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Coupling Approaches for 
(Distributed Rule) Knowledge Bases 

• Strong coupling  
– Interaction through a stable interface 
– API call is hard coded 

• Loose coupling  
– Resilient relationship between two or 

more systems or organizations with 
some kind of exchange relationship  

– Each end of the transaction makes its 
requirements explicit, e.g. as an 
interface description, and makes few 
assumptions about the other end 

• Decoupled  
– decoupled in time using (event) 

messages (e.g. via Message-oriented 
Middleware (MoM)) 

– Often asynchronous stateless 
communication (e.g. publish-
subscribe or CEP event detection) 
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Reaction Rules: Four Sub-branches 
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• Production RuleML: Production Rules 
(Condition-Action rules) 

• ECA RuleML: Event-Condition-Action (ECA) rules 

• CEP RuleML: Rule-based Complex Event Processing 
(complex event processing reaction rules, 
(distributed) event messaging reaction rules, query 
reaction rules, etc.) 

• KR Reaction RuleML: Knowledge Representation 
Event/Action/Situation Transition/Process Logics and 
Calculi 

 

 



Reaction Rules: Specializable Syntax  
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<Rule @key @keyref @style> 

     <oid>     <!-- object id of the rule -->        </oid> 

     <meta>   <!-– (semantic) metadata of the rule -->       </meta> 

     <scope>   <!–- scope of the rule e.g. a rule module --> </scope> 

     <evaluation>    <!-- intended semantics -->       </evaluation> 

     <signature> <!– rule signature -->                                  </signature> 

     <qualification> <!–- e.g. qualifying rule declarations, e.g. 

                          priorities, validity, strategy -->       </qualification> 

     <quantification>  <!-- quantifying rule declarations, 

                            e.g. variable bindings -->        </quantification> 

     <on>      <!–- event part -->         </on> 

     <if>      <!–- condition part -->                                         </if> 

     <then>    <!-– (logical) conclusion part -->                      </then> 

     <do>      <!--  action part -->         </do> 

     <after>   <!–- postcondition part after action, 

                    e.g. to check effects of execution -->       </after> 

     <else>  <!–- (logical) else conclusion -->        </else> 

     <elsedo>  <!-- alternative/else action, 

                    e.g. for default handling -->        </elsedo> 

</Rule> 
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Interface 
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Reaction RuleML – Example Rule Types 

• Production Rule:            <Rule> 
                         <if>...</if> 

                         <do>...</do> 

                </Rule>             

• Trigger Rule:                   <Rule>  
                         <on>...</on> 

                         <do>...</do> 

                </Rule> 

• ECA Rule:                         <Rule> 
                         <on>...</on> 

                         <if>...</if> 

                         <do>...</do>  

                </Rule>  
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 <Rule> 
    <evaluation> 
        <Profile iri=„ruleml;definiteProductionRule" direction=„forward" style=„active"/> 
    </evaluation> 
   <signature> 
 <Atom> 
      <op><Rel>likes</Rel></op> 
  <arg><Var mode="+"/></arg> <!-- mode=+ i.e. input argument --> 
  <arg><Var mode="?"/> </arg><!-- mode=- i.e. input or output argument --> 
 </Atom> 
  </signature> 
    <if> 
      <Atom> 
        <op><Rel>likes</Rel></op>  
        <arg><Var>X</Var></arg> 
        <arg><Ind>wine</Ind></arg> 
      </Atom> 
    </if> 
    <do> 
      <Assert>   <formula> 
         <Atom> 
              <op><Rel>likes</Rel></op> 
               <arg><Ind>John</Ind></arg> 
              <arg><Var>X</Var></arg> 
         </Atom> 
    </formula>  </Assert>   </do> 
  </Rule> 

Rule Interface and Rule Implementation  

Interface with 
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Implementation  



Separation of Interface and Implementation 

 <Rule keyref="r1"> 
    <evaluation><Profile> ...p1… </Profile><evaluation> 
    <evaluation><Profile> …p2 …</Profile></evaluation> 
   <declaration>…s1…</declaration> 
 </Rule> 
 <Rule keyref="r2"> 
    <evaluation><Profile> ...p3… </Profile><evaluation> 
    <declaration>…s2…</declartion> 
 </Rule> 
 … 
 <Rule key=“r2"> 
    <if>  …   </if> 
    <do> </do> 
  </Rule> 
 
<Rule key="r1"> 
    <if>  …   </if> 
    <do> </do> 
  </Rule> 
 

Interface 1 
(@keyref=r1) 

Implementation 2 

(@key=r2)  

Interface 2 
(@keyref=r2) 

Implementation 1 

(@key=r1)   



Messaging Reaction Rules 
 

<Rule> 

  … 

  <do><Send> query  </Send></do> 

  <on><Receive> response </Receive></on> 

  <if> prove some conditions, e.g. make 
decisions on the received answers </if> 

   …. 

</Rule> Note: The „on“, „do“, „if“ parts can be in 

arbitrary combinations to allow for a flexible 

workflow-style logic with subconversations 

and parallel branching logic  
 



Send and Receive Messaging 

•Send a message 
• Send (@directive oid,protocol,agent,content) 

•Receive a message 
• Receive(@directive oid,protocol,agent,content) 

 
–oid is the conversation identifier (enabling also subconverstations)  
–protocol: protocol definition (high-level protocols and transport prot.) 

–agent: denotes the target or sender of the message  
–@directive: pragmatic context, e.g. FIPA 

Agent Communication Language (ACL) primitives 
–content: Message payload 



Loosley-Coupled Communication via  
Messages to Agent Interface 

 
<Message directive="acl:query - ref "> 
   <oid> <Ind>conversation1 </Ind> </oid> 
   <protocol> <Ind>esb </Ind> </protocol> 
   <sender> <Ind>Agent1 </Ind> </sender> 
   <receiver> <Ind>Agent2 </Ind> </receiver> 
   <content> 
  <Atom> 
   <Rel>likes </Rel> 
   <Ind>John </Ind> 
   <Ind>Mary</Ind> 
  </Atom> 
   </content> 
</Message> 
 
 

• Event Message is local to the conversation state (oid) 
and pragmatic context (directive) 

FIPA ACL directive 
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Interpreted by Agent 2 as 

query according to 

ACL:query-ref 

 

Note: the receiver „Agent2“ 

needs to specify an 

appropriate signature for 

„likes“  



Decoupled Event Messaging  
Reaction Rules 

 <Rule> 
  <on> 
    <Sequence> 
  <Message> event_A </Message> 
             <Concurrent>  
    <Message> event_ B </Message> 
   <Message>event_C </Message> 
  </Concurrent>  
 </Sequence> 
   </on> 
   …. 
</Rule> 

Complex Event Algebra Operators 

are used to define CEP patterns  

 

Note: The event messages are decoupled 

from the sender (in contrast to the loosley 

coupled send and receive communication 

using rule (agent) interfaces 



Reaction RuleML Metamodel 
Top-Level Ontologies 

General concepts such as space, time, event, action and their properties and relations 
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Example: Situation Top Ontology Model 
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Complex Event / Action Algebra Operators 
defined in Metamodel 

• Action Algebra  
   Succession (Ordered Succession of Actions), Choice (Non-Determenistic 
Choice),  Flow (Parallel Flow), Loop (Loops), 
Operator (generic Operator which can point to an external Action 
metamodel/ontology) 
 

• Event Algebra  
    Sequence (Ordered), Disjunction (Or) , Xor (Mutal Exclusive), Conjunction 
(And),  Concurrent , Not, Any, Aperiodic, Periodic, AtLeast, ATMost,  
Operator (generic Operator which can point to an external event 
metamodel/ontology) 
 
 

• Interval Algebra (Time/Spatio/Event/Action/… Intervals) 
During, Overlaps, Starts, Precedes, Meets, Equals, Finishes,  

Operator (generic Operator which can point to an external Interval 
metamodel/ontology) 
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Reaction RuleML Metamodel and External 
Ontologies + Data - Examples 

<Quantifier type="ruleml:Forall"> == <Forall> 
<Operator type="ruleml:And"> == <And> 
<Operator type="ruleml:Conjunction"> == <Conjunction> 
<Negation type="ruleml:InflationaryNegation"> == <Naf> 
<Action type="ruleml:Assert">  == <Assert> 
<Action type="ruleml:Retract">  == <Retract> 
<Event type="ruleml:SimpleEvent">  == <Atom> … </Atom> 
<Event type="ibm:CommonBaseEvent"> == IBM CBE 
<Operator type="snoop:Squence"> == Snoop Algebra  

== <Operator type="ruleml:Sequence">  == <Sequence> 
<Ind iri="person.xml#xpointer(//Person/LastName[1]/text())"/> 
<Action iri="BPEL.xml#xpointer(//invoke[@name=checkHotel])">   



Execution Semantics  
(defined in the evaluation semantics element) 

1. Definition 
– Definition of event/action pattern e.g. by event algebra 
– Based on declarative formalization or procedural implementation  
– Defined over an atomic instant or an interval of time, events/actions, situation, transition 

etc. 

2. Selection 
– Defines selection function to select one event from several occurred events 

(stored in an event instance sequence e.g. in memory, database/KB) of a particular type, 
e.g. “first”, “last”  

– Crucial for the outcome of a reaction rule, since the events may contain different 
(context) information, e.g. different message payloads or sensing information 

3. Consumption 
– Defines which events are consumed after the detection of a complex event 
– An event may contribute to the detection of several complex events, if it is not consumed 
– Distinction in event messaging between “multiple receive” and “single receive” 
– Events which can no longer contribute, e.g. are outdated, should be removed 

4. Execution 
– Actions might have an internal effect i.e. change the knowledge state leading to state 

transition from (pre-)condition state to post-condition state 
– The effect might be hypothetical (e.g. a hypothetical state via a computation) or 

persistent (update of the knowledge base), 
– Actions might have an external side effect 
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Summary of Selected Reaction RuleML Features 

• Different Rule Families and Types 
• Rule Interface and Implementation 
• Decoupled event messaging and loosley-coupled send/receive 

interaction against rule (KB) interface within conversations, 
coordination/negotiation protocols and pragmatic directives 

• External data models and ontologies / metamodels, e.g. 
    time, spatio, event, action, situation, process, agent 

• Different detection, selection and consumption semantics 
• Action Algebra, e.g. 

   Succession (Ordered Sequence), Choice (Non-Deterministic Selection), 
   Flow (Parallel Concurrent Flow), Loop (Iteration), Operator (generic Operator)   

• Event Algebra, e.g. 
    Sequence (Ordered), Disjunction (Or) , Xor (Mutal Exclusion), 
    Conjunction (And),  Concurrent , Not, Any, Aperiodic, Periodic, Operator (generic) 

• Intervals (Time, Event) 
• Situations (States, Fluents) 
• External event query languages 
• ... 
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Modular Relax NG for Reaction RuleML 

• Reaction RuleML is a monotonic language extension of 
Deliberation RuleML 
– Every valid Deliberation RuleML document is a valid Reaction RuleML 

document 

• Deliberation RuleML 1.0 is specified by a modular, monotonic 
Relax NG schema, released 2012-04-03 
– Reaction RuleML 1.0 can be specified by new Relax NG modules that 

may be freely-combined with (some or all) Deliberation RuleML 
modules 

– E.g.: modules/Rule.rnc, modules/scope.rnc, modules/event.rnc, 
modules/action.rnc, …  

• MYNG (http://ruleml.org/1.0/myng) provides a GUI for 
building a customized Deliberation RuleML Relax NG schema 
from these modules 
–  MYNG can be extended to the Reaction RuleML schema modules 

 
 

http://ruleml.org/1.0/myng
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Relations between Semantic OMG Standards  

Ontology Definition Metamodel (ODM) 

Semantics for Business Vocabularies 

& Rules (SBVR) 
Production Rule Representation (PRR) 

Decision Model Notation (DMN) 

Direct Mapping for OWL  

Formal Grounding (CL)  Vocabularies in ODM and  

other Ontology languages via 

ODM  (PIM) 
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XML Schema, é (Data) 
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Example: Semantic BPM Approach 

% receive query and delegate it to another party 

rcvMsg(CID,esb, Requester, acl_query-ref, Query) :- 

 responsibleRole(Agent, Query), 

 sendMsg(Sub-CID,esb,Agent,acl_query-ref, Query), 

 rcvMsg(Sub-CID,esb,Agent,acl_inform-ref, Answer), 

 ... (other goals)... 

 sendMsg(CID,esb,Requester,acl_inform-ref,Answer). 
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Example: Hybrid Knowledge Bases in Drools 
 



IT Development 

Example:    Semantic Event Processing 
in Government  
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3b. For example see 
http://semanticommunity.info/@a

pi/deki/files/18219/BrandNieman

n06182012.pptx 

http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx
http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx
http://semanticommunity.info/@api/deki/files/18219/BrandNiemann06182012.pptx
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Thank you ! 

Questions? 

More information: 
 

Reaction RuleML 1.0: Standardized Semantic Reaction Rules. 
Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian and Tara Athan 

In: Proceedings RuleML 2012 (http://2012.ruleml.org) 

http://2012.ruleml.org/

