The cut polytope is the convex hull of all of the "cuts" in the
complete graph on (n-1) vertices. For each subset S of vertices,
define x(S) in {0,1}\binom(n,2) as xij(S) = 1 if S contains
exactly one of i and j, and -1 otherwise.
n(n-1)/2
2n-1
facet-degenerate
88, 97, 98
for ($c=0; $c<(2**($n-1)); $c++){
coord(1);
for ($i=1; $i< $n; $i++){
for($j=$i+1; $j<=$n; $j++){
$mask= 0| (1<<($i-1)) | (1 <<($j-1));
if ((($c & $mask) != $mask) and (($c & $mask)!=0)){
coord(1);
} else {
coord(-1);
}
}
}
newrow();
}
returnmatrix();