A Translator Framework for the Interoperation of Graph plus Relational Data and Rules on the Web

AWoSS 2014
Saint John, NB, Canada, February 24, 2014

Gen Zou, Harold Boley

Faculty of Computer Science,
University of New Brunswick, Fredericton, Canada
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
Along with ontologies, rules provide foundation of knowledge representation and problem solving

- Used to express
 - Knowledge for ontology/rule-based data access
 - Domain-specific (e.g., biomedical) concept definitions
 - Associations among data
 - Business logics
 - Privacy/security/trust policies
 - Legal norms
 - ...

- Will enable **Semantic Analytics of Big Data**
Rule Languages

- Paradigms for modeling entity dependencies:
 - Relational
 - Graph (Object-Centered)
 - Combined

- Since Knowledge Bases (KBs) have been developed in languages following all three paradigms, cross-paradigm translation, integration, and reuse is often necessary

- Need for an interoperation language and technology: Positional-Slotted Object-Applicative (PSOA) RuleML

- Naturally combinable with portability technology: Platform-independent implementation of PSOA RuleML
Hypergraph Example – Relational Betweenness

Directed hyperarcs cut through intermediate nodes (cf. Grailog)

Facts

\[\text{betweenRel}(\text{pacific, canada, atlantic}) \]
\[\text{betweenRel}(\text{canada, usa, mexico}) \]
Graph Example – Object-Centered Betweenness

Facts

“#” denotes “∈” for class membership; “→” associates a slot name with its filler

\[b_0 \# betweenObj(outer1 \rightarrow \text{pacific}; \ inner \rightarrow \text{canada}; \ outer2 \rightarrow \text{atlantic}) \]
\[b_1 \# betweenObj(outer1 \rightarrow \text{canada}; \ inner \rightarrow \text{usa}; \ outer2 \rightarrow \text{mexico}) \]
Example – Integrated Betweenness (Enriched)

Facts

\[
\begin{align*}
\text{b0} \# \text{betweenObjRel} & (\text{pacific, canada, atlantic}; \ dim \rightarrow 2; \ orient \rightarrow \text{westEast}) \\
\text{b1} \# \text{betweenObjRel} & (\text{canada, usa, mexico}; \ dim \rightarrow 2; \ orient \rightarrow \text{northsouth})
\end{align*}
\]
Relational Rule Languages

- Widely used for relational DBs (SQL views) and KBs, representing information in classical logic
- Model dependencies among n entities as an n-ary predicate applied to an ordered sequence of n arguments, called positional arguments
- Languages: Common Logic, Prolog, TPTP-FOF, ...
Graph (Object-Centered) Rule Languages

- Receive increasing attention because of expanding research and development in linked data on the Web, graph/‘triple’ stores, and big data in NoSQL DBs
- Each object is represented by a unique Object IDentifier (OID), typed by a class, and described by an unordered collection of slots, each being a pair of a name and a filler
- An OID-describing slotted term in AI is called a frame (represents a resource/‘subject’-describing property list on the Semantic Web)
- Languages: RDF, N3, ...
Object-Relational Rule Languages

- Combine the object-centered and relational paradigms, either in a heterogeneous or a homogeneous way
 - Heterogeneous
 - Allow atomic formulas in both relational and object-centered forms, even mixed in the same rule
 - Languages: F-logic and RIF
 - Homogeneous
 - Integrate relational and object-centered atomic formulas into a unified form
 - Language: PSOA RuleML
Integrates relational and object-centered modeling
Generalizes F-logic, RIF-BLD, and POSL
Uses positional-slotted object-applicative (psoa) terms, permitting a relation application to have an OID – typed by the relation – and, orthogonally, its arguments to be positional or slotted.

General case (multi-tuple):
\[
o \# f([t_{1,1} \ldots t_{1,n_1}] \ldots [t_{m,1} \ldots t_{m,n_m}] p_1\rightarrow v_1 \ldots p_k\rightarrow v_k)
\]

Special cases (single-tuple brackets and zero-argument parentheses optional):
Combined: \[
o \# f([t_1 \ldots t_n] p_1\rightarrow v_1 \ldots p_k\rightarrow v_k)
\]
Positional: \[
o \# f([t_1 \ldots t_n])
\]
Slotted: \[
o \# f(p_1\rightarrow v_1 \ldots p_k\rightarrow v_k)
\]
Member-only: \[
o \# f()
\]
Example of Querying a PSOA Fact and Rule

KB:

\[b1\#betweenObjRel(\text{canada usa mexico} \quad \text{dim} \rightarrow 2 \quad \text{orient} \rightarrow \text{northSouth}) \]

\[
\text{Forall } ?\text{out1} \quad ?\text{in} \quad ?\text{out2} \quad ?b \\\n(\\quad ?\text{in}\#\text{GeoUnit}(\text{neighborNorth} \rightarrow ?\text{out1} \quad \text{neighborSouth} \rightarrow ?\text{out2}) \quad :\quad ?b\#\text{betweenObjRel}(?\text{out1} \quad ?\text{in} \quad ?\text{out2} \quad \text{orient} \rightarrow \text{northSouth}) \n) \]

English Query: “Which GeoUnit has Canada as its northern neighbor?”
Query: \(?X\#\text{GeoUnit}(\text{neighborNorth} \rightarrow \text{canada}) \)
Answer: \(?X=\text{usa} \)

TPTP version in Common Logic would contribute to COLORE
Semantics-Preserving Translation

For a translation φ_{L_1,L_2} from the source language L_1 to the target language L_2:

- **Sound**: all entailments that hold after translation to L_2 already hold in L_1
- **Complete**: all entailments in L_1 still hold after translation to L_2
- **Semantics preserving** = sound + complete

Semantics-preserving translation desired for realizing L_1 via L_2:

$$Q_1 \xrightarrow{\varphi_{L_1,L_2}} Q_2$$
$$\vdash_1 \varphi_{L_1,L_2} \vdash_2$$

$$KB_1 \xrightarrow{\varphi_{L_1,L_2}} KB_2$$
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
System of Translation Pathways

- Use the homogeneous object-relational language PSOA RuleML as the interchange language
- Implement unidirectional or bidirectional translations between PSOA RuleML and
 - Relational languages: TPTP and the Horn subset of Prolog
 - Object-centered language: N3
 - Heterogenous object-relational language: RIF
General Translation Steps

- Translations with PSOA RuleML as the **source language**
 - Transform the source KB into a normalized form with only elementary constructs, using a composition of transformations *staying within PSOA RuleML*
 - Objectification
 - Slotribution/tupribution
 - Skolemization
 - Unnesting
 - Map elementary constructs into the target language
- Translations with PSOA RuleML as the **target language**
 - Mostly syntactic translation, target different subsets of PSOA RuleML
Each translation is a recursive algorithm τ that can be specified as a mapping table.

Example of τ_{psoa}: Mapping from PSOA RuleML to TPTP

<table>
<thead>
<tr>
<th>PSOA/PS Constructs</th>
<th>TPTP Constructs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$o # f()$</td>
<td>$\text{member}(\tau_{psoa}(o), \tau_{psoa}(f))$</td>
</tr>
<tr>
<td>$\text{AND}(f_1 \ldots f_n)$</td>
<td>$(\tau_{psoa}(f_1) & \ldots & \tau_{psoa}(f_n))$</td>
</tr>
<tr>
<td>$\varphi : - \psi$</td>
<td>$\tau_{psoa}(\psi) \Rightarrow \tau_{psoa}(\varphi)$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
Realizing increasing subsets of PSOA RuleML semantics in portability architecture: Framework for translators and translator-based reasoning systems

Instantiated in ANTLR (ANother Tool for Language Recognition) for executable translators implementing mapping tables, e.g. targeting $L_2 = TPTP$
Portability Architecture

- ANTLR-based Java library of translators
 - Parsers/Generators: between concrete-syntax strings and abstract-syntax trees (ASTs)
 - Transformers: from ASTs to ASTs
- Service-based composition technology for translators along the pathways
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
Evaluation

- Evaluation metrics for soundness and completeness, analogous to, respectively, precision and recall in information retrieval

- Test Suite
 - Contains existing independent test cases, e.g. from http://www.w3.org/2005/rules/wiki/Category:Test_Case
 - and test cases developed by ourselves, at http://wiki.ruleml.org/index.php/PSOA_RuleML
 - Also contains new use cases (following slides)
 - Covers different language and translator features
Outline

1. Introduction

2. Combined Interoperation/Portability Methods
 - Object-Relational Interoperation Framework
 - Portability Architecture
 - Evaluation

3. Use Cases
Ongoing: Geospatial Rules

- Extend our running example by formalizing and integrating further geospatial knowledge.
- For each relation/class, determine most suitable paradigm (relational-only, object-centered-only, or object-relational combined) along with its argument treatment.
- Enhance geospatial data with knowledge in a Rule-Based Data Access (RBDA) scenario, e.g. for WSL forestry data.
Planned: Financial Business Rules

- Develop KB with business rules in PSOA RuleML for the financial management of organizations, e.g. RuleML Inc.
- Data from financial documents and electronic financial statement spreadsheets will be mapped to PSOA facts.
- OIDs are used to connect metadata (KB) and paper documents. Can also be used as dereferenceable URLs for scanned versions of documents.
- A systematics of financial business rules will be explored (e.g., validation rules for transaction plausibility checks, transformation rules for currency conversion, heuristic rules for checking-to-savings transfers).
Demo

- **PSOATransRun available online:**
 http://psoa.ruleml.cloudbees.net

- **Try test cases and send feedback**