The RuleML System of Families of Languages

T. Athan1,3 H. Boley2 A. Paschke3

1Athan Services (athant.com), West Lafayette, Indiana, USA
2Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
3AG Corporate Semantic Web, Freie Universitaet Berlin, Germany

RuleML Symposium, Stony Brook University, 6-9 July 2016
The RuleML System of Families of Languages

Outline

1. System of Families
2. Deliberation RuleML
3. MYNG
4. Consumer RuleML
5. Reaction RuleML
The RuleML System of Families of Languages

The RuleML Families

Figure: An overview of the subclass, syntactic specialization, and overlap relationships between the Deliberation, Reaction, and Consumer RuleML families of RuleML 1.02 is given in this diagram.
The RuleML Feature Set

Figure: Details of the syntactic containment relationships between the Reaction, Deliberation and Consumer families are shown in this Venn diagram. The filled ellipses indicate sets of language constructs. The stars indicate language features, e.g. rules, first-order logic expressivity, or performatives, that may be combined to generate language constructs.
Revised Approach to RuleML Semantics

- RuleML prior to 1.02 assumed **predefined default semantics**, which could be overridden by explicit semantic variant attributes.

- Rather than distinguishing one semantics for each language, RuleML 1.02 assumes **no default semantics but by default keeps the semantics unspecified**.
Advantages of the new RuleML Semantic System

Safety: semantics must be explicitly specified, avoiding incorrect assumptions

Refinability: semantics can be partially and gradually introduced

Scalability: syntactic extensions can be paired with semantic extensions

Domain Requirements: E.g.:

- Legal: multiple interpretations of legal texts
- Software specification: languages (e.g. UML) without complete formal semantics
Predefined Semantic Styles of RuleML 1.02

- Underspecified profiles (partially constrained)
 - splittableHeadConjunction
 - reasoning
 - active
 - messaging
- Fully-specified semantics
 - Horn-PSOA Tarski
 - Horn Logic Herbrand
 - First-Order Logic Herbrand
 - First-Order Deontic Alethic Logic
 - Reified Classical Situation Calculus
Features of Deliberation RuleML 1.x

- Highly-expressive First-Order logic, with variably polyadic functions and relations
- Flexible hybrid relational-graph syntax
- Oriented and unoriented equality
- Logic programming through weak negation
- Fuzzy and probabilistic logics with uncertainty degree and slot weights
- IRIs and CURIEs as names, in addition to local vocabulary
- Metadata annotations
- Extralogical performatives and metalogic
New Features in Deliberation RuleML 1.02

- Distributed representation (@key/@keyref newly adopted from Reaction RuleML)
- Increased semantic flexibility with references
 - Extended quantification (existing @closure attribute now takes an IRI or CURIE value)
 - Signatures (existing @type attribute now takes an IRI or CURIE value)
 - Semantic specification (@style is newly adopted from Reaction RuleML)
Example

<Assert style="rp:splittableHeadConjunction">
 <Implies>
 <Atom><Rel>Wound</Rel></Atom> <!-- if -->
 <And> <!-- then -->
 <Atom><Rel>Bandage</Rel></Atom>
 <Atom><Rel>Medication</Rel></Atom>
 </And>
 </Implies>
</Assert>
Example

```xml
<Assert style="rp:splittableHeadConjunction">
  <Implies>
    <Atom key=":cond"><Rel>Wound</Rel></Atom>
    <Atom><Rel>Bandage</Rel></Atom>
  </Implies>
  <Implies>
    <Atom keyref=":cond"/>
    <Atom><Rel>Medication</Rel></Atom>
  </Implies>
</Assert>
```
MYNG 1.02 - the Deliberation RuleML Schema Configuration Form

Instructions

To automatically construct a customized language, make selections from the form below. Click "Download ..." for the normative RNC schema or an approximating XSD anchor schema. To view the Relax NG driver schema, click "Generate Schema", then scroll down. To fill the form to the initial (supremum) values, click "Fill Form". To clear the form, specifying a language with the fewest included modules (infimum), click "Clear Form".

Figure: MYNG GUI for configuring a customized syntax containing selected features. Provides IRIs or download of the following:

- Precise schemas in Relax NG
- Lenient approximate (anchor) schemas in XSD.
Figure: Fine-grained feature options grouped into related facets.
MYNG 1.02 Facets, continued

Relax NG Schema
Relax NG Query String URL = http://deliberation.ruleml.org/1.02/relaxng/schema_rnc.php?backbone=x1f&default=x7&termseq=x7&lng=x1&propo=x3ff&implies=x7f&terms=xf3f&quant=x7&expr=x1&serial=x4f
Equivalent Relax NG myng-code URL = http://deliberation.ruleml.org/1.02/relaxng/myng-b1f-d7-a7-l1-p3ff-i7f-tf3f-q7-e1-s4f.rnc

XSD Anchor Schema URL = http://deliberation.ruleml.org/1.02/xsd/nafnegdishornlogplus.xsd

Figure: Additional facets, followed by referencable IRIs.
The RNC and XSD Schema URLs may be used directly for online validation - copy and paste as required by the validator. For a demonstration of RNC validation using the online service Validator.nu, see [How to Validate with the RuleML Parameterized Relax NG Schema](#). Some scripts and processing instructions may require that the character "&" be replaced by "&".

Clicking on the "Download RNC Schema" button downloads a copy of the schema driver into a file named according to the text labeled "RNC". To use the schema driver locally (offline), a local copy of the modules directory is also necessary - for download instructions, see the [Deliberation RuleML 1.02 Relax NG Directory](#). For more information about the re-engineering of RuleML into Relax NG, which made this modularization possible, see the [MYNG](#) page on the RuleML Wiki.

Figure: IRIs may be used for online validation, or download.
Figure: Relax NG driver schema displayed. Modular system depends on custom restriction of Relax NG schema language.

Future work includes

- On-the-fly generation of precise XSD schemas,
- Determination of minimal validating schema for a RuleML instance document
- Online normalization and compactification
New Functionality in MYNG 1.02

Figure: New in MYNG 1.02: Convenient buttons for clearing/filling form and facets
Consumer RuleML 1.02 - Embedded

- Designed to be embedded into other languages - lacks extra-logical features:
 - containers (e.g., `<Rulebase>`)
 - performatives (e.g., `<Assert>`, `<Query>`)
 - Consumer, for structure and pragmatics, of containers and performatives from other languages, e.g. from FIPA, SOAP, or domain-specific XML languages such as LegalRuleML.
Consumes external resources, from other syntactic and semantic specifications, accessed by attributes linking to external definitions of

- syntactic constraints (@type),
- semantic profiles (@style)
- extended quantifications (@closure).

The external resources may be, for example, definitions in controlled natural language (e.g., in mathematical English) or formal specifications expressed in Reaction RuleML.
Status of LegalRuleML

- LegalRuleML embeds and extends Consumer RuleML 1.02.
- Announcement on LegalRuleML is forthcoming.
Reaction RuleML 1.02 - Highlights

- Rules (Rule) generalizing Implies, e.g., Production (CA) rules, Trigger (EA) and Event-Condition-Action (ECA) rules, distributed rule-based Complex Event Processing (CEP)
- Definition language for interface, signature, scopes, semantic profiles, qualifications, quantification, and corresponding referencing attributes for scope, mode, safety, arity, cardinality, qualifications, quantification
- Generics dedicated to specialization of terms, formulas, operations, connectors with e.g. spatial, temporal, interval, modal types
- Further actions/performatives for semantic import, updates, answers, justifications, tests, etc.
- Message descriptors for agent-based knowledge interchange
The RuleML System of Families of Languages

Examples - Signature Definition and Generics

<snsignature> <!-- signature for TimeIntervalClass type -->
<time>
<oid><ind>TimeIntervalClass</ind></oid>
<slot><ind>start</ind><var type="xs:datetime"/>
<slot><ind>end</ind><var type="xs:datetime"/></slot>
</time>
</signature>

<!-- Time generic using defined TimeIntervalClass type -->
<time key=":t1">
<oid><ind type="TimeIntervalClass">interval1</ind></oid>
<slot><ind>start</ind><data>2011-03-21T10:00:00-04:00</data>
<slot><ind>end</ind><data>2012-03-21T10:00:00-04:00</data></slot>
</time>

<neg> <!-- modal operation "it is not necessary that not" -->
<operation type="rulemlv:AlethicOperator" iri="rulemlv:Necessary">
<neg><time keyref=":t1"/></neg>
</operation>
</neg>
Examples Performatives / Actions

<!-- semantically import knowledge base -->
<do> <Consult iri="../../kb_rrml"/> </do>

<!-- consult enclosed message content -->
<do> <Consult>
 <enclosed><Message> ... </Message></enclosed>
</Consult></do>

<!-- send and receive message -->
<do><Send><Message> ... </Message></Send></do>
<do><Receive><Message> ... </Message></Receive></do>

<!-- perform test with test suite -->
<do>
 <Test>
 <vvi><TestSuite> ... </TestSuite></vvi>
 </Test>
</do>
Conclusion

- Release of Consumer RuleML 1.02 in 2015 and contribution to OASIS LegalRuleML
- Recent release of Deliberation RuleML 1.02
- Releases of Reaction RuleML 1.02 and RuleML 1.02 as a whole (including semantics) are forthcoming.
- See http://ruleml.org for more details.