
RuleML for Object-Relational Knowledge
Representation on the Web

International Joint Conference on Artificial Intelligence,
IJCAI 2011 Best Papers from Sister Conferences Track,

Barcelona, Spain, July 19-22, 2011

Harold Boley

Institute for Information Technology, National Research Council;
Faculty of Computer Science, University of New Brunswick, Canada

Introduction: Two IT Paradigms

Knowledge representation & problem solving in
AI
the (Semantic) Web
IT at large

can be

1 Relational (and logic-based):
FOL, Horn, LP

2 Object-oriented (and frame-based):
CLOS, RDF, N3

2 / 29

Introduction: Unified Paradigm?

Combined approaches:

Description Logics (DLs)

Object-Oriented Databases (OODBs) /
Deductive Object-Oriented Databases (DOODs)

Object-oriented logic languages:
LIFE and Frame logic (F-logic)

W3C Rule Interchange Format (RIF):

Semantics based on F-logic

Serialization syntax based on RuleML

3 / 29

Introduction: Object-Extended Semantics

F-logic and RIF extend first-order
model-theoretic semantics for
objects (frames)

Added separately from function and
predicate applications to arguments

Resulting complexity of object-extended
semantics can be reduced by
integrating objects with applications

4 / 29

Introduction: Object-Extended Semantics (Cont’d)

Integration based on positional-slotted,
object-applicative rules of POSL and
RuleML

F-logic’s model-theoretic semantics in
the style of RIF is also the starting point of
our integrated semantics

Permits applications with optional object
identifiers and, orthogonally, arguments
that are positional or slotted

Structured by these independent
dimensions of defining features, language
constructs can be freely combined

5 / 29

Introduction: Psoa Terms and Rules

RuleML-2011 paper formalizes
positional-slotted, object-applicative (psoa)
terms and rules
Psoa term applies function or predicate
symbol, possibly instantiated by object, to
zero or more positional or slotted (named)
arguments
For a psoa term as atomic formula,
predicate symbol is class (type) of object
as well as relation between arguments,
which describe object

6 / 29

Introduction: Distinctions in Psoa Taxonomy

Psoa terms that apply a predicate symbol
(as a relation) to positional arguments can
be employed to make factual assertions

An example, in simplified RIF (presentation)
syntax, is term married(Joe Sue)
for binary predicate married applied to
Joe and Sue, where positional (left-to-right)
order can be used to identify husband,
as 1st argument, and wife, as 2nd argument

7 / 29

Introduction: Distinctions in Psoa Taxonomy (Cont’d)

Psoa terms that apply a predicate symbol
(as a class) to slotted arguments correspond
to typed attribute-value descriptions

An example is psoa term
family(husb->Joe wife->Sue) or
family(wife->Sue husb->Joe) for
family-typed attribute-value pairs (slots)
{<husb,Joe>, <wife,Sue>}

Easily extended with further slots, e.g. by adding children,
as in family(husb->Joe wife->Sue child->Pete)

8 / 29

Introduction: Distinctions in Psoa Taxonomy (Cont’d)

Usually, slotted terms describe an object
symbol, i.e. an object identifier (OID),
maintaining object identity even when slots
of their descriptions are added or deleted

This leads to (typed) frames in the sense of F-logic

E.g., using RIF’s membership syntax#, OID
inst1 in class family is describable by
inst1#family(husb->Joe wife->Sue),
inst1#family(husb->Joe wife->Sue child->Pete),
etc. Psoa terms can also specialize to class
membership terms, e.g. inst1#family(),
abridged inst1#family, represents
inst1 ∈ family

9 / 29

Introduction: Slotted and Positional OID Description

Like OID-describing slotted terms constitute
a (multi-slot) ‘frame’, positional terms that
describe an object constitute a (single-tuple)
‘shelf’, similar to a (one-dimensional) array
describing its name

Thus, family’s husb and wife slots can
be positionalized as in earlier married
example: inst1#family(Joe Sue)
describes inst1 with tuple [Joe Sue]

10 / 29

Introduction: Positional-Slotted OID Description

Combined positional-slotted psoa terms
are allowed, similarly as in XML elements
(tuple subelements, slots attributes), e.g.
describing an object, as in RDF descriptions
(object subject, slots properties)

For example, inst1#family(Joe Sue
child->Pete) describes inst1 with two
positional and one slotted argument

11 / 29

Introduction: Atom Objectification

An atomic formula without OID is treated as
having implicit OID
An OID-less application is objectified by syntactic
transformation: The OID of a ground fact is new
constant generated by ‘new local constant’
(stand-alone _); the OID of non-ground fact or
atomic formula in rule conclusion, f(...), is new,
existentially scoped variable ?i, leading to
Exists ?i (?i#f(...)); the OID of other atomic
formulas is new variable generated by ‘anonymous
variable’ (stand-alone ?)
Objectification allows compatible semantics for an
atom constructed as RIF-like slotted
(named-argument) term and corresponding frame,
solving issue with named-argument terms:
http://lists.w3.org/Archives/Public/public-rif-wg/2008Jul/0000.html

12 / 29

http://lists.w3.org/Archives/Public/public-rif-wg/2008Jul/0000.html

Introduction: Atom Objectification (Cont’d)

For example, slotted-fact assertion
family(husb->Joe wife->Sue) is
syntactically objectified to assertion
_#family(husb->Joe wife->Sue), and
— if _1 is first new constant from _1, _2, . . . — to
_1#family(husb->Joe wife->Sue)

This typed frame, then, is semantically
slotributed to _1#family(husb->Joe) and
_1#family(wife->Sue)

13 / 29

Introduction: Psoa Rules

Rules can be defined on top of psoa terms in
a natural manner

A rule derives (a conjunction of possibly
existentially scoped) conclusion psoa atoms
from (a formula of) premise psoa atoms

Consider example with rule deriving family
frames

14 / 29

Introduction: Psoa Rules Exemplified

Example (Rule-defined anonymous family frame)

Group is used to collect a rule and two facts. Forall quantifier
declares orginal universal argument variables and generated
universal OID variables ?2, ?3, ?4. Infix :- separates conclusion
from premises of rule, which derives anonymous/existential
family frame from married relation And from kid relation of
husb Or wife (the left-hand side is objectified on the right).
Group (
Forall ?Hu ?Wi ?Ch (

family(husb->?Hu wife->?Wi child->?Ch):-
And(married(?Hu ?Wi)

Or(kid(?Hu ?Ch) kid(?Wi ?Ch))))
married(Joe Sue)
kid(Sue Pete)

)

Group (
Forall ?Hu ?Wi ?Ch ?2 ?3 ?4 (
Exists ?1 (
?1#family(husb->?Hu wife->?Wi child->?Ch)) :-
And(?2#married(?Hu ?Wi)

Or(?3#kid(?Hu ?Ch) ?4#kid(?Wi ?Ch))))
_1#married(Joe Sue)
_2#kid(Sue Pete)

)

Semantically, example is modeled by predicate extensions
corresponding to following set of ground facts (the subdomain
of individuals D ind is to be defined):

{o#family(husb->Joe wife->Sue child->Pete) } ∪
{_1#married(Joe Sue), _2#kid(Sue Pete)}, where o ∈ D ind.

15 / 29

Introduction: PSOA RuleML Presentation

PSOA RuleML is defined here as a language
incorporating this integration:

PSOA RuleML’s human-readable
presentation syntax

PSOA RuleML’s model-theoretic semantics

Conclusion and future work

16 / 29

Presentation Syntax: Terms

In this definition, base term means a simple term, an
anonymous psoa term (i.e., an anonymous frame term,
single-tuple psoa term, or multi-tuple psoa term), or a term of
the form External(t), where t is an anonymous psoa term.
Anonymous term can be deobjectified (by omitting main ?#) if
its re-objectification results in old term (i.e., re-introduces ?#).

Definition (Term)

1 Constants and variables. If t ∈ Const or t ∈ Var then
t is a simple term

2 Equality terms. t = s is an equality term if t, s are base terms

3 Subclass terms. t##s is a subclass term if t, s are base terms

4 Positional-slotted, object-applicative terms.
o#f([t1,1...t1,n1]...[tm,1...tm,nm] p1->v1...pk->vk)
is a positional-slotted, object-applicative (psoa) term if
f ∈ Const and o, t1,1, ..., t1,n1 , ..., tm,1, ..., tm,nm ,
p1, ..., pk, v1, ..., vk, m ≥ 0, k ≥ 0, are base terms

17 / 29

Presentation Syntax: Terms (Cont’d)

Definition (Term, Cont’d)

For m = 1 psoa terms become single-tuple psoa terms
o#f([t1,1 ... t1,n1] p1->v1 ... pk->vk), abridged to
o#f(t1,1 ... t1,n1 p1->v1 ... pk->vk)

These can be further specialized in two ways, which can be
orthogonally combined:

For o being the anonymous variable ?, they become
anonymous single-tuple psoa terms ?#f(t1,1 ... t1,n1
p1->v1...pk->vk), deobjectified f(t1,1 ... t1,n1
p1->v1...pk->vk). These can be further specialized:

For k = 0, they become positional terms ?#f(t1,1 ...
t1,n1), deobjectified f(t1,1 ... t1,n1), corresponding to the
usual terms and atomic formulas of classical first-order logic

For f being the root class Top, they become untyped
single-tuple psoa terms o#Top(t1,1 ... t1,n1 p1->v1
... pk->vk). These can be further specialized:

For k = 0, they become untyped single-tuple shelf terms
o#Top(t1,1 ... t1,n1) describing object o with positional
arguments t1,1, ..., t1,n1 18 / 29

Presentation Syntax: Formulas (Cont’d)

Definition (Formula, Rule Language)
3 Rule implication: ϕ :- ψ is a formula, called

rule implication, if:

ϕ is a head formula or a conjunction of head formulas,
where a head formula is an atomic formula or an
existentially scoped atomic formula,
ψ is a condition formula, and
none of the atomic formulas in ϕ is an externally defined
term (i.e., term of the form External(...))

4 Universal rule: If ϕ is a rule implication and ?V1, ..., ?Vn,
n>0, distinct variables then Forall ?V1 ... ?Vn(ϕ)
is a universal rule formula. It is required that all free
variables in ϕ occur among variables ?V1 ... ?Vn in
quantification part. Generally, an occurrence of variable ?v
is free in ϕ if it is not inside subformula of ϕ of the form
Exists?v(ψ) and ψ is a formula. Universal rules are
also referred to as PSOA RuleML rules.

19 / 29

Semantics: Truth Values and Valuation

Use TV as set of semantic truth values {t,f}

Truth valuation of PSOA RuleML formulas
will be defined as mapping TValI in
two steps:

1 Mapping I generically bundles various mappings from
semantic structure, I;
I maps formula to element of domain D

2 Mapping I truth takes such a domain element to TV

This indirectness allows HiLog-like generality

20 / 29

Semantics: Semantic Structures

Definition (Semantic structure)
A semantic structure, I, is a tuple of the form
<TV , DTS, D, D ind, Dfunc, IC, IV, Ipsoa, Isub, I=, Iexternal, I truth>

Here D is a non-empty set of elements called the domain of I,
and D ind, Dfunc are nonempty subsets of D

The domain must contain at least the root class: > ∈ D

D ind is used to interpret elements of Const acting as individuals
Dfunc is used to interpret constants acting as function symbols

As before, Const denotes set of all constant symbols and
Var set of all variable symbols

DTS denotes set of identifiers for primitive datatypes

21 / 29

Semantics: Semantic Structures (Cont’d)

Definition (Semantic structure, Cont’d)
3 Ipsoa maps D to total functions D ind × SetOfFiniteBags(D* ind)

× SetOfFiniteBags(D ind × D ind)→ D . Interprets psoa terms,
combining positional, slotted, and frame terms, as well as
class memberships. Argument d ∈ D of Ipsoa represents
function or predicate symbol of positional terms and slotted
terms, and object class of frame terms, as well as class of
memberships. Element o ∈ D ind represents object of class
d, which is described with two bags.

Finite bag of finite tuples {<t1,1, ..., t1,n1>, ..., <tm,1, ..., tm,nm>}
∈ SetOfFiniteBags(D* ind) , possibly empty, represents
positional information. D* ind is set of all finite tuples over the
domain D ind. Bags are used since order of tuples in a psoa
term is immaterial and tuples may repeat
Finite bag of attribute-value pairs {<a1,v1>, ..., <ak,vk>}
∈ SetOfFiniteBags(D ind × D ind) , possibly empty, represents
slotted information. Bags, since order of attribute-value
pairs in a psoa term is immaterial and pairs may repeat

22 / 29

Semantics: Semantic Structures (Cont’d)

Definition (Semantic structure, Cont’d)
Generic mapping from terms to D, denoted by I

I(k) = IC(k), if k is a symbol in Const

I(?v) = IV(?v), if ?v is a variable in Var

I(o#f([t1,1 ... t1,n1] ... [tm,1 ... tm,nm] a1->v1 ... ak->vk))
= Ipsoa(I(f))(I(o), {<I(t1,1), ..., I(t1,n1)>, ..., <I(tm,1), ..., I(tm,nm)>},

{<I(a1),I(v1)>, ..., <I(ak),I(vk)>})
Again {...} denote bags of tuples and attribute-value pairs.
I(c1##c2) = Isub(I(c1), I(c2))
I(x=y) = I=(I(x), I(y))
I(External(p(s1...sn))) = Iexternal(p)(I(s1), ..., I(sn))

23 / 29

Semantics: Method of Formula Interpretation

Define mapping, TValI , from set of all non-document
formulas to TV
For atomic formula φ, TValI(φ) defined essentially as
I truth(I(φ)))
Recall that I(φ) is just an element of domain D and
I truth maps D to truth values in TV
HiLog-style definition inherited from RIF-FLD and
equivalent to a standard one for first-order languages such
as RIF-BLD and PSOA RuleML — but enables future
higher-order features

24 / 29

Semantics: Interpretation of Formulas

Definition (Truth valuation)
Truth valuation for well-formed formulas in PSOA RuleML
determined using function TValI :

3 Psoa formula:
TValI(o#f([t1,1...t1,n1]...[tm,1...tm,nm] a1->v1...ak->vk)) =
I truth(I(o#f([t1,1...t1,n1]...[tm,1...tm,nm] a1->v1...ak->vk))).
The formula consists of an object-typing membership,
a bag of tuples representing a conjunction of all the
object-centered tuples (tupribution), and a bag of slots
representing a conjunction of all the object-centered slots
(slotribution). Hence use restriction, where m≥0 and k≥0:

TValI(o#f([t1,1...t1,n1]...[tm,1...tm,nm] a1->v1...ak->vk)) = t
if and only if
TValI(o#f) =
TValI(o#Top([t1,1...t1,n1]))=...=TValI(o#Top([tm,1...tm,nm])) =
TValI(o#Top(a1->v1)) =...= TValI(o#Top(ak->vk)) =
t

25 / 29

Semantics: Interpretation of Formulas (Cont’d)

Definition (Truth valuation, Cont’d)
8 Rule implication:

TValI(conclusion :- condition) = t, if either
TValI(conclusion) = t or TValI(condition) = f
TValI(conclusion :- condition) = f otherwise

9 Groups of rules:
If Γ is a group formula of the form Group(ϕ1 ... ϕn)
then

TValI(Γ) = t if and only if TValI(ϕ1) = ... = TValI(ϕn) = t
TValI(Γ) = f otherwise

In other words, rule groups are treated as conjunctions �

26 / 29

Conclusion: From Semantics to Implementations

W3C’s RIF-BLD has provided a
reference semantics for extensions,
and for continued efforts, as described here

Project with Alexandre Riazanov is
implementing PSOA RuleML
in Vampire Prime via TPTP

27 / 29

Conclusion: Horn

Further efforts concern Horn rules

Notice introductory example is not Horn
in that there is a head existential after
objectification

To address this issue, it can be modified
as follows

28 / 29

Conclusion: Psoa Rules Made Horn

Example (Rule-extended named family frame)
Horn version of introductory example retrieves family frame with
named OID variable in premise and uses its binding to extend that
frame in conclusion (left: given; right: objectified).
Group (

Forall ?Hu ?Wi ?Ch ?o (
?o#family(husb->?Hu

wife->?Wi
child->?Ch) :-

And(?o#family(husb->?Hu
wife->?Wi)

Or(kid(?Hu ?Ch)
kid(?Wi ?Ch))))

inst4#family(husb->Joe
wife->Sue)

kid(Sue Pete)
)

Group (
Forall ?Hu ?Wi ?Ch ?o ?1 ?2 (
?o#family(husb->?Hu

wife->?Wi
child->?Ch) :-

And(?o#family(husb->?Hu
wife->?Wi)

Or(?1#kid(?Hu ?Ch)
?2#kid(?Wi ?Ch))))

inst4#family(husb->Joe
wife->Sue)

_1#kid(Sue Pete)
)

 Simpler semantics corresponding to this set of ground facts:

{inst4#family(husb->Joe wife->Sue child->Pete), _1#kid(Sue Pete)}

29 / 29

