
Minimal Objectification and Maximal
Unnesting in PSOA RuleML

Gen Zou, Harold Boley

Faculty of Computer Science, University of New Brunswick, Canada

The 10th International Web Rule Symposium, RuleML 2016
Stony Brook University, 6-9 July 2016

1 / 27



Outline

1 Introduction to PSOA RuleML

2 Minimal Objectification

3 Maximal Unnesting

4 Conclusions and Future Work

2 / 27



Outline

1 Introduction to PSOA RuleML

2 Minimal Objectification

3 Maximal Unnesting

4 Conclusions and Future Work

3 / 27



PSOA RuleML

Object-relational Web rule language that generalizes
relationships (e.g., in FOL, LP) and frames (e.g., in RDF,
N3) into positional-slotted object-applicative (psoa) terms

General cases (multi-tuple), where “#” means “member of”:

Oidless : f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)

Oidful : o#f([t1,1 . . . t1,n1] . . . [tm,1 . . . tm,nm] p1->v1 . . . pk->vk)

Oidless psoa terms are interpreted as atoms (i.e.,
predicate applications) on the top level and as
expressions (i.e., function applications) when embedded
in another term
Oidful psoa terms are interpreted as atoms both on the
top-level and when embedded
Interchangeable use of oidless and oidful atoms is
enabled via objectification transformation
Embedded oidful atoms can be extracted via unnesting

4 / 27



Special Case of Oidless Atom – Relationship

betweenRel

canadapacific atlantic

usa

mexico

Directed hyperarcs cut through intermediate nodes (cf. Grailog)

Facts
Surrounding brackets of tuples can be omitted for single-tuple psoa terms

betweenRel(pacific canada atlantic)
betweenRel(canada usa mexico)

5 / 27

http://wiki.ruleml.org/index.php/Grailog


Special Case of Oidful Atom – Frame

betweenObj

b0

b1

canadapacific atlantic

usa

mexico

outer1

inner

outer2

outer1

inner

outer2

Facts
b0#betweenObj(outer1 → pacific inner → canada outer2 → atlantic)
b1#betweenObj(outer1 → canada inner → usa outer2 → mexico)

6 / 27



Special Case of Oidful Atom – Shelframe (Enriched)

betweenObjRel

b0

b1

2

canadapacific atlantic

usa

mexico

westEast

northSouth

dim

orient

dim

orient

Facts
b0#betweenObjRel(pacific canada atlantic dim → 2 orient → westEast)
b1#betweenObjRel(canada usa mexico dim → 2 orient → northsouth)

7 / 27



PSOATransRun 1.1

Efficient reasoning in PSOA RuleML enabled
All forms of psoa atoms used as facts or in rules
Embedded oidful psoa atoms
(OID-)head-existential rules
Equality in the body, restricted to unification and
external-function evaluation
Subclass formulas for ‘ABox’ reasoning only
Built-in arithmetic functions

Released in Java source form and as an executable jar
file. Downloadable from: http://wiki.ruleml.org/
index.php/PSOA_RuleML#PSOATransRun

Includes a composition of translator PSOA2Prolog and
well-known XSB Prolog engine

8 / 27

http://wiki.ruleml.org/index.php/PSOA_RuleML#PSOATransRun
http://wiki.ruleml.org/index.php/PSOA_RuleML#PSOATransRun
http://www.cs.unb.ca/~boley/talks/PSOA2Prolog-talk.pdf
http://xsb.sourceforge.net


Outline

1 Introduction to PSOA RuleML

2 Minimal Objectification

3 Maximal Unnesting

4 Conclusions and Future Work

9 / 27



Static vs. Dynamic Objectification of Atoms – Preview

KB: _work(_Kate _Rho4biz "Director")

Query: ?O#_work(?P ?C ?J)

(Users can pose oidless/oidful queries regardless of whether the
underlying KB clauses have OIDs or not)

Static: Generate explicit OID
(transform above KB ground atom, use query unchanged):

Undifferentiated (using existential OID variable):
Exists ?1 (?1#_work(_Kate _Rho4biz "Director"))

Differentiated (using fresh OID constant):
_1#_work(_Kate _Rho4biz "Director")

Dynamic: Virtualize with ‘_oidcons’ function and equality ‘=’
(keep above KB unchanged, transform query atom):
And(_work(?P ?C ?J)

?O=_oidcons(_work ?P ?C ?J))

10 / 27



Objectification – Semantics

Old semantics
Can only interpret an oidless psoa term after applying static
objectification
Causes reasoning overhead for an atom whose predicate in
the KB clauses is used only as a Prolog-like relation, e.g.
does not occur with an OID or slots
Cannot deal with an expression term – which returns an
arbitrary value – since giving it an OID would make the
function act as the class of the OID and lead to a truth value

New semantics
Allow direct interpretation and truth evaluation of oidless
psoa terms
Add objectification restriction

TValI(f(...)) = t

if and only if

TValI(Exists ?O (?O#f(...))) = t

11 / 27



Objectification Transformation Systematics

Objectification transformation realizes the objectification
restriction by transforming KBs and queries such that
entailments can be established under the semantics in
which the restriction is excluded (cf. Def. 2)
Systematics of objectification transformation of
KBs/queries

Static: generate explicit OIDs for all of the KB’s oidless
atoms

Undifferentiated: uniformly transforms oidless atoms
everywhere (cf. Def. 4)
Differentiated: transforms oidless atoms based on their
occurrences (cf. Def. 5)

Static/Dynamic (novel refinement): being minimal by
generating as few explicit OIDs as possible, instead
constructing virtual OIDs as query variable bindings (cf.
Def. 6 – 8)

Correctness of all transformations are proved
(cf. Thm. 1 – 4)

12 / 27



Example KB/Queries Before Objectification

(Local constants prefixed by underscore; variables prefixed by question mark)

KB:
Document (
Group (
Forall ?Pers ?JobTitle ?Comp1 ?Comp2 (
_transfer(?Pers ?Comp1 ?Comp2) :-

And(_work(?Pers ?Comp1 ?JobTitle)
_acquire(_buyer->?Comp2 _seller->?Comp1)))

_e1#_transfer(_Tony _Rho4biz _Chi4corp _bonus->20000)
_work(_Kate _Rho4biz "Director")
_a1#_acquire(_buyer->_Chi4corp _seller->_Rho4biz)

)
)

Queries:
_work(?P ?C ?J)

?O#_work(?P ?C ?J)
_transfer(?P ?C1 ?C2)

?O#_transfer(?P ?C1 ?C2)

13 / 27



Undifferentiated Static Objectification of KB/queries

Replace all oidless atoms with their existential forms
Objectified KB:
Document{

Group (
Forall ?Pers ?JobTitle ?Comp1 ?Comp2 (

Exists ?1 (?1#_transfer(?Pers ?Comp1 ?Comp2)) :-
And(Exists ?2 (?2#_work(?Pers ?Comp1 ?JobTitle))

Exists ?3 (?3#_acquire(_buyer->?Comp2
_seller->?Comp1)))

)
_e1#_transfer(_Tony _Rho4biz _Chi4corp _bonus->20000)
Exists ?1 (?1#_work(_Kate _Rho4biz "Director"))
_a1#_acquire(_buyer->_Chi4corp _seller->_Rho4biz)

)
)

Objectified Queries:
Exists ?1 (?1#_work(?P ?C ?J))
?O#_work(?P ?C ?J)
Exists ?1 (?1#_transfer(?P ?C1 ?C2))
?O#_transfer(?P ?C1 ?C2)

14 / 27



Differentiated Static Objectification of KB/queries

Replace each oidless atom f(...) with the following
objectified form according to its occurrence

Ground fact:
_i#f(...), _i is a new constant, i = 1, 2, ...
Non-ground fact, rule conclusion atom, or query atom:
Exists ?j (?j#f(...)), where ?j is a
fresh variable scoped universally by the enclosing rule
(For queries, ?j is a query variable encapsulated in an
existential scope so that the bindings will not be returned)
Rule premise atom:
?j#f(...), where ?j is a fresh variable scoped
universally by the enclosing rule

15 / 27



Differentiated Static Objectification – Example

Objectified KB:

Document (
Group (

Forall ?Pers ?JobTitle ?Comp1 ?Comp2 ?2 ?3 (
Exists ?1 (?1#_transfer(?Pers ?Comp1 ?Comp2)) :-

And(?2#_work(?Pers ?Comp1 ?JobTitle)
?3#_acquire(_buyer->?Comp2 _seller->?Comp1))

)
_e1#_transfer(_Tony _Rho4biz _Chi4corp _bonus->20000)
_1#_work(_Kate _Rho4biz "Director")
_a1#_acquire(_buyer->_Chi4corp _seller->_Rho4biz)

)
)

Objectified Queries:

Exists ?1 (?1#_work(?P ?C ?J))
?O#_work(?P ?C ?J)
Exists ?1 (?1#_transfer(?P ?C1 ?C2))
?O#_transfer(?P ?C1 ?C2)

16 / 27



Static/Dynamic Objectification of KB/queries

Partition the set of KB predicates into two disjoint subsets:
non-relational (at least one occurrence in a multi-tuple,
oidful, or slotted atom, or in a subclass formula) and
relational (no such occurrence) (cf. Def. 5)
Statically generate OIDs only for the KB’s oidless atoms
with non-relational predicates (can be either
undifferentiated or differentiated)
Dynamically perform OID virtualization for query atoms
using the KB’s relational predicates with OID variables via
equalities that unify an OID variable with an
OID-constructor (‘_oidcons’) function application
Make better use of the underlying Prolog engine in the
PSOATransRun implementation for efficient inference on
KB clauses with relational predicates

17 / 27



Dynamic Objectification of Atoms

Leave all KB atoms with relational predicates unchanged
For each query atom ω using a relational predicate f in KB
φ, transformation objd (φ,ω) includes these main cases:

If ω is a relationship, objd (φ,ω) = ω
If ω has a non-variable (e.g., constant or expression) OID
or a slot, objd (φ,ω) is explicit falsity, here encoded as Or()
If ω has an OID variable and m tuples, being of the form
?O#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm]),
equivalent to a tupribution-like conjunction, copying ?O#f,
And(?O#f(t1,1 ... t1,n1) ... ?O#f(tm,1 ... tm,nm),
objd (φ,ω) is a relational conjunction using equality
And(f(t1,1 ... t1,n1) ?O = _oidcons(f t1,1 ... t1,n1)

...
f(tm,1 ... tm,nm) ?O = _oidcons(f tm,1 ... tm,nm))

If ω is a membership of the form ?O#f, objd (φ,ω) is a
disjunction shown in the following, where n1, . . .,nk are
the k different arities of f in the KB:

Or(objd (φ,?O#f(?X1 . . . ?Xn1)) . . .
objd (φ,?O#f(?X1 . . . ?Xnk)))

18 / 27



Static/Dynamic Objectification – Example

Use differentiated static objectification for atoms with non-relational predicates
Objectified KB:
Document (

Group (
Forall ?Pers ?JobTitle ?Comp1 ?Comp2 ?2 (
Exists ?1 (?1#_transfer(?Pers ?Comp1 ?Comp2)) :-

And(_work(?Pers ?Comp1 ?JobTitle)
?2#_acquire(_buyer->?Comp2 _seller->?Comp1))

)
_e1#_transfer(_Tony _Rho4biz _Chi4corp _bonus->20000)
_work(_Kate _Rho4biz "Director")
_a1#_acquire(_buyer->_Chi4corp _seller->_Rho4biz)

)
)

Objectified Queries:
_work(?P ?C ?J)
And(_work(?P ?C ?J) ?O=_oidcons(_work ?P ?C ?J))
Exists ?1 (?1#_transfer(?P ?C1 ?C2))
?O#_transfer(?P ?C1 ?C2)

19 / 27



Outline

1 Introduction to PSOA RuleML

2 Minimal Objectification

3 Maximal Unnesting

4 Conclusions and Future Work

20 / 27



Unnesting

Embedded psoa atoms
Widely used in object-centered languages such as RDF,
N3, and Flora-2/F-logic as a shorthand notation
PSOA RuleML supports the use of embedded oidful atoms,
e.g. o1#c(p->f(o2#d))

Unnesting transformation
Decomposes nested atomic formulas into equivalent
conjunctions

Unnest(o1#c(p->f(o2#d)))
= And(o2#d o1#c(p->f(o2)))

Being maximal in that it can recursively extract oidful atoms
– leaving behind their OIDs – not only from other atoms but
also from expressions, which may themselves be
embedded at any level

21 / 27



Unnesting – Formal Definition

Unnest(α) ::= And(σ1 . . . σn)

s.t. {σ1, . . . ,σn} = ∪t∈Parts(α)Atoms(t)
⋃

{Trim(α)}

Parts(t) ::= The set of top-level components of an atomic formula or a term t

Atoms(t) ::=


∅ t is a simple term
∪s∈Parts(t)Atoms(s) t is oidless (expression)
∪s∈Parts(t)Atoms(s)

⋃
{Trim(t)} t is oidful (atom)

Trim(t) ::= Term/Formula obtained by replacing
every s ∈ Parts(t) in t with Retain(s)

Retain(t) ::=


t t is a simple term
Trim(t) t is oidless (expression)
Retain(Oid(t)) t is oidful (atom)

22 / 27



Unnesting – Definition Explanation

Unnest(α) is a conjunction of formulas σi without
embedded atoms
Each σi is a trimmed version of the top-level formula α or of
some embedded psoa atom
Atoms(t) contains each σi trimmed from an atom
embedded in t or t itself. The set is constructed recursively.
Trim(t) splits off all embedded atoms from t and leaves
behind its ‘ultimate’ OID for each of them
Retain(s) defines the left-behind term for each embedded
term s

23 / 27



Unnesting – Example

Input α: o1#c(p->f(o2#d))

{σ1, . . . ,σn}

= (Atoms(o1) ∪ Atoms(c) ∪ Atoms(p) ∪ Atoms(f(o2#d))
⋃

{Trim(α)}

= Atoms(f(o2#d))
⋃

{Trim(α)}

= Atoms(o2#d)
⋃

{Trim(α)}

= {Trim(o2#d), Trim(o1#c(p->f(o2#d)))}

Trim(o2#d) = Retain(o2)#Retain(d) = o2#d

Trim(o1#c(p->f(o2#d)))
= Retain(o1)#Retain(c)(Retain(p)->Retain(f(o2#d)))
=o1#c(p->Retain(f)(Retain(o2#d)))
=o1#c(p->f(Retain(Oid(o2#d)))) = o1#c(p->f(o2))

Output:
Unnest(o1#c(p->f(o2#d))) = And(o2#d o1#c(p->f(o2)))

24 / 27



Outline

1 Introduction to PSOA RuleML

2 Minimal Objectification

3 Maximal Unnesting

4 Conclusions and Future Work

25 / 27



Conclusions

Refined PSOA semantics to allow a direct interpretation of
oidless psoa terms, which includes the objectification
restriction to establish the equivalence between an oidless
atom and its existentially objectified form
Formally defined systematics of objectification
transformations and proved correctness
Introduced a novel static/dynamic objectification approach
for KB/queries, which is minimal in that it generates as few
explicit OIDs as possible, instead constructing virtual OIDs
as query variable binding
Formalized unnesting transformation to decompose nested
atomic formulas into equivalent conjunctions, which is
maximal in that it can recursively extract oidful atoms not
only from other atoms but also from expressions
Objectification and unnesting have been implemented in
PSOATransRun 1.1

26 / 27



Future work

Explore further optimizations for objectification
Complement the unnesting transformation with a flattening
transformation for extracting ‘active’ expressions (i.e.
built-ins and equality-defined functions) from both atoms
and expressions

27 / 27


