RuleML for Object-Relational Knowledge Representation on the Web

International Joint Conference on Artificial Intelligence, IJCAI 2011 Best Papers from Sister Conferences Track, Barcelona, Spain, July 19-22, 2011

Harold Boley

Institute for Information Technology, National Research Council; Faculty of Computer Science, University of New Brunswick, Canada

<ロト <回ト < 国ト < 国ト = 国

Knowledge representation & problem solving in

- Al
- the (Semantic) Web
- IT at large

can be

- Relational (and logic-based): FOL, Horn, LP
- Object-oriented (and frame-based): CLOS, RDF, N3

Combined approaches:

- Description Logics (DLs)
- Object-Oriented Databases (OODBs) / Deductive Object-Oriented Databases (DOODs)
- Object-oriented logic languages: LIFE and Frame logic (F-logic)
- W3C Rule Interchange Format (RIF):
 - Semantics based on F-logic
 - Serialization syntax based on RuleML

- F-logic and RIF extend first-order model-theoretic semantics for objects (frames)
- Added separately from function and predicate applications to arguments
- Resulting complexity of object-extended semantics can be reduced by integrating objects with applications

Introduction: Object-Extended Semantics (Cont'd)

- Integration based on positional-slotted, object-applicative rules of POSL and RuleML
- F-logic's model-theoretic semantics in the style of RIF is also the starting point of our integrated semantics
- Permits applications with optional object identifiers and, orthogonally, arguments that are positional or slotted
- Structured by these independent dimensions of defining features, language constructs can be freely combined

Introduction: Psoa Terms and Rules

- RuleML-2011 paper formalizes
 positional-slotted, object-applicative (psoa)
 terms and rules
- Psoa term applies function or predicate symbol, possibly instantiated by object, to zero or more positional or slotted (named) arguments
- For a psoa term as atomic formula, predicate symbol is class (type) of object as well as relation between arguments, which describe object

Introduction: Distinctions in Psoa Taxonomy

- Psoa terms that apply a predicate symbol (as a relation) to *positional arguments* can be employed to make factual assertions
- An example, in simplified RIF (presentation) syntax, is term married(Joe Sue) for binary predicate married applied to Joe and Sue, where positional (left-to-right) order can be used to identify husband, as 1st argument, and wife, as 2nd argument

Introduction: Distinctions in Psoa Taxonomy (Cont'd)

- Psoa terms that apply a predicate symbol (as a class) to *slotted arguments* correspond to typed attribute-value descriptions
- An example is psoa term
 family(husb->Joe wife->Sue) or
 family(wife->Sue husb->Joe) for
 family-typed attribute-value pairs (slots)
 {<husb, Joe>, <wife, Sue>}
 - Easily extended with further slots, e.g. by adding children, as in family(husb->Joe wife->Sue child->Pete)

Introduction: Distinctions in Psoa Taxonomy (Cont'd)

 Usually, slotted terms describe an object symbol, i.e. an object identifier (OID), maintaining object identity even when slots of their descriptions are added or deleted

• This leads to (typed) frames in the sense of F-logic

• E.g., using RIF's membership syntax #, OID inst1 in class family is describable by inst1#family (husb->Joe wife->Sue), inst1#family (husb->Joe wife->Sue child->Pete),

etc. Psoa terms can also specialize to class membership terms, e.g. inst1#family(), abridged inst1#family, represents inst1 ∈ family

- Like OID-describing slotted terms constitute a (multi-slot) 'frame', positional terms that describe an object constitute a (single-tuple) 'shelf', similar to a (one-dimensional) array describing its name
- Thus, family's husb and wife slots can be positionalized as in earlier married example: inst1#family(Joe Sue) describes inst1 with tuple [Joe Sue]

Introduction: Positional-Slotted OID Description

- Combined positional-slotted psoa terms are allowed, similarly as in XML elements (tuple → subelements, slots → attributes), e.g. describing an object, as in RDF descriptions (object → subject, slots → properties)
- For example, inst1#family(Joe Sue child->Pete) describes inst1 with two positional and one slotted argument

Introduction: Atom Objectification

- An atomic formula without OID is treated as having implicit OID
- An OID-less application is objectified by syntactic transformation: The OID of a ground fact is new constant generated by 'new local constant' (stand-alone _); the OID of non-ground fact or atomic formula in rule conclusion, f(...), is new, existentially scoped variable ?i, leading to Exists ?i (?i#f(...)); the OID of other atomic formulas is new variable generated by 'anonymous variable' (stand-alone ?)
- Objectification allows compatible semantics for an atom constructed as RIF-like slotted (named-argument) term and corresponding frame, solving issue with named-argument terms:

http://lists.w3.org/Archives/Public/public-rif-wg/2008Jul/0000.html

Introduction: Atom Objectification (Cont'd)

- For example, slotted-fact assertion
 family(husb->Joe wife->Sue) is
 syntactically objectified to assertion
 _#family(husb->Joe wife->Sue), and
 -- if_1 is first new constant from _1, _2, ... -- to
 _1#family(husb->Joe wife->Sue)
- This typed frame, then, is semantically *slotributed* to _1#family(husb->Joe) and

_1#family(wife->Sue)

- Rules can be defined on top of psoa terms in a natural manner
- A rule derives (a conjunction of possibly existentially scoped) conclusion psoa atoms from (a formula of) premise psoa atoms
- Consider example with rule deriving family frames

Example (Rule-defined anonymous family frame)

Group is used to collect a rule and two facts. Forall quantifier declares orginal universal argument variables and generated universal OID variables ?2, ?3, ?4. Infix :- separates conclusion from premises of rule, which derives anonymous/existential family frame from married relation And from kid relation of husb Or wife (the left-hand side is objectified on the right).

Semantically, example is modeled by predicate extensions corresponding to following set of ground facts (the subdomain of individuals D_{ind} is to be defined):

```
{o#family(husb->Joe wife->Sue child->Pete)} ∪
```

{_1#married(Joe Sue), _2#kid(Sue Pete)},

where $o \in \mathbf{D}_{ind}$.

PSOA RuleML is defined here as a language incorporating this integration:

- PSOA RuleML's human-readable presentation syntax
- PSOA RuleML's model-theoretic semantics
- Conclusion and future work

Presentation Syntax: Terms

In this definition, *base term* means a simple term, an anonymous psoa term (i.e., an anonymous frame term, single-tuple psoa term, or multi-tuple psoa term), or a term of the form External (t), where t is an anonymous psoa term. Anonymous term can be *deobjectified* (by omitting main ?#) if its re-objectification results in old term (i.e., re-introduces ?#).

Definition (Term)

- Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term
- 2 Equality terms. t = s is an equality term if t, s are base terms
- Subclass terms. t##s is a subclass term if t, s are base terms
- Positional-slotted, object-applicative terms. $\circ #f([t_1, 1...t_1, n_1] \dots [t_m, 1...t_m, n_m] p_1 -> v_1 \dots p_k -> v_k)$ is a *positional-slotted, object-applicative (psoa) term* if $f \in Const$ and $o, t_1, 1, ..., t_{1,n_1}, \dots, t_{m,1}, ..., t_m, n_m$, $p_1, ..., p_k, v_1, ..., v_k, m \ge 0, k \ge 0$, are base terms

Presentation Syntax: Terms (Cont'd)

Definition (Term, Cont'd)

• For m = 1 psoa terms become single-tuple psoa terms o#f([t₁,1 ... t₁,n₁] p₁->v₁ ... p_k->v_k), abridged to o#f(t₁,1 ... t₁,n₁ p₁->v₁ ... p_k->v_k)

These can be further specialized in two ways, which can be orthogonally combined:

- For o being the anonymous variable ?, they become anonymous single-tuple psoa terms ?#f(t₁, 1 ... t₁, n₁ p₁->v₁...p_k->v_k), deobjectified f(t₁, 1 ... t₁, n₁ p₁->v₁...p_k->v_k). These can be further specialized:
 - For k = 0, they become *positional terms* ?#f(t_{1,1}... t_{1,n1}), deobjectified f(t_{1,1}... t_{1,n1}), corresponding to the usual terms and atomic formulas of classical first-order logic
- For f being the root class Top, they become *untyped* single-tuple psoa terms o#Top (t_{1,1} ... t_{1,n1} p₁->v₁
 - $\dots p_k \rightarrow v_k$). These can be further specialized:
 - For k = 0, they become untyped single-tuple shelf terms o#Top (t₁, 1 ... t₁, n₁) describing object o with positional arguments t₁, 1, ..., t₁, n₁

Presentation Syntax: Formulas (Cont'd)

Definition (Formula, Rule Language)

- Solution: $\varphi := \psi$ is a formula, called *rule implication*, if:
 - φ is a head formula or a *conjunction* of head formulas, where a head formula is an atomic formula or an *existentially* scoped atomic formula,
 - ψ is a condition formula, and
 - none of the atomic formulas in φ is an externally defined term (i.e., term of the form External (...))
- Universal rule: If φ is a rule implication and ?V₁, ..., ?V_n, n>0, distinct variables then Forall ?V₁ ... ?V_n (φ) is a *universal rule* formula. It is required that all *free* variables in φ occur among variables ?V₁ ... ?V_n in quantification part. Generally, an occurrence of variable ?v is *free* in φ if it is not inside subformula of φ of the form Exists ?v (ψ) and ψ is a formula. Universal rules are also referred to as *PSOA RuleML rules*.

Semantics: Truth Values and Valuation

- Use *TV* as set of semantic truth values {t,f}
- Truth valuation of PSOA RuleML formulas will be defined as mapping *TVal*_I in two steps:
 - Mapping *I* generically bundles various mappings from semantic structure, *I*;
 I maps formula to element of domain *D*
 - Mapping I_{truth} takes such a domain element to TV

This indirectness allows HiLog-like generality

Definition (Semantic structure)

A semantic structure, \mathcal{I} , is a tuple of the form <*TV*, *DTS*, *D*, *D*_{ind}, *D*_{func}, *I*_C, *I*_V, *I*_{psoa}, *I*_{sub}, *I*₌, *I*_{external}, *I*_{truth}>

Here **D** is a non-empty set of elements called the **domain** of \mathcal{I} , and **D**_{ind}, **D**_{func} are nonempty subsets of **D**

The domain must contain at least the root class: $\top \in \textbf{\textit{D}}$

D_{ind} is used to interpret elements of Const acting as individuals **D**_{func} is used to interpret constants acting as function symbols

As before, ${\tt Const}$ denotes set of all constant symbols and ${\tt Var}$ set of all variable symbols

DTS denotes set of identifiers for primitive datatypes

Semantics: Semantic Structures (Cont'd)

Definition (Semantic structure, Cont'd)

- ③ I_{psoa} maps D to total functions $D_{ind} \times SetOfFiniteBags}(D^*_{ind}) \times SetOfFiniteBags}(D_{ind} \times D_{ind}) \rightarrow D$. Interprets psoa terms, combining positional, slotted, and frame terms, as well as class memberships. Argument $d \in D$ of I_{psoa} represents function or predicate symbol of positional terms and slotted terms, and object class of frame terms, as well as class of memberships. Element $o \in D_{ind}$ represents object of class d, which is described with two bags.
 - Finite bag of finite tuples {<t₁,1,...,t₁,n₁>,...,<t_m,1,...,t_m,n_m>} ∈ SetOfFiniteBags(*D*^{*}ind), possibly empty, represents positional information. *D*^{*}ind is set of all finite tuples over the domain *D*_{ind}. Bags are used since order of tuples in a psoa term is immaterial and tuples may repeat

Definition (Semantic structure, Cont'd)

Generic mapping from terms to D, denoted by I

- $I(k) = I_C(k)$, if k is a symbol in Const
- I(?v) = I_V(?v), if ?v is a variable in Var
- $I(\circ \#f([t_{1,1} ... t_{1,n_1}] ... [t_{m,1} ... t_{m,n_m}] a_1 -> v_1 ... a_k -> v_k))$ = $I_{psoa}(I(f))(I(\circ), \{<I(t_{1,1}), ..., I(t_{1,n_1})>, ..., <I(t_{m,1}), ..., I(t_{m,n_m})>\}, \{<I(a_1), I(v_1)>, ..., <I(a_k), I(v_k)>\})$

Again {...} denote *bags* of tuples and attribute-value pairs.

- *I*(c1##c2) = *I*_{sub}(*I*(c1), *I*(c2))
- $I(x=y) = I_{=}(I(x), I(y))$
- $I(\text{External}(p(s_1...s_n))) = I_{\text{external}}(p)(I(s_1), ..., I(s_n))$

Semantics: Method of Formula Interpretation

- Define mapping, *TVal_I*, from set of all non-document formulas to *TV*
- For atomic formula φ, *TVal*_I(φ) defined essentially as *I*_{truth}(*I*(φ)))
- Recall that *I*(φ) is just an element of domain *D* and *I*truth maps *D* to truth values in *TV*
- HiLog-style definition inherited from RIF-FLD and equivalent to a standard one for first-order languages such as RIF-BLD and PSOA RuleML — but enables future higher-order features

Definition (Truth valuation)

Truth valuation for well-formed formulas in PSOA RuleML determined using function $TVal_{\mathcal{I}}$:

Psoa formula:

 $\begin{aligned} & \textit{TVal}_{\mathcal{I}}(\circ \# f\left([t_{1,1}...t_{1,n_{1}}]...[t_{m,1}...t_{m,n_{m}}] a_{1} \rightarrow v_{1}...a_{k} \rightarrow v_{k}\right)\right) = \\ & \textit{I}_{truth}(\textit{I}(\circ \# f\left([t_{1,1}...t_{1,n_{1}}]...[t_{m,1}...t_{m,n_{m}}] a_{1} \rightarrow v_{1}...a_{k} \rightarrow v_{k}\right))). \end{aligned}$ The formula consists of an object-typing membership, a bag of tuples representing a conjunction of all the object-centered tuples (*tupribution*), and a bag of slots representing a conjunction of all the object-centered slots (*slotribution*). Hence use restriction, where $m \ge 0$ and $k \ge 0$:

• $TVal_{\mathcal{I}}(\circ \# f([t_{1,1}...t_{1,n_{1}}]...[t_{m,1}...t_{m,n_{m}}] a_{1} \rightarrow v_{1}...a_{k} \rightarrow v_{k})) = \mathbf{t}$ if and only if $TVal_{\mathcal{I}}(\circ \# f) =$ $TVal_{\mathcal{I}}(\circ \# Top([t_{1,1}...t_{1,n_{1}}])) = ... = TVal_{\mathcal{I}}(\circ \# Top([t_{m,1}...t_{m,n_{m}}])) =$ $TVal_{\mathcal{I}}(\circ \# Top(a_{1} \rightarrow v_{1})) = ... = TVal_{\mathcal{I}}(\circ \# Top(a_{k} \rightarrow v_{k})) =$ \mathbf{t}

Semantics: Interpretation of Formulas (Cont'd)

Definition (Truth valuation, Cont'd)

8 Rule implication:

- TVal_I(conclusion :- condition) = t, if either TVal_I(conclusion) = t or TVal_I(condition) = f
- *TVal*_{*I*}(*conclusion* :- *condition*) = **f** otherwise
- Groups of rules:
 If Γ is a group formula of the form Group (φ₁ ... φ_n) then
 - $TVal_{\mathcal{I}}(\Gamma) = \mathbf{t}$ if and only if $TVal_{\mathcal{I}}(\varphi_1) = \dots = TVal_{\mathcal{I}}(\varphi_n) = \mathbf{t}$
 - $TVal_{\mathcal{I}}(\Gamma) = \mathbf{f}$ otherwise

In other words, rule groups are treated as conjunctions

- W3C's RIF-BLD has provided a reference semantics for extensions, and for continued efforts, as described here
- Project with Alexandre Riazanov is implementing PSOA RuleML in Vampire Prime via TPTP

- Further efforts concern Horn rules
- Notice introductory example is not Horn in that there is a head existential after objectification
- To address this issue, it can be modified as follows

Conclusion: Psoa Rules Made Horn

Example (Rule-extended named family frame)

Horn version of introductory example retrieves family frame with named OID variable in premise and uses its binding to extend that frame in conclusion (left: given; right: objectified).

```
Group (
   Forall ?Hu ?Wi ?Ch ?o (
        ?o#family(husb->?Hu
            wife->?Wi
            child->?Ch) :-
        And(?o#family(husb->?Hu
            wife->?Wi)
            Or(kid(?Hu ?Ch)
            kid(?Wi ?Ch))))
inst4#family(husb->Joe
            wife->Sue)
kid(Sue Pete)
        )
```

```
Group (
   Forall ?Hu ?Wi ?Ch ?o ?1 ?2 (
        ?o#family(husb->?Hu
            wife->?Wi
            child->?Ch) :-
        And(?o#family(husb->?Hu
            wife->?Wi)
        Or(?1#kid(?Hu ?Ch)
            ?2#kid(?Wi ?Ch))))
inst4#family(husb->Joe
            wife->Sue)
        _1#kid(Sue Pete)
        )
```

Simpler semantics corresponding to this set of ground facts: {inst4#family(husb->Joe wife->Sue child->Pete), _1#kid(Sue Pete)}