequence of
Unicode characters and symspace is an identi�er for a symbol space. An example
is "_123" ��rif:local. Constants can use shortcuts as de�ned in [PBK10],
including the underscore notation _literal (e.g., _123) for the above form with
symspace specialized to rif:local. Top is a new shortcut for the root class
constant " Top" ��psoa:global in PSOA RuleML's global symbol space.

Anonymous variables are written as a stand-alone question mark symbol (?);
named variables, as Unicode strings preceded with the question mark symbol.

Semantics for Positional-Slotted, Object-Applicative Rules 5

The symbols = and ## are used in formulas that de�ne equality and sub-
class relationships. The symbols # and -> are used in positional-slotted, object-
applicative formulas for class memberships and slots, respectively. The symbol
External indicates that an atomic formula or a function term is de�ned exter-
nally (e.g., a built-in) and the symbols Prefix and Base enable abridged repre-
sentations of IRIs (Internationalized Resource Identi�ers).

�

The language of PSOA RuleML is the set of formulas built using the above
alphabet according to the construction methods given below.

2.2 Terms

The main parts of rules are called terms. PSOA RuleML de�nes several kinds
of terms: constants and variables, psoa terms, equality, subclass, and external
terms. Thus �term� will be used to refer to any one of these constructs.

Below, the phrase base term means a simple term, an anonymous psoa term
(i.e., an anonymous frame term, single-tuple psoa term, or multi-tuple psoa
term), or a term of the form External(t), where t is an anonymous psoa term.
An anonymous term can be deobjecti�ed (by omitting the main ?#) if its re-
objecti�cation (cf. Section 1) results in the original term (i.e., re-introduces ?#).

De�nition 2 (Term). PSOA RuleML de�nes several di�erent types of logic
terms. Here we describe the syntax of the most important ones.

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term.
2. Equality terms. t = s is an equality term if t and s are base terms.
3. Subclass terms. t##s is a subclass term if t and s are base terms.
4. Positional-slotted, object-applicative terms. o#f([t1,1 ... t1,n1] ... [tm,1

... tm,nm] p1->v1 ... pk->vk) is a positional-slotted, object-applicative
(psoa) term if f ∈ Const and o, t1,1, ..., t1,n1 , ..., tm,1, ..., tm,nm , p1, ...,
pk, v1, ..., vk, m ≥ 0, k ≥ 0, are base terms.
Psoa terms can be specialized in the following way.6

� For m = 0 they become (typed or untyped) frame terms
o#f(p1->v1 ... pk->vk). We consider two overlapping subcases.
• For k = 0 they become class membership terms o#f(), abridged
to o#f, corresponding to those in F-logic and RIF.
• For k ≥ 0 they can be further specialized in two ways, which can be
orthogonally combined.
* For o being the anonymous variable ?, they become
anonymous frame terms (slotted terms) ?#f(p1->v1 ...

pk->vk), deobjecti�ed f(p1->v1 ... pk->vk), corresponding to
terms with named arguments in RIF.

6 Distinctions similar to those for m = 1, and further ones, could be made for m > 1,
i.e. multi-tuple psoa terms, but for space reasons we leave most of them implicit
in the general psoa term de�nition here. We do note that for m > 1 and k = 0

multi-tuple psoa terms specialize to multi-tuple shelf terms. Also, for o being the
anonymous variable ?, these terms become anonymous multi-tuple psoa terms.

6 Harold Boley

* For f being the root class Top, they become untyped frame
terms o#Top(p1->v1 ... pk->vk) corresponding to frames in
the abridged form o[p1->v1 ... pk->vk] of F-logic and RIF,
where square brackets are used instead of round parentheses.

� For m = 1 they become single-tuple psoa terms o#f([t1,1 ... t1,n1]
p1->v1 ... pk->vk), abridged to o#f(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized in two ways, which can be orthogonally
combined:7

• For o being the anonymous variable ?, they become anonymous
single-tuple psoa terms ?#f(t1,1 ... t1,n1 p1->v1 ... pk->vk),
deobjecti�ed f(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized:
* For k = 0, they become positional terms ?#f(t1,1 ... t1,n1),
deobjecti�ed f(t1,1 ... t1,n1), corresponding to the usual terms
and atomic formulas of classical �rst-order logic.

• For f being the root class Top, they become untyped single-tuple
psoa terms o#Top(t1,1 ... t1,n1 p1->v1 ... pk->vk).
These can be further specialized:
* For k = 0, they become untyped single-tuple shelf terms
o#Top(t1,1 ... t1,n1) describing the object o with the positional
arguments t1,1, ..., t1,n1 .

5. Externally de�ned terms. If t is an anonymous psoa term then External(t)

is an externally de�ned term.
External terms represent built-in function or predicate invocations as well as
�procedurally attached� function or predicate invocations. Procedural attach-
ments are often provided by rule-based systems, and external terms constitute
a way of supporting them in PSOA RuleML. �

The notion of psoa term is generalized here from allowing a single tuple, as
in [Bol10], to allowing a bag (multi-set) of tuples. Together with `tupribution' (cf.
de�nition 5, item 3), this accommodates for distributed positional descriptions
of the same OID. For multiple tuples (m>1) each tuple is enclosed by square
brackets, which can be omitted for a single tuple (m=1). The special case n1 =
... = nm is useful to describe the distributed object with `homogeneous' equal-
length tuples of a relation: the OID names the extension of the relation's tuples.

Observe that the argument names of psoa terms, p1, ..., pn, are base terms,
hence can be constants or variables. Since psoa terms include anonymous frames
(slotted terms), this generalizes RIF, where the corresponding named-argument
terms can only use argument names from a separate set ArgNames, to reduce
the complexity of uni�cation [BK10a]. PSOA RuleML could emulate such a
special treatment of slotted terms based on reserving an ArgNames-style subset
of Const for argument names. On the other hand, as shown in Section 1, since
PSOA RuleML's slotted terms via objecti�cation are conceived as frames, they
can be queried by slotribution rather than uni�cation.
7 The combination of o = ? and f = Top leads to anonymous, untyped psoa

terms, describing anonymous variables without a class/type, which could be further
specialized for m = 0 and for k = 0.

Semantics for Positional-Slotted, Object-Applicative Rules 7

2.3 Formulas

An atomic formula is any psoa term of the form f(...) or o#f(...), with f

being a predicate symbol and o a simple term (constant or variable), or any equal-
ity or subclass term, or any externally de�ned term of the form External(ϕ),
where ϕ is an atomic formula. Simple terms are not formulas. More general
formulas are built from atomic formulas via logical connectives.

De�nition 3 (Formula).
A formula can have one of the following forms:

1. Atomic: An atomic formula is also a formula.
2. Condition formula: A condition formula is either an atomic formula or a

formula that has one of the following forms:

� Conjunction: If ϕ1, ..., ϕn, n ≥ 0, are condition formulas then so is
And(ϕ1 ... ϕn), called a conjunctive formula. As a special case, And()
is allowed and is treated as a tautology, i.e., a formula that is always true.

� Disjunction: If ϕ1, ..., ϕn, n ≥ 0, are condition formulas then so is
Or(ϕ1 ... ϕn), called a disjunctive formula. As a special case, Or()
is considered as a contradiction, i.e., a formula that is always false.

� Existentials: If ϕ is a condition formula and ?V1, ..., ?Vn, n>0, are dis-
tinct variables then Exists ?V1 ... ?Vn(ϕ) is an existential formula.

3. Rule implication: ϕ :- ψ is a formula, called rule implication, if:

� ϕ is a head formula or a conjunction of head formulas, where a head
formula is an atomic formula or an existentially scoped atomic formula,

� ψ is a condition formula, and
� none of the atomic formulas in ϕ is an externally de�ned term (i.e., a
term of the form External(...)).
Note that external terms can occur in the arguments of atomic formulas
in the rule conclusion, but they cannot occur as atomic formulas.

4. Universal rule: If ϕ is a rule implication and ?V1, ..., ?Vn, n>0, are distinct
variables then Forall ?V1 ... ?Vn(ϕ) is a universal rule formula. It is
required that all the free variables in ϕ occur among the variables ?V1 ...

?Vn in the quanti�cation part. Generally, an occurrence of a variable ?v is
free in ϕ if it is not inside a subformula of ϕ of the form Exists ?v (ψ) and
ψ is a formula. Universal rules are also referred to as PSOA RuleML rules.

5. Universal fact: If ϕ is an atomic formula and ?V1, ..., ?Vn, n>0, are distinct
variables then Forall ?V1 ... ?Vn(ϕ) is a universal fact formula, provided
that all the free variables in ϕ occur among the variables ?V1 ... ?Vn.
Universal facts are treated as rules without premises.

6. Group: If ϕ1, ..., ϕn are PSOA RuleML rules, universal facts, variable-
free rule implications, variable-free atomic formulas, or group formulas then
Group(ϕ1 ... ϕn) is a group formula.
Group formulas are used to represent sets of rules and facts. Note that some
of the ϕi's can be group formulas themselves, i.e. groups can be nested.

7. Document: An expression of the form Document(directive1 ... directiven
Γ) is a PSOA RuleML document formula, if

8 Harold Boley

� Γ is an optional group formula; it is called the group formula associated
with the document.

� directive1, ..., directiven is an optional sequence of directives. A directive
can be a base directive, a pre�x directive or an import directive. For
details see [BK10a]. �

2.4 Well-formed Formulas

Not all formulas or documents are well-formed in PSOA RuleML. The well-
formedness restriction is similar to standard �rst-order logic: it is required that
no constant appear in more than one context. Informally, unique context means
that no constant symbol can occur within the same document as an individual
or a (plain or external) function or predicate symbol in di�erent places. The
detailed de�nitions are as in RIF-BLD, found in [BK10b], Section 2.5.

2.5 EBNF Grammar for the Presentation Syntax of PSOA RuleML

Until now, we have been using mathematical English to specify the syntax of
PSOA RuleML. Since tool developers might prefer a more succinct overview of
the syntax using familiar grammar notation, our PSOA RuleML speci�cation
also supplies an EBNF de�nition. For instance, a condition formula in mathe-
matical English becomes a FORMULA nonterminal in EBNF.

The EBNF grammar for the PSOA RuleML presentation syntax is as follows:

Rule Language:

Document ::= 'Document' '(' Base? Prefix* Import* Group? ')'

Base ::= 'Base' '(' ANGLEBRACKIRI ')'

Prefix ::= 'Prefix' '(' Name ANGLEBRACKIRI ')'

Import ::= 'Import' '(' ANGLEBRACKIRI PROFILE? ')'

Group ::= 'Group' '(' (RULE | Group)* ')'

RULE ::= ('Forall' Var+ '(' CLAUSE ')') | CLAUSE

CLAUSE ::= Implies | ATOMIC

Implies ::= (HEAD | 'And' '(' HEAD* ')') ':-' FORMULA

HEAD ::= ATOMIC | 'Exists' Var+ '(' ATOMIC ')'

PROFILE ::= ANGLEBRACKIRI

Condition Language:

FORMULA ::= 'And' '(' FORMULA* ')' |

'Or' '(' FORMULA* ')' |

'Exists' Var+ '(' FORMULA ')' |

ATOMIC |

'External' '(' Atom ')'

ATOMIC ::= Atom | Equal | Subclass

Atom ::= PSOA

Equal ::= TERM '=' TERM

Subclass ::= TERM '##' TERM

PSOA ::= TERM '#' TERM '(' TUPLE* (TERM '->' TERM)* ')'

Semantics for Positional-Slotted, Object-Applicative Rules 9

TUPLE ::= '[' TERM* ']'

TERM ::= Const | Var | Expr | 'External' '(' Expr ')'

Expr ::= PSOA

Const ::= '"' UNICODESTRING '"��' SYMSPACE | CONSTSHORT

Var ::= '?' UNICODESTRING?

SYMSPACE ::= ANGLEBRACKIRI | CURIE

The following subsections explain and illustrate the two parts of the syntax; �rst
the foundational language of positive conditions, then the language of rules.

EBNF for the Condition Language The Condition Language represents
formulas that can be used as queries or in the premises of PSOA RuleML rules.

The production for the non-terminal FORMULA represents PSOA RuleML con-
dition formulas (cf. de�nition 3, item 2). The connectives And and Or de�ne
conjunctions and disjunctions of conditions, respectively. Exists introduces ex-
istentially quanti�ed variables. Here Var+ stands for the list of variables that
are free in FORMULA. A PSOA RuleML FORMULA can also be an ATOMIC term,
i.e., an Atom, Equal, or Subclass. A TERM can be a constant, variable, Expr, or
External Expr.

Example 2 (PSOA RuleML conditions). This example shows conditions that are
composed of psoa terms ("Opticks" is a shortcut for "Opticks"��xs:string).

Prefix(bks <http://eg.com/books#>)
Prefix(auth <http://eg.com/authors#>)
Prefix(cts <http://eg.com/cities#>)
Prefix(cpt <http://eg.com/concepts#>)

Formula that uses an anonymous psoa (positional term):
?#cpt:book(auth:Newton "Opticks")

Deobjecti�ed version:
cpt:book(auth:Newton "Opticks")

Formula that uses an anonymous psoa (slotted term):
?#cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Deobjecti�ed version:
cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Formula that uses a named psoa (typed frame):
bks:opt1#cpt:book(cpt:author->auth:Newton cpt:title->"Opticks")

Formula that uses a named psoa (untyped frame):
bks:opt1#Top(cpt:author->auth:Newton cpt:title->"Opticks")

Deobjecti�ed version of a formula that uses an anonymous psoa (multi-tuple term):
cpt:book([auth:Newton "Opticks"] [cts:London "1704"��xs:integer])

Deobjecti�ed version of a formula that uses an anonymous psoa (positional-slotted term):
cpt:book(auth:Newton "Opticks" cpt:place->cts:London cpt:year->"1704"��xs:integer)

EBNF for the Rule Language The EBNF for PSOA RuleML rules and docu-
ments is given in Section 2.5. A PSOA RuleML Document consists of an optional
Base directive, followed by any number of Prefixes and then any number of
Imports. These may be followed by an optional Group. Base and Prefix are
employed by the shortcut mechanisms for IRIs. An Import directive indicates
the location of a document to be imported and an optional pro�le. A PSOA
RuleML Group is a collection of any number of RULE elements along with any
number of nested Groups.

Rules are generated using CLAUSE elements via two RULE alternatives:

10 Harold Boley

� In the �rst, a CLAUSE is in the scope of the Forall quanti�er. In that case,
all variables mentioned in CLAUSE are required to also appear among the
variables in the Var+ sequence.

� In the second alternative, CLAUSE appears on its own. In that case, CLAUSE
cannot have variables.

Var, ATOMIC, and FORMULA were de�ned as part of the syntax for positive condi-
tions in Section 2.5. In the CLAUSE production, ATOMIC is what is usually called
a fact. An Implies rule can have a HEAD element or a conjunction of HEAD ele-
ments as its conclusion; a HEAD is an ATOMIC element or an Exists of an ATOMIC

element. The Implies has a FORMULA as its premise. Note that, by De�nition 3,
externally de�ned atoms (i.e., formulas of the form External(Atom)) are not
allowed in the conclusion part of a rule (ATOMIC does not expand to External).

Example 3 (PSOA RuleML business rule). This example adapts a business rule
from a POSL logistics use case [Bol10]. The ternary reciship conclusion repre-
sents reciprocal shippings, at a total cost (as the single positional argument),
between a source and a destination (as two slotted arguments). The �rst two
premises apply a 4-ary shipment relation that uses an anonymous cargo and
named cost variables as two positional arguments, as well as reciship's slot-
ted arguments (in both `directions'). The third premise is an External-wrapped
numeric-add built-in [PBK10] applied on the right-hand side of an equality to
sum up the shipment costs for the total cost. With the two facts, ?cost = ?57.0.

Prefix(cpt <http://eg.com/concepts#>)
Prefix(mus <http://eg.com/museums#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)
Group (

Forall ?cost ?cost1 ?cost2 ?A ?B (
cpt:reciship(?cost cpt:source->?A cpt:dest->?B) :-

And(cpt:shipment(? ?cost1 cpt:source->?A cpt:dest->?B)
cpt:shipment(? ?cost2 cpt:source->?B cpt:dest->?A)
?cost = External(func:numeric-add(?cost1 ?cost2)))

)
shipment("PC"^^xs:string "47.5"^^xs:float cpt:source->mus:BostonMoS cpt:dest->mus:LondonSciM)
shipment("PDA"^^xs:string "9.5"^^xs:float cpt:source->mus:LondonSciM cpt:dest->mus:BostonMoS)

)

The rule can be objecti�ed as follows (Externals are not being transformed):
Forall ?cost ?cost1 ?cost2 ?A ?B ?2 ?3 (
Exists ?1 (?1#cpt:reciship(?cost cpt:source->?A cpt:dest->?B)) :-

And(?2#cpt:shipment(? ?cost1 cpt:source->?A cpt:dest->?B)
?3#cpt:shipment(? ?cost2 cpt:source->?B cpt:dest->?A)
?cost = External(func:numeric-add(?cost1 ?cost2)))

)

Further, it can be tupributed and slotributed thus (actually done by the semantics):
Forall ?cost ?cost1 ?cost2 ?A ?B ?2 ?3 (
Exists ?1 (And(?1#cpt:reciship(?cost)

?1#cpt:reciship(cpt:source->?A)
?1#cpt:reciship(cpt:dest->?B))) :-

And(?2#cpt:shipment(? ?cost1)
?2#cpt:shipment(cpt:source->?A)
?2#cpt:shipment(cpt:dest->?B)
?3#cpt:shipment(? ?cost2)
?3#cpt:shipment(cpt:source->?B)
?3#cpt:shipment(cpt:dest->?A)
?cost = External(func:numeric-add(?cost1 ?cost2)))

)

Semantics for Positional-Slotted, Object-Applicative Rules 11

3 Semantics

The formalization of the PSOA RuleML semantics in this section is in the style
of RIF-BLD [BK10a], which in some respects is more general than what would
be actually required. The reason for this generality is the need to ensure that the
semantics stay comparable, and that a future RIF logic dialect could be speci�ed
to cater for PSOA (e.g., via an updated RIF-FLD [BK10c]).

For the interpretation of (multiple) PSOA RuleML documents, we refer to
the RIF-BLD article [BK10a]. We mention that a local constant, marked by an
underscore pre�x (e.g., _uvw), is encapsulated within documents, i.e. it can be in-
terpreted di�erently in di�erent documents. Based on that, in a given document,
the new local constant generator, written as a stand-alone _, denotes the �rst
new local constant _i, i ≥ 1, from the sequence _1, _2, . . . that does not already
occur in that document (cf. anonymous ID symbols in [YK03]). For each docu-
ment we will assume OID-less psoa terms to be objecti�ed by the transformation
of Section 1, whose head existentials make PSOA RuleML non-Horn.

To save space, in describing the semantics we omit lists and datatypes, and
simplify the semantics of external functions and predicates, all found in the
RIF-BLD speci�cation [BK10b].

3.1 Semantic Structures

The semantics of PSOA RuleML is an extension of the standard semantics for
Horn clauses. This semantics is speci�ed using general models while the seman-
tics for Horn clauses is usually given via Herbrand models [Llo87]. Without head
existentials, the two semantics become equivalent. We will use TV to denote
{t,f}�the set of truth values used in the semantics. TV is used in RIF because
it is intended to address (through RIF-FLD [BK10c]) a range of logic languages,
including those that are based on multi-valued logics. Since PSOA RuleML is
based on the classical two-valued logic, its set TV is particularly simple.

Truth valuation of PSOA RuleML formulas will be de�ned as a mapping
TValI in two steps: 1. A mapping I generically bundles the various mappings
from the semantic structure, I; I maps a formula to an element of the domainD .
2. A mapping I truth takes such a domain element toTV . This indirectness allows
HiLog-like generality, as detailed at the beginning of Section 3.2.

The key concept in a model-theoretic semantics for a logic language is the
notion of semantic structures [End01], which is de�ned next.

De�nition 4 (Semantic structure). A semantic structure, I, is a tuple of
the form <TV, DTS, D, Dind, Dfunc, IC, IV, Ipsoa, Isub, I=, Iexternal, Itruth>.
Here D is a non-empty set of elements called the domain of I, and Dind, Dfunc

are nonempty subsets of D. The domain must contain at least the root class:
> ∈ D. Dind is used to interpret the elements of Const that play the role of
individuals. Dfunc is used to interpret the constants that play the role of function
symbols. As before, Const denotes the set of all constant symbols and Var the set
of all variable symbols. DTS denotes a set of identi�ers for primitive datatypes.

12 Harold Boley

The remaining components of I are total mappings de�ned as follows:

1. IC maps Const to D. This mapping interprets constant symbols. In addition:

� If a constant, c ∈ Const, is an individual then it is required that IC(c) ∈
Dind.

� If c ∈ Const is a function symbol then it is required that IC(c) ∈ Dfunc.
� It is required that IC(Top) = >.

2. IV maps Var to Dind. This mapping interprets variable symbols.
3. Ipsoa maps D to total functions that have the general form

Dind Ö SetOfFiniteBags(D*ind) Ö SetOfFiniteBags(Dind Ö Dind)→ D.
This mapping interprets psoa terms, uniformly combining positional, slotted,
and frame terms, as well as class memberships. An argument d ∈ D of Ipsoa
uniformly represents the function or predicate symbol of positional terms
and slotted terms, and the object class of frame terms, as well as the class of
memberships. An element o ∈ Dind represents an object of class d, which
is described with two bags.

� A �nite bag of �nite tuples {<t1,1, ..., t1,n1>, ..., <tm,1, ..., tm,nm>}
∈ SetOfFiniteBags(D*ind), possibly empty, represents positional infor-
mation. Here D*ind is the set of all �nite tuples over the domain Dind.
Bags rather than sets of tuples are used since the order of the tuples in a
psoa term is immaterial and tuples may repeat, e.g., o#d([a b c][a b

c]). Such repetitions arise through variables instantiations as explained
below for slots.

� A �nite bag of attribute-value pairs {<a1,v1>, ..., <ak,vk>} ∈
SetOfFiniteBags(Dind Ö Dind), possibly empty, represents slotted in-
formation. Bags are again used since the order of the attribute-value pairs
in a psoa term is immaterial and pairs may repeat, e.g., o#d(a->b a->b).
Such repetitions arise naturally when variables are instantiated with con-
stants. For instance, o#d(?A->?B ?C->?D) becomes o#d(a->b a->b) if
variables ?A and ?C are instantiated with the symbol a and ?B, ?D with
b. (We shall see later that o#d(a->b a->b) is actually equivalent to
o#d(a->b).)

In addition:

� If d ∈ Dfunc then Ipsoa(d) must be a (Dind-valued) function Dind Ö

SetOfFiniteBags(D*ind) Ö SetOfFiniteBags(Dind Ö Dind) → Dind.
� This implies that when a function symbol is applied to arguments that
are individual objects then the result is also an individual object.

We will see shortly how Ipsoa is used to determine the truth valuation of psoa
terms.

4. Isub gives meaning to the subclass relationship. It is a total mapping of the
form Dfunc Ö Dfunc → D.
An additional restriction in Section 3.2 ensures that the operator ## is tran-
sitive, i.e., that c1 ## c2 and c2 ## c3 imply c1 ## c3.

5. I= is a mapping of the form Dind Ö Dind → D. It gives meaning to the
equality operator.

Semantics for Positional-Slotted, Object-Applicative Rules 13

6. Iexternal is a mapping that is used to give meaning to External terms. It
maps symbols in Const designated as external to �xed functions of appropri-
ate arity. Typically, external terms are invocations of built-in functions or
predicates, and their �xed interpretations are determined by the speci�cation
of those built-ins.

7. Itruth is a mapping of the form D→ TV. It is used to de�ne truth valuation
for formulas.

We also de�ne the following generic mapping from terms to D, which we
denote by I.

� I(k) = IC(k), if k is a symbol in Const

� I(?v) = IV(?v), if ?v is a variable in Var

� I(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =
Ipsoa(I(f))(I(o),

{<I(t1,1), ..., I(t1,n1)>, ..., <I(tm,1), ..., I(tm,nm)>},
{<I(a1),I(v1)>, ..., <I(ak),I(vk)>})

Here {...} again denote bags of tuples and attribute-value pairs. Section 3.2
will show that duplicate elements in such a bag do not a�ect the value of
Ipsoa(I(f)). For instance, I(o#f(a->b a->b)) = I(o#f(a->b)).

� I(c1##c2) = Isub(I(c1), I(c2))
� I(x=y) = I=(I(x), I(y))
� I(External(p(s1 ... sn))) = Iexternal(p)(I(s1), ..., I(sn)).

In addition, PSOA RuleML imposes certain restrictions on datatypes so that
they would be interpreted as intended (for instance, that the constants in the sym-
bol space xs:integer are interpreted by integers). Details are found in [BK10b].
�

3.2 Formula Interpretation

This section establishes how semantic structures determine the truth value of
PSOA RuleML formulas other than document formulas. Truth valuation of doc-
ument formulas is as de�ned in RIF-BLD [BK10a]. Here we de�ne a mapping,
TValI , from the set of all non-document formulas to TV .

Observe that in case of an atomic formula φ, TValI(φ) is de�ned essentially
as I truth(I (φ)). Recall that I (φ) is just an element of the domain D and I truth
maps D to truth values in TV . This might surprise those used to textbook-style
de�nitions, since normally the mapping I is de�ned only for terms that occur
as arguments to predicates, not for atomic formulas. Similarly, truth valuations
are usually de�ned via mappings from instantiated formulas to TV , not from
the interpretation domain D to TV . This HiLog-style de�nition [CKW93] is
inherited from RIF-FLD [BK10c] and is equivalent to a standard one for �rst-
order languages such as RIF-BLD and PSOA RuleML. In RIF-FLD, this style
of de�nition is a provision for enabling future RIF dialects that support higher-
order features, such as those of HiLog, Relfun, and FLORA-2 [YKZ03].

14 Harold Boley

De�nition 5 (Truth valuation). Truth valuation for well-formed formulas
in PSOA RuleML is determined using the following function, denoted TValI :

1. Equality: TValI(x = y) = Itruth(I(x = y)).

� To ensure that equality has precisely the expected properties, it is required
that:

Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f
otherwise.

� This can also be expressed as TValI(x = y) = t if and only if I(x) = I(y).

2. Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).
In particular, for the root class, Top, and all sc ∈ D, TValI(sc ## Top) = t.
To ensure that ## is transitive, i.e., c1 ## c2 and c2 ## c3 imply c1 ## c3,
the following is required:

� For all c1, c2, c3 ∈ D, if TValI(c1 ## c2) = TValI(c2 ## c3) = t then
TValI(c1 ## c3) = t.

3. Psoa formula:
TValI(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk)) =
Itruth(I(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk))).
Since the formula consists of an object-typing membership, a bag of tuples
representing a conjunction of all the object-centered tuples (tupribution),
and a bag of slots representing a conjunction of all the object-centered slots
(slotribution), the following restriction is used, where m ≥ 0 and k ≥ 0:

� TValI(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1... ak->vk)) = t
if and only if
TValI(o # f) =
TValI(o#Top([t1,1 ... t1,n1]))=...=TValI(o#Top([tm,1 ... tm,nm])) =
TValI(o#Top(a1->v1)) = ... = TValI(o#Top(ak->vk)) =
t.
Observe that on the right-hand side of the �if and only if� there are
1+m+k subformulas splitting the left-hand side into an object member-
ship, m object-centered positional formulas, each associating the object
with a tuple, and k object-centered slotted formulas, i.e. `triples', each
associating the object with an attribute-value pair. All parts on both sides
of the �if and only if� are centered on the object o, which connects the
subformulas on the right-hand side (the �rst subformula providing the
o-member class f, the remaining m+k ones using the root class Top).

For the root class, Top, and all o ∈ D, TValI(o # Top) = t.
To ensure that all members of a subclass are also members of its superclasses,
i.e., o # f and f ## g imply o # g, the following restriction is imposed:

� For all o, f, g ∈ D, if TValI(o # f) = TValI(f ## g) = t then
TValI(o # g) = t.

4. Externally de�ned atomic formula: TValI(External(t)) = Itruth(Iexternal(t)).
5. Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... =

TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f. The empty conjunc-
tion is treated as a tautology: TValI(And()) = t.

Semantics for Positional-Slotted, Object-Applicative Rules 15

6. Disjunction: TValI(Or(c1 ... cn)) = f if and only if TValI(c1) = ... =
TValI(cn) = f. Otherwise, TValI(Or(c1 ... cn)) = t. The empty disjunction
is treated as a contradiction: TValI(Or()) = f.

7. Quanti�cation:

� TValI(Exists ?v1 ... ?vn (ϕ)) = t if and only if for some I*, described
below, TValI∗(ϕ) = t.

� TValI(Forall ?v1 ... ?vn (ϕ)) = t if and only if for every I*, described
below, TValI∗(ϕ) = t.

Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dfunc,
IC, I*V, Ipsoa, Isub, I=, Iexternal, Itruth>, which is exactly like I, except that
the mapping I*V, is used instead of IV. I*V is de�ned to coincide with IV
on all variables except, possibly, on ?v1,...,?vn.

8. Rule implication:

� TValI(conclusion :- condition) = t, if either TValI(conclusion) = t or
TValI(condition) = f.

� TValI(conclusion :- condition) = f otherwise.

9. Groups of rules:
If Γ is a group formula of the form Group(ϕ1 ... ϕn) then

� TValI(Γ) = t if and only if TValI(ϕ1) = ... = TValI(ϕn) = t.
� TValI(Γ) = f otherwise.

In other words, rule groups are treated as conjunctions. �

The tupribution and slotribution in item 3 render their syntactic counterparts
(cf. Example 3) unnecessary.

4 Conclusions

As a W3C Recommendation, RIF-BLD has provided a reference semantics for
extensions, e.g. with negations, and for continued e�orts, as described here.
Implementations of RIF-BLD engines are currently being planned or developed,
including as extensions to the F-logic engine Flora 2 and the POSL and RuleML
engine OO jDREW. Flora 2, OO jDREW, and other engines could be extended
for the PSOA RuleML semantics of this paper. A subset of PSOA RuleML with
single-tuple psoa terms has already been prototyped in OO jDREW.

The PSOA RuleML syntax of this paper is built on RIF-BLD's presentation
syntax, which in OO jDREW will be complemented with a generalized POSL
syntax. A psoa term o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] p1->v1 ... pk->vk)

corresponds to f(o�t1,1, ..., t1,n1 ; ...; tm,1, ..., tm,nm ; p1->v1; ...; pk->vk)
in POSL, where the OID moves into the argument list, separated from the
other arguments by a hat in�x, and tuple brackets are replaced with comma in-
�xes that have precedence over the tuple- and slot-separating semicolon in�xes.
The generalization here with respect to the POSL publication [Bol10] is multi-
tuple psoa terms.8 Their PSOA RuleML/XML serialization can build on the

8 For m = 1 they gracefully degenerate to f(o�t1,1, ..., t1,n1 ; p1->v1; ...; pk->vk).

16 Harold Boley

XML schemas of Hornlog RuleML (with some FOL RuleML) and RIF-BLD (with
some RIF-FLD), adding a <Tuple> element, di�erent from RuleML's <Plex> and
RIF's <List>. On the other hand, POSL's explicit rest-slot variables are avoided
through frame slotribution.

Our semantics gives a �rst-order model-theoretic foundation for a revised
POSL and PSOA RuleML, showing how a RIF-style semantics can be adapted
for them. By blending implicit rest slots from F-logic and RIF with integrated
psoa terms from POSL and RuleML, the advantages of both rule approaches
have thus been combined. This is a crucial step in RIF-RuleML convergence,
which could lead to a RIF-PSOA dialect corresponding to PSOA RuleML and,
ultimately, to a joint RIF-PSOA RuleML.

Future work on psoa terms includes encoding (multi-)slots and slotribution as
(multi-)tuples and tupribution; conversely, tuples could be encoded as multi-list
values of a tuple slot. Web ontologies, especially taxonomies, in OWL 2, RDF
Schema, etc. could be reused for PSOA RuleML's OID type systems by align-
ments rooted in their classes owl:Thing, rdfs:Resource, etc. and in Top. While
the base terms used as (function-applying) arguments of a psoa term currently
are anonymous psoa terms, uses of named base terms could be studied. PSOA
RuleML could incorporate more features of POSL such as signature declarations.
Membership of an object, e.g. atv1, in multiple classes, e.g. car and ship, is writ-
ten as a conjunction of psoa terms, e.g. And(atv1#car(borne->land drive->wheel)

atv1#ship(borne->water drive->propeller)); instead using DL-style class inter-
section, e.g. atv1#Intersect(car ship)(... slot union ...), may be feasible.

Further e�orts concern Horn rules. Notice Example 1 is not Horn in that
there is a head existential after objecti�cation. To address this issue, it can be
modi�ed as follows.

Example 4 (Rule-extended named family frame). This Horn-rule version of
Example 1 retrieves a family frame with a named OID variable in the premise
and uses its binding to extend that frame in the conclusion (the left-hand side
is objecti�ed on the right).

Group (
Forall ?Hu ?Wi ?Ch ?o (
?o#family(husb->?Hu wife->?Wi child->?Ch) :-
And(?o#family(husb->?Hu wife->?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
inst4#family(husb->Joe wife->Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?o ?1 ?2 (
?o#family(husb->?Hu wife->?Wi child->?Ch) :-
And(?o#family(husb->?Hu wife->?Wi)

Or(?1#kid(?Hu ?Ch) ?2#kid(?Wi ?Ch))))
inst4#family(husb->Joe wife->Sue)
_1#kid(Sue Pete)

)

It leads to a simpler semantics corresponding to the following set of ground facts:
{inst4#family(husb->Joe wife->Sue child->Pete), _1#kid(Sue Pete)}.

Various sublanguages of PSOA RuleML could be de�ned to re�ect Horn rules
and other restrictions, both syntactic and semantic. It will be interesting to
precisely align these with existing RuleML sublanguages as well as RIF dialects.
While the current PSOA RuleML is closest to Hornlog RuleML and RIF-BLD,
its integrated psoa terms with implicit rest slots could be `lifted' to full FOL
RuleML and RIF-FLD as well as `lowered' to Datalog RuleML and RIF-Core,
further advancing the uni�ed RIF RuleML e�ort for Web rule interchange.

Semantics for Positional-Slotted, Object-Applicative Rules 17

5 Acknowledgements

Many thanks go to Michael Kifer and all colleagues in the RuleML Technical
Groups and the W3C RIF Working Group for Web rule collaboration. Also
thanks to Tara Athan, Jidi Zhao, and Alexandre Riazanov for helpful discussions
on drafts of this paper. Further thanks go to the RuleML-2011@IJCAI reviewers
and editors. NSERC is thanked for its support through Discovery Grants.

References

[AK93] Hassan Aït-Kaci. An Introduction to LIFE: Programming with Logic, Inher-
itance, Functions, and Equations. In Dale Miller, editor, Proceedings of the
1993 International Symposium on Logic Programming, pages 52�68, Vancou-
ver, B.C., Canada, October 1993. MIT Press.

[BK10a] Harold Boley and Michael Kifer. A Guide to the Basic Logic Dialect for
Rule Interchange on the Web. IEEE Transactions on Knowledge and Data
Engineering, 22(11):1593�1608, November 2010.

[BK10b] Harold Boley and Michael Kifer. RIF Basic Logic Dialect, June 2010. W3C
Recommendation, http://www.w3.org/TR/rif-bld.

[BK10c] Harold Boley and Michael Kifer. RIF Framework for Logic Dialects, June
2010. W3C Recommendation, http://www.w3.org/TR/rif-fld.

[Bol10] Harold Boley. Integrating Positional and Slotted Knowledge on the
Semantic Web. Journal of Emerging Technologies in Web Intelligence,
4(2):343�353, November 2010. Academy Publisher, Oulu, Finland,
http://ojs.academypublisher.com/index.php/jetwi/article/view/0204343353.

[BPS10] Harold Boley, Adrian Paschke, and Omair Sha�q. RuleML 1.0: The Overar-
ching Speci�cation of Web Rules. In Proc. 4th International Web Rule Sym-
posium: Research Based and Industry Focused (RuleML-2010), Washington,
DC, USA, October 2010, Lecture Notes in Computer Science. Springer, 2010.

[CKW93] W. Chen, M. Kifer, and D.S. Warren. HiLog: A Foundation for Higher-
Order Logic Programming. Journal of Logic Programming, 15(3):187�230,
February 1993.

[CL73] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Prov-
ing. Academic Press, 1973.

[End01] H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2001.
[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented

and Frame-Based Languages. Journal of ACM, 42:741�843, July 1995.
[Llo87] J.W. Lloyd. Foundations of Logic Programming (Second Edition). Springer-

Verlag, 1987.
[PBK10] Axel Polleres, Harold Boley, and Michael Kifer. RIF Datatypes and Built-ins

1.0, June 2010. W3C Recommendation, http://www.w3.org/TR/rif-dtb.
[YK03] Guizhen Yang and Michael Kifer. Reasoning about Anonymous Resources

and Meta Statements on the Semantic Web. In Stefano Spaccapietra, Salva-
tore T. March, and Karl Aberer, editors, J. Data Semantics I, volume 2800
of Lecture Notes in Computer Science, pages 69�97. Springer, 2003.

[YKZ03] G. Yang, M. Kifer, and C. Zhao. FLORA-2: A Rule-Based Knowledge Rep-
resentation and Inference Infrastructure for the Semantic Web. In Interna-
tional Conference on Ontologies, Databases and Applications of Semantics
(ODBASE-2003), volume 2888 of Lecture Notes in Computer Science, pages
671�688. Springer, November 2003.

