
Reaction RuleML for 
Accessing Loosely-Coupled and 

Event-Messaged Rule KBs 

Adrian Paschke1, Harold Boley2, Paul Vincent3, Davide Sottara4, Tara Athan5 
 

1 Freie Universitaet Berlin, Germany 
2 University of New Brunswick and National Research Council Canada 

3Tibco Software Inc., UK   
4Arizona State Univ., AZ, USA 

5 Athan Services, W Lafayette, IN, USA 
 

OMG Technical Meeting, Ontology PSIG, 
Cambridge, MA, 21 June 2012 



Coupling Approaches for 
(Distributed Rule) Knowledge Bases 

• Strong coupling  
– Interaction through a stable interface 
– API call is hard coded 

• Loose coupling  
– Resilient relationship between two or 

more systems or organizations with 
some kind of exchange relationship  

– Each end of the transaction makes its 
requirements explicit, e.g. as an 
interface description, and makes few 
assumptions about the other end 

• Decoupled  
– decoupled in time using (event) 

messages (e.g. via Message-oriented 
Middleware (MoM)) 

– Often asynchronous stateless 
communication (e.g. publish-
subscribe or CEP event detection) 
 
 
 

Event 
Cloud 

(unordered events) 

new auto pay account login 

account login deposit 

withdrawal 

logout 

account balance 

transfer 

deposit new auto pay 

enquiry 
enquiry 

logout 

new auto pay account login 

account login 
deposit 

activity history 

withdrawal 

logout transfer 
deposit new auto pay 

enquiry 

enquiry 

book 

request incident 

Event Streams 
(ordered events) 

Agent / Service Interface  

Rule Service  

Consumer 

Reaction RuleML 

Message Interchange  

0.0000

Request 

0.0000

Response 

Rule KB1 

Rule KBn 

… 

Computer

KB 

direct 

implementation 



Reaction Rules: Four Sub-branches 

2 

• Production RuleML: Production Rules 
(Condition-Action rules) 

• ECA RuleML: Event-Condition-Action (ECA) rules 

• CEP RuleML: Rule-based Complex Event Processing 
(complex event processing reaction rules, 
(distributed) event messaging reaction rules, query 
reaction rules, etc.) 

• KR Reaction RuleML: Knowledge Representation 
Event/Action/Situation Transition/Process Logics and 
Calculi 

 

 



Reaction Rules: Specializable Syntax  

3 

<Rule @key @keyref @style> 

     <oid>     <!-- object id of the rule -->        </oid> 

     <meta>   <!-– (semantic) metadata of the rule -->       </meta> 

     <scope>   <!–- scope of the rule e.g. a rule module --> </scope> 

     <evaluation>    <!-- intended semantics -->       </evaluation> 

     <signature> <!– rule signature -->                                  </signature> 

     <qualification> <!–- e.g. qualifying rule declarations, e.g. 

                          priorities, validity, strategy -->       </qualification> 

     <quantification>  <!-- quantifying rule declarations, 

                            e.g. variable bindings -->        </quantification> 

     <on>      <!–- event part -->         </on> 

     <if>      <!–- condition part -->                                         </if> 

     <then>    <!-– (logical) conclusion part -->                      </then> 

     <do>      <!--  action part -->         </do> 

     <after>   <!–- postcondition part after action, 

                    e.g. to check effects of execution -->       </after> 

     <else>  <!–- (logical) else conclusion -->        </else> 

     <elsedo>  <!-- alternative/else action, 

                    e.g. for default handling -->        </elsedo> 

</Rule> 

Info, Life 

Cycle Mgt. 

Interface 

Imple-

mentation 



Reaction RuleML – Example Rule Types 

• Production Rule:            <Rule> 
                         <if>...</if> 

                         <do>...</do> 

                </Rule>             

• Trigger Rule:                   <Rule>  
                         <on>...</on> 

                         <do>...</do> 

                </Rule> 

• ECA Rule:                         <Rule> 
                         <on>...</on> 

                         <if>...</if> 

                         <do>...</do>  

                </Rule>  

4 



 <Rule> 
    <evaluation> 
        <Profile iri=„ruleml;definiteProductionRule" direction=„forward" style=„active"/> 
    </evaluation> 
   <signature> 
 <Atom> 
      <op><Rel>likes</Rel></op> 
  <arg><Var mode="+"/></arg> <!-- mode=+ i.e. input argument --> 
  <arg><Var mode="?"/> </arg><!-- mode=- i.e. input or output argument --> 
 </Atom> 
  </signature> 
    <if> 
      <Atom> 
        <op><Rel>likes</Rel></op>  
        <arg><Var>X</Var></arg> 
        <arg><Ind>wine</Ind></arg> 
      </Atom> 
    </if> 
    <do> 
      <Assert>   <formula> 
         <Atom> 
              <op><Rel>likes</Rel></op> 
               <arg><Ind>John</Ind></arg> 
              <arg><Var>X</Var></arg> 
         </Atom> 
    </formula>  </Assert>   </do> 
  </Rule> 

Rule Interface and Rule Implementation  

Interface with 

evaluation 

semantics and  

rule signature 

declaration 

Implementation  



Separation of Interface and Implementation 

 <Rule keyref="r1"> 
    <evaluation><Profile> ...p1… </Profile><evaluation> 
    <evaluation><Profile> …p2 …</Profile></evaluation> 
   <declaration>…s1…</declaration> 
 </Rule> 
 <Rule keyref="r2"> 
    <evaluation><Profile> ...p3… </Profile><evaluation> 
    <declaration>…s2…</declartion> 
 </Rule> 
 … 
 <Rule key=“r2"> 
    <if>  …   </if> 
    <do> </do> 
  </Rule> 
 
<Rule key="r1"> 
    <if>  …   </if> 
    <do> </do> 
  </Rule> 
 

Interface 1 
(@keyref=r1) 

Implementation 2 

(@key=r2)  

Interface 2 
(@keyref=r2) 

Implementation 1 

(@key=r1)   



Messaging Reaction Rules 
 

<Rule> 

  … 

  <do><Send> query  </Send></do> 

  <on><Receive> response </Receive></on> 

  <if> prove some conditions, e.g. make 
decisions on the received answers </if> 

   …. 

</Rule> Note: The „on“, „do“, „if“ parts can be in 

arbitrary combinations to allow for a flexible 

workflow-style logic with subconversations 

and parallel branching logic  
 



Send and Receive Messaging 

•Send a message 
• Send (@directive oid,protocol,agent,content) 

•Receive a message 
• Receive(@directive oid,protocol,agent,content) 

 
–oid is the conversation identifier (enabling also subconverstations)  
–protocol: protocol definition (high-level protocols and transport prot.) 

–agent: denotes the target or sender of the message  
–@directive: pragmatic context, e.g. FIPA 

Agent Communication Language (ACL) primitives 
–content: Message payload 



Loosley-Coupled Communication via  
Messages to Agent Interface 

 
<Message directive="acl:query - ref "> 
   <oid> <Ind>conversation1 </Ind> </oid> 
   <protocol> <Ind>esb </Ind> </protocol> 
   <sender> <Ind>Agent1 </Ind> </sender> 
   <receiver> <Ind>Agent2 </Ind> </receiver> 
   <content> 
  <Atom> 
   <Rel>likes </Rel> 
   <Ind>John </Ind> 
   <Ind>Mary</Ind> 
  </Atom> 
   </content> 
</Message> 
 
 

• Event Message is local to the conversation state (oid) 
and pragmatic context (directive) 

FIPA ACL directive 

9 

Interpreted by Agent 2 as 

query according to 

ACL:query-ref 

 

Note: the receiver „Agent2“ 

needs to specify an 

appropriate signature for 

„likes“  



Decoupled Event Messaging  
Reaction Rules 

 <Rule> 
  <on> 
    <Sequence> 
  <Message> event_A </Message> 
             <Concurrent>  
    <Message> event_ B </Message> 
   <Message>event_C </Message> 
  </Concurrent>  
 </Sequence> 
   </on> 
   …. 
</Rule> 

Complex Event Algebra Operators 

are used to define CEP patterns  

 

Note: The event messages are decoupled 

from the sender (in contrast to the loosley 

coupled send and receive communication 

using rule (agent) interfaces 



Reaction RuleML Metamodel 
Top-Level Ontologies 

General concepts such as space, time, event, action and their properties and relations 

Temporal  
Ontology 

Action  
Ontology Process  

Ontology 
Agent 

Ontology 
Situation  
Ontology 

Domain  
Ontologies 

Vocabularies related 
to specific domains 
by specializing the 
concepts introduced 
in the top-level 
ontology 

Task  
Activities  
Ontologies 

Vocabularies related 
to generic tasks or 

activities  by 
specializing the 

concepts introduced in 
the top-level ontology 

Application  
Ontologies 

Specific 
user/application 
ontologies 

E.g. ontologies describing roles 
played by domain entities while 
perfoming application activities 

Spatio  
Ontology 

Event  
Ontology 



Example: Situation Top Ontology Model 

Situation 

Heterogeneous 
Situation 

Homogenous 
Situation 

Dynamic 
Change  

Situation 

Time  
Frame  

Situation 

Frequency  
Situation 

 

State  
Situation 

 

Process  
Situation 

 

Iterative  
Situation 

 

Habitual  
Situation 

 

Situation 
Properties 

(time, location, participants, é) 

Situation 
Content 

hasContent hasProperties 

Situation 
Types 

Situation 
Descriptions 

LaysOn 
TheFloor 

TrafficLight
Changes 

Within5
Minutes 

He  
Runs 

Rings3 
Times 

He  
Coughs 

He  
Smokes 

Situation 
Individuals 

use the other 
top ontologies 



Complex Event / Action Algebra Operators 
defined in Metamodel 

• Action Algebra  
   Succession (Ordered Succession of Actions), Choice (Non-Determenistic 
Choice),  Flow (Parallel Flow), Loop (Loops), 
Operator (generic Operator which can point to an external Action 
metamodel/ontology) 
 

• Event Algebra  
    Sequence (Ordered), Disjunction (Or) , Xor (Mutal Exclusive), Conjunction 
(And),  Concurrent , Not, Any, Aperiodic, Periodic, AtLeast, ATMost,  
Operator (generic Operator which can point to an external event 
metamodel/ontology) 
 
 

• Interval Algebra (Time/Spatio/Event/Action/… Intervals) 
During, Overlaps, Starts, Precedes, Meets, Equals, Finishes,  

Operator (generic Operator which can point to an external Interval 
metamodel/ontology) 

 

 
13 



Reaction RuleML Metamodel and External 
Ontologies + Data - Examples 

<Quantifier type="ruleml:Forall"> == <Forall> 
<Operator type="ruleml:And"> == <And> 
<Operator type="ruleml:Conjunction"> == <Conjunction> 
<Negation type="ruleml:InflationaryNegation"> == <Naf> 
<Action type="ruleml:Assert">  == <Assert> 
<Action type="ruleml:Retract">  == <Retract> 
<Event type="ruleml:SimpleEvent">  == <Atom> … </Atom> 
<Event type="ibm:CommonBaseEvent"> == IBM CBE 
<Operator type="snoop:Squence"> == Snoop Algebra  

== <Operator type="ruleml:Sequence">  == <Sequence> 
<Ind iri="person.xml#xpointer(//Person/LastName[1]/text())"/> 
<Action iri="BPEL.xml#xpointer(//invoke[@name=checkHotel])">   



Execution Semantics  
(defined in the evaluation semantics element) 

1. Definition 
– Definition of event/action pattern e.g. by event algebra 
– Based on declarative formalization or procedural implementation  
– Defined over an atomic instant or an interval of time, events/actions, situation, transition 

etc. 

2. Selection 
– Defines selection function to select one event from several occurred events 

(stored in an event instance sequence e.g. in memory, database/KB) of a particular type, 
e.g. “first”, “last”  

– Crucial for the outcome of a reaction rule, since the events may contain different 
(context) information, e.g. different message payloads or sensing information 

3. Consumption 
– Defines which events are consumed after the detection of a complex event 
– An event may contribute to the detection of several complex events, if it is not consumed 
– Distinction in event messaging between “multiple receive” and “single receive” 
– Events which can no longer contribute, e.g. are outdated, should be removed 

4. Execution 
– Actions might have an internal effect i.e. change the knowledge state leading to state 

transition from (pre-)condition state to post-condition state 
– The effect might be hypothetical (e.g. a hypothetical state via a computation) or 

persistent (update of the knowledge base), 
– Actions might have an external side effect 

15 



Summary of Selected Reaction RuleML Features 

• Different Rule Families and Types 
• Rule Interface and Implementation 
• Decoupled event messaging and loosley-coupled send/receive 

interaction against rule (KB) interface within conversations, 
coordination/negotiation protocols and pragmatic directives 

• External data models and ontologies / metamodels, e.g. 
    time, spatio, event, action, situation, process, agent 

• Different detection, selection and consumption semantics 
• Action Algebra, e.g. 

   Succession (Ordered Sequence), Choice (Non-Deterministic Selection), 
   Flow (Parallel Concurrent Flow), Loop (Iteration), Operator (generic Operator)   

• Event Algebra, e.g. 
    Sequence (Ordered), Disjunction (Or) , Xor (Mutal Exclusion), 
    Conjunction (And),  Concurrent , Not, Any, Aperiodic, Periodic, Operator (generic) 

• Intervals (Time, Event) 
• Situations (States, Fluents) 
• External event query languages 
• ... 

16 



Modular Relax NG for Reaction RuleML 

• Reaction RuleML is a monotonic language extension of 
Deliberation RuleML 
– Every valid Deliberation RuleML document is a valid Reaction RuleML 

document 

• Deliberation RuleML 1.0 is specified by a modular, monotonic 
Relax NG schema, released 2012-04-03 
– Reaction RuleML 1.0 can be specified by new Relax NG modules that 

may be freely-combined with (some or all) Deliberation RuleML 
modules 

– E.g.: modules/Rule.rnc, modules/scope.rnc, modules/event.rnc, 
modules/action.rnc, …  

• MYNG (http://ruleml.org/1.0/myng) provides a GUI for 
building a customized Deliberation RuleML Relax NG schema 
from these modules 
–  MYNG can be extended to the Reaction RuleML schema modules 

 
 

http://ruleml.org/1.0/myng


Application A 

Data 

Rules 

Rule 
system 1 

Application B 

Data 

Rules 

Rule 
system 2 

Ontologies 

(ODM, OWL, 

RDFS, CL, …) 

Rule interchange (on the PIM level) 

<RuleML doc> serialize de-serial. 

Rules 

<XML doc> serialize de-serial. 

data 



Relations between Semantic OMG Standards  

Ontology Definition Metamodel (ODM) 

Semantics for Business Vocabularies 

& Rules (SBVR) 
Production Rule Representation (PRR) 

Decision Model Notation (DMN) 

Direct Mapping for OWL  

Formal Grounding (CL)  Vocabularies in ODM and  

other Ontology languages via 

ODM  (PIM) 

Information Management Metamodel (IMM) 

Mappings for ER, Logical DB,  

XML Schema, é (Data) 

Mappings for e.g. planned Event 

Metamodel Profile (EMP), Agent 

Metamodel and Profile, é 

(specific semantic models)  

Modelling of Rules (PIM)  
Business Rules (CIM) 

RuleML Interchange, 

Interaction, and 

Transformation (PIM ) 



Example: Semantic BPM Approach 

% receive query and delegate it to another party 

rcvMsg(CID,esb, Requester, acl_query-ref, Query) :- 

 responsibleRole(Agent, Query), 

 sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query), 

 rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer), 

 ... (other goals)... 

 sendMsg(CID,esb,Requester,acl_inform-ref,Answer). 

Rules-enabled BPEL+ 
Application 

BPEL run-
time 

BRMS 
(Business Rules 

Management 
System) 

events
, facts 

results 

CEP Logic 

Reaction 
Logic 

Decision 
Logic 

Constraints 

Rule Inference 
Service 

SBPMN -> BPEL+ 

Prova Rule Engine 

Oryx 
SBPM 

1. OMG BPMN (+ Semantics) 

(CIM) 

2.  

BPEL 

(PIM) 

3. RuleML Rule Responder (PIM) 4. Prova Rule Engine (PSM)  



 

Example: Semantic BPM 

Rule Responder Project 

Business Process 



Example: Hybrid Knowledge Bases in Drools 
 



IT Development 

Example:    Semantic Event Processing 
in Government  

Ontology 
Development 

Protege 

Events 

Event Patterns 

Inferences 

Decisions 

TIBCO BusinessEvents 

OWL 

JMS 

Rules + Cont Queries 

Rules 

Rules +  

Decision Engines 
Ex

ec
u

ti
o

n
 

D
is

tr
ib

u
te

d
 f

ac
t 

st
o

re
 

A
rc

h
iv

e 
/ 

B
ac

ki
n

g 
st

o
re

 

D
at

a 

Analytics Models 
Development 

TIBCO Spotfire 

Business / analysis 

IT 

1. Map ontologies 

to s/w  

devt env 

2. Execute against known channels 

3. Analyze data for 

new / revised  

classifications,  

data criteria etc 

4. Use models to 

revise ontology 

+ rule parameters 

5. Define & run self-analysis rules 

3b. For example see 
http://semanticommunity.info/@a

pi/deki/files/18219/BrandNieman

n06182012.pptx 

http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx
http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx
http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx


24 

Thank you ! 

Questions? 

More information: 
 

Reaction RuleML 1.0: Standardized Semantic Reaction Rules. 
Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian and Tara Athan 

In: Proceedings RuleML 2012 (http://2012.ruleml.org) 

http://2012.ruleml.org/

