The metric cone describes the set of weightings of the edges
of a complete graph that satisfy the triangle inequality.
The metric polytope adds the additional constraint that
the weights of any triangle sum to at most 2.
n(n-1)/2
2n(n-1)
85, 105, 95, 96, 101, 99
facet-degenerate, ridge-diameter
$t=0;
for ($i=1; $i< $n; $i++){
for($j=$i+1; $j<=$n; $j++){
$edge[$i][$j]=$t;
$edge[$j][$i]=$t;
$t++
}
}
for ($i=1; $i< $n-1; $i++){
for($j=$i+1; $j<$n; $j++){
for ($k=$j+1; $k<=$n; $k++){
@bits=( (0) x ($n*($n-1)/2) );
$bits[$edge[$i][$j]]=1;
$bits[$edge[$i][$k]]=1;
$bits[$edge[$j][$k]]=-1;
row(0,@bits);
$bits[$edge[$i][$k]]=-1;
$bits[$edge[$j][$k]]=1;
row(0,@bits);
$bits[$edge[$i][$j]]=-1;
$bits[$edge[$i][$k]]=1;
row(0,@bits);
$bits[$edge[$i][$k]]=-1;
$bits[$edge[$j][$k]]=-1;
row(2,@bits);
}
}
}
returnmatrix();