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Agstract. Matroid polytopes form an intermediate structure useful i
searching for realizable convex spheres. In this articl@reeent a class
of self-polar 3-spheres that motivated research in thedtinde genera-
tion of matroid polytopes, along with two new methods of gatien.

1. INTRODUCTION

The study of polyhedra within the framework of oriented roats has
become a natural approach. Methods for enumerating conabialstypes
of convex polytopes inductively within the Euclidean sggtalone have not
been established. In contrast, the oriented matroid caratkpvs one to
generate matroid polytopes inductively. Matroid polytepghen not inter-
esting in their own right as topological balls with certaphsre properties,
form an intermediate structure to search for realizableeospheres. We
provide in this article an interesting class of self-polesgheres that stim-
ulated research in this area. What afieetive methods of generating ma-
troid polytopes with prescribed properties? Having in mapeén problems
for which a corresponding solution is still open, we predéaetclass of 3-
spheres of Gabor Gévay that were found independently by atithors as
well. We discuss two new algorithmical methods of David Bnemand of
Jurgen Bokowski for generating matroid polytopes that wested in this
context.

2. SYMMETRIC SELF-POLAR 3-SPHERES

Here we describe an infinite series of self-polar polyhe@rapheres
which were found first by the third author [22], and later,ependently,
by others [36, 38].

2.1. Description of the structure. We use two regulam-gons with vertex
setsU = {up,Up,..., Uy} andV = {vy,Vo,...,Vy} lying in two completely or-
thogonal linear 2-subspaces and both located on the uph8eS3. We
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denote b)ai, 3 andbij the midpoints of the line segmenigj. 1, vjvi+1 and
uivj, respectively. Note that throughout this section, all tedi are taken
modulon.

We define convex 3-cells as follows:

e Foranya,ic({l,...,n}and anyal, j € {1,...,n}, we define the con-
vex hull

pi

_ g i
| == conva, b, b\"*, bli7, bl ay).

e For any pair§-1,d),i € {1,...,n}, we define the pyramids
(P") := conMa 1, b, b, ..., b},
(P'), := convbl, b, ..., b, al}.

e For any pair §-1,d),1 € {1,...,n}, we define the pyramids
(Pi); := convai_1, b, b, ..., b},
(Pi)2 := convb, by, ..., bf!, &).

In addition we define the polyhed® := (P'); U(P'), andP; := (P)1U
(Pi)2.

The convex huIP} is a 3-polytope which forms (combinatorially) an oc-
tahedron since its vertices are the midpoints of the 6 edgés tetrahedron
T(,i+1,],j+1):=convui,Uis1,Vj,Vj+1}. The set of all tetrahedrd form
the boundary of théree sumconvU U V) of conwJ and conV.

The interiors inP}, int(P")p, and intP)q, k.1 €{1,...,n}, p,qe {1,2}, are
pairwise disjoint. E.g. an arbitrary interior point in a pymid (Pk)p can be
written as a convex combination with at least three non-zedficients for
the pointsb';, se{l,...,n}, whereas an interior point (ﬁ} cannot have such

a representation. All the 3-dimensional ceFPI'-p PK andP, form together a
polyhedral 3-sphere with altogether« 2)n facets. We denote this sphere
by GS,.

In Figures 1 to 4 we have depicted a plan@in projection from 4-space
in the casen = 5. The projection shows, apart from all vertices, in patécu
two octahedraPi, PZ (Figure 2) and two unions of pyramidB¥); U (P1),
and 1)1 U (P1)2 (Figure 3). For each octahedron four non-adjacent sub-
facets belong to other octahedra, while the other subfaettég to unions
of pyramids (see Figure 4). All 2-faces of a uniBpor P' are 2-faces of
octahedra. When we project a cB}l, or P!, radially from the center onto
the boundary of the free sum col( V), we see this image as a union of
2ntetrahedra around a vertex of cobv( V).
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Ficure 1. Planar Afine Projection fon = 5.

2.2. Symmetry properties. In what follows we make distinction between
the combinatorial symmetry grougnd thegeometric symmetry grougf a
structure under investigation and we use the notation Aai{d Sym /),
respectively. In general, the former, being the group of lsioatorial au-
tomorphisms, may be larger in the sense that it containsgepsubgroup
isomorphic to the latter, which is the group of (Euclideagmetries leav-
ing the structure invariant.

Just as the starting point for describing the structur&8f was the set
U UV, here we establish first the symmetry properties of ddnwy/). This
is a 4-polytope which we shall denote By,. We describe its symmetry
properties in terms of Coxeter groups.

Since the symmetry group of a regutagon isDy, the dihedral group of
order 2, the symmetry group d®y, obviously contains the direct product
DnxDp as a subgroup. The whole symmetry group Sira) is an exten-
sion of this direct product by a transformation of order 2 ihgerchanges
U andV.

In Coxeter’s notation, we have the following relation, s&g|[ p. 563:

DpxDn = [N x[N] 2 [N.2.N] = e—e oo (1)
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Ficure 2. Planar Afine Projection fom = 5, showing two
octahedral facets

Recall the basic theorem by which the fundamental domairfiofte Cox-
eter group is a spherical simplex (considering its actiothenunit sphere,
see [14], Theorem 11.23). The fundamental tessellatioongahg to the
group j, 2,n] is a tessellation 082 consisting of altogethem# tetrahedra.
We denote it by7". The following properties of the fundamental tetrahe-
dron are encoded in the Coxeter diagram of the group giveh)ini{ has
two opposite edges of equal length, the degree of whicim is 2he sense
that there are 2tetrahedra meeting in such an edge. The other four edges
are also equal to each other and are of degree 4. Hence tlakdadton

is a (sphericaljetragonal disphenoid.e. it is bounded by equal isosceles
triangular facets [14]. It is symmetrical by a half-turabout the join of the
midpoints of two opposite edges of degree 4. Thuisduces an automor-
phism of the group——e  e——e. This automorphism interchanges the
two factors in the direct product.

We obtain a tessellatio’ on S by radially projectingP,, onto this
sphere. Sincé,, is a free sum of two regulam-gons, it hasn® equal
facets. These are tetragonal disphenoids. The (geomsgmajnetry of
these disphenoids is preserved through the projectios,AfHuconsists of
n? disphenoidal tiles. Two opposite edges of such a spherisphdnoid
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Ficure 3. Planar Afine Projection fom = 5, showing two
bipyramid facets

are of degrea, and the four other edges are of degree 4. Furthermore, we
observe the following symmetry properties. In additionte half-turn of
the type mentioned above, a tetragonal disphenoid hasmsiyrometry as
well, with respect to two distinct mirror planes perpendicuo each other.
Each of these planes passes through an edge while disstaiogposite
edge (these edges are those that coincide with the basesisbtteles tri-
angular faces). The two planes thus decompose the disghenoi equal
smaller disphenoids. Thus we see that each til& btontains four of the
tiles of 7. This means thal” can be considered as a refinemenf df

Note, in addition, that the line of intersection of the tworrar planes
serves as an axis of a half-turn to which the larger displie(ad hence
the whole tessellatiofi ’) is symmetrical. The segment of this line within
the disphenoid is thus a common edge of the four smaller displs. We
denote byy the half-turn of this second type.

Having related to each other the tessellatidrnsnd7 ', it is directly seen
that for a transformation that interchandé¢sandV the half-turno can be
chosen. Thus we obtained:

Sym (Pnn) = [n’ 2’ n] e <Q> (2)
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Ficure 4. Planar Afine Projection fon =5, showing shared
triangles between facets

for n=3 andn > 5 (in Coxeter's notation this is the groupn][R,n]],
see [15], p. 566). The exceptional casenot 4 leads to the vertex set
of a regular 16-cell, whose symmetry group is largef3, 3,4]).

As a next step, we construct a varianGi, by projecting radially all the
cells P} =1 andP; ontoS3. We regard the spherical tessellation obtained in
this way as a kind of geometric realization®8,. We denote it byGS;,
as well as the cells b}, P' andP;, respectively. In addition, we denote
the spherical image of the centroid of the d@jiby /. We have as well:
G = u; and¥; = v;. Finally,a', 3 andb] denotes the spherical imageaf
aj andb), respectively.

Taking into account the description &S, given in the preceding sec-
tion, the superposition d&S, and P, = 7’ shows directly that the geo-
metric symmetry group d&S, remains the same as thatffy:

Sym@GSy) = Sym Prn) = Sym Prn). ©)

Some properties of this group, which we shall need later dk ae as
follows.
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We establish that the stabilizer subgroups in S@&{) are isomorphic
to

(A) e——=e e=[n2]=Dy, for T,a' v and§;
(B) [4,27] =Dy for B; and 6}

(Here we use the standard group notation by Coxeter and Sitiesere-
spectively, cf. [16], Table 2).

It follows from (A) that bothP' and I3,- is a sphericaltegular n-gonal
bipyramid i.e. the spherical version of a 3-polytope that is compased
two equal right pyramids having a regulaigonal basis in common. Both
the geometric and combinatorial symmetry group of such grbaipid is
isomorphic to the given group. This group serves not onljhasstabilizer
of the points in question, but also as the stabilizer of thpgydaimidal tiles
containing these points in their interior.

Likewise, (B) implies that the stabilizer dff} must be the given group.
However, the symmetry group of a tile of this type is largenich is the
consequence of the way as its Euclidean preimage has bestruziad
from a tetragonal disphenoid. Namely, this group is isorharpo [4,2] =
D4n. This means that geometrically it is a (spheri¢atyagonal bipyramid

The case =4 is an exception again, in that both types of the cells become
regular octahedra, and we obtain (the sperical image) akiipnaglar 24-cell.

Remark 1. Observe that in this case the construction as we obtaip GS
from P,y is exactly the construction by which the regular 24-celllisaoned
from the regular 16-cell through truncating its verticg€3ésaro’s construc-
tion) [14].

Recall that here a symmetry increase occurs, name8/43— [3,4,3].
Finally, we note thaG$, geometrically realizes its full combinatorial
symmetry, i.e. Syrr@) = Aut(é-'\:‘h). On the other hand, it is clear that
the combinatorial symmetry is preserved through the ptigie@rocedure,
i.e. AutGS,) = Aut(GS,). Comparing this with (2) and (3), we obtain:

Aut(GS,) = SymGS,) =

N N (4)
=[n,2,n] < (o) =[[n,2,n]].
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2.3. Sdf-polar-duality. The f-vector of GS, is easily established as:
f(GSn) = (n°+ 2n,6n°,6n%,n°+ 2n).

We shall see that the symmetry of tlievector stems in fact from self-
duality. Actually, we prove more, namely, that the geoncateialization of
GS, on$3 is self-polar. We are working again in the spherical im@@.

We complete the notation introduced above for certain tgpe®ints as
follows:

¢ =t=uy and G =Vi=V. (5)

We note that (A) and (B) in the preceding section justifiesftiewing
assignment of these points, aﬂchs well, as the (spherical) centroid of the
respective bipyramidal tiles:

¢'e—P., GesP, TP (6)
We have seen above that is symmetrical to a half-turn about the axis
joining the midpoints of two opposite edges of degnesf any of its tiles.
From the comparison of the two tessellations above, it casekea that the
same is true fof, concerning the edges of degree ¥Ve denote the half-
turn of this latter type by.
Consider a tileT” € 7 with vertex sef{u;, Ui+1,Vj,Vj+1}. LetT € 7 be
a tile contained ifT” such that its vertex set isi,a',vj,j} = {¢',a',¢;, &}

Then it is seen that a half-turn of typanterchanged' and¢', likewise g
andg;. This amounts to saying that one apex of thgonal bipyramidP' is
interchanged with its centroid, and the same happensﬁ?yjt@n the other

hand,g! is interchanged witi, i.e. the centroid oP! is sent to one of its
basal vertices and vice versa.
In general, we have the following correspondence:

k

al+k Al—k+n’ aj+| ; ’(‘:j_|+n’ e;il ¢ ,B!—k+n (7)

«——C
k,le{1,...,n}, thatis, the correspondence between the bipyramids aird the
vertices established locally extends to the whole stractur

Moreover, again from (A) and (B) in the preceding sectiomolek that
this correspondence induces conjugation between theataspstabilizer
subgroups. This ensures that the bipyramid tiles havingtaxa common
surround it according to exactly the same symmetry as theesrsurround
the centroid of a corresponding bipyramid they belong to.

Thus we have proved:

Theorem 1. GS, is self-polar in the sense that the transformation sending
it to its dual can be realized by an isometry of order 2.
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We note that for convex 3-polytopes the analogous propeasyldeen
investigated by Griinbaum et al., who call such a polyhedeomoniously
self-dual[1].

2.4. A non-realizability result. Inthis section we investigate wheth@g,
has a polytopal realization with full symmetry. We find thia¢ tanswer is
negative:

Theorem 2. For n=3 and n> 5, GS, cannot be realized as a bound-
ary complex of a convex 4-polytofS,, such that its geometric symmetry
group SynGS;, is isomorphic to AuES;, the automophism group of its face
lattice.

In proving this, we proceed indirectly. Suppose that a st realiza-
tion GS,, with full symmetry exists. Henc@Sn can be considered as the
spherical image of such a polytof&S,, under a radial projection. More-
over, up to isometnGS, is unique in this sense:

Lemma 1. Keeping the geometric symmetry group glver@4mf|xed one
cannot alter the location of the vertices of the tessella@s, on S3 with-
out changing the action of this group @6h,.

Proof. Consider first the seftal,d |i,j = 1,...,n}. As we have seen in the
proof of Theorem 1, cf. the relations (5) and (7), this setasgruent to
the setU UV. But is directly seen that the arrangement of the points in
the latter set cannot be altered without changing its symnggen in (2).
(Equivalently, one may say as well that the convex hull o$ &et, being
isometric withPn, = conv (U U V), is aperfect polytopg23, 42].)

Secondly, consider the s@B} ij= ,n}. A point belonging to this
set is located in the midpoint of a spherical line segmgit Such a line
segment, being part of the intersection of two mirror plapegendicu-
lar to each other, belongs to an axis of rotation of order fallris meant
in spherical sense). Hence these points cannot leave sesh atherwise
their number would be multiplied by 4. Neither can they bdtetdiwithin
those line segments out of the midpoint positions. For, ahawe seen
in the preceding section, there are axes of half-turn pgdkiough these
midpoints (such half-turns are the conjugateg)fSo shifting to a neigh-
bouring position would double the number of the points ingjoa. O

This result implies that for reconstructing the polytdp8&, from this
spherical image the only possibility is to locate its vesti@long fixed radi-
al straight lines.
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This further implies that the shape of the bipyramid facés 8, is fixed
as well. This is true for the facets of both type. We see itlertetragonal
bipyramid facets as follows. Fix the apices of all the fasetsis to coincide

with the pointsa' andg;. Then take a tetragonal bipyramid fa@jt and

consider its centroiat}. Recall that the symmetry group of a tetragonal
bipyramid is isomorphic to [£2] = D4n. Then we have the following

Observation 1. Let BR, be an n-gonal bipyramid, i.e. a bipyramid such
that its symmetry group is isomorphiclia 2] = Dy. Then its centroid can
be given either as the centroid of its apices or as the cethtbiits basal
vertices.

Now having fixed the apices, the only way to change the shapleiof
bipyramid is shifting its basal vertices along radial ghdilines, all to the
same extent. But such a shift would imply that the centroithéone sense
were not coinciding any more with the centroid in the othersgg which is
a contradiction.

Thus we have seen that the shape of the tetragonal bipyraedsf of
GS; is uniquely determined.

Take now the other type of facets, which mustrbgonal bipyramids,
with uniquely determined shape as well. Since vertices offi subipyramid
facet are completely fixed, its centroid is also fixed. Coasisiayg'. Using
Observation 1, we calculate its position in twdfdrent ways.

LetU andV be given as

U={uli :1,2,...,n}:{(cos@,sin@ﬁﬁ)i :1,2,...,n}

V={vjlj :1,2,...,n}:{<0,0, cos%,sin?)j :1,2,...,n}.

Fora' anda; we have:
1 1
a = E(Ui +Uiy1) and aj= E(Vj +Vj4+1),

fori,j=12,...,n. _ _

We write an apex of a bipyramid facet &S, in the forma' = 4,a and
3j = A,a; with somed,, € R. For convenience, we choogg= 2, thus we fix
the apices as

a=u+uy and @ =vj+vj for i,j=12,...,n (9)
Forbij we have

o1
b'j = E(ui +Vj).
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A basal vertex of a bipyramid facet &S, takes the fornﬁ} = /llbij for
somed, € R. We determinel, by applying Observation 1 for the tetragonal
bipyramid facets.

Consider the facd_?}. Its centroidc} can be given on the one hand as

o1 1
C}=§( I+aj):§(ui+ui+1+vj+Vj+l),

where we applied (9). On the other hand, it can also be given as

oL

i+l =i+l i
+b] +bj+1+bj+1)

e

&~

, (b} +bj* +bjti +b},4)

Ay (Ui + Uip1 + V) +Vje) .

N N N N N

The comparison yields, = 2. (Note that equality of, and4, is consistent
with the observation thaﬁ’} is in fact a 3-polytope even iIGS,, see Sec-

tion 2.1. Thusﬁ} is just a two times larger homothetic copylb}f.) Hence
we obtain for the basal vertices:

} = U +Vj. (10)

Now we are ready to calculat both from the apices and from the basal
vertices. We denote its value obtained in the two way$®y, and(¢'),
respectively. For symmetry reasons it igfgtient to see what happens in
one particulam-gonal bipyramid, thus we choose- 1. From the corre-
sponding apices we obtain:

(61)A =

"2

1
(@"+al) = 5 (Un + 2U1 + Up)

RN =

[(1, 0,0,0)+2 <cosﬁ, sin%, 0, O) + (cosﬁ, sinﬁ, 0, Oﬂ
n n n n
1

2r 1 A . 2t 1 . 4n
= <— +C0S— + = C0S—, SiIn— + =Sin—, 0, O) ,
2 n 2 n n 2 n

and the basal vertices yield:
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Ug +Vj)

1h4, 10
()= 25 = 13
n . :
}Z<cos— S|n2—7r cos@ sm@>
n< n n n
(cos— smzn 0, O)

where for the substitution we used (8), (9) and (10).
Take the norm of these vectors:

(@) =1+cosZ. @) =1 (11)

We see that the equality holds only o= 4. Forn =3 andn > 5, how-
ever, we have arrived at a contradiction, and this complgiesproof of
Theorem 2.

The fact that the full combinatorial symmetry group cannetrealized
by affine symmetries of a combinatorially prescribed polytopesdu# oc-
cur in 3 dimensions [33]. The first observation of this pheeaon in 4
dimensions is due to Bokowski, Ewald, and Kleinschmidt [The open
problem of McMullen [6] is of the same kind. Smith Theory ingd that in
cases where a complex is not realizable with full symmelwy,realization
space is not contractible.

2.5. Polytopality of GS,,. The self-duality oGS, provides an alternative
way of obtaining it, by starting from a dual polytope and amopy a con-
struction that is a dual of ours described above. We exeyngbii§ through
a historically interesting instance. Recall that the rag@4-cell can be
constructed not only by Césaro’s method but®gsset’s constructioas
well: in contrast to Ceésaro, who cuts pyramids from the c@oéthe reg-
ular 16-cell, Gosset, dually, erects pyramids on the faaitise 4-cube (cf.
Remark 1 above and Coxeter [14], p. 150). (A closely relatgdalmuch
simpler example in dimension 3 is the way as thembic dodecahedrois
constructed from the cube [14], p. 26).)

More generally, instead of thieee sumof two regularn-gons ofequal
size, one can start from throduct G, x C, of two regular polygons such
that neither their size nor the number of their sides is noéssarily equal.
We denote this 4-polytope, which is the dual of &4y above form= n, by
Qmn. Now apply a method, which is called &xconstruction performed
in two steps as follows:
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(1) stellarly subdivide all facets @mpn,
(2) merge facets of the subdivision sharing a 2-fac®q#.

The E-construction was introduced by Eppstein, Kuperberg ard&r
in 2003 in order to obtain 2-simple, 2-simplicial 4-poly&sp[18]. It was
soon extended to arbitrary dimensions and to spheres angefaby Paf-
fenholz and Ziegler [38]. In this line of research, whichnslépendent of
ours, it turned out that thE-construction yield$&5S,, as a special case, as
we just outlined [46].

For arbitrarym,n > 3, denote the correspondi@/N-spheres that the-
construction yields b¥E(Qmp). In [46] Ziegler has given a proof that they
are combinatorially self-dual (his proof and our proof fdrebrem 1 above
closely resemble, necessarily, each other; cf. Theorerm436]).

In this more general setting, one can prove the followingresting re-
sult.

Theorem 3. (Pdtenholz [36]) The CW-spheres (Bmn) are polytopal for
allmn> 3.

In the special case

1,11

m n”2
the first proof was given by Francisco Santos. It is known feopersonal
communication 2003 by him, cited in [36] and [46]. This spdcase has
been treated also by Ziegler in [46], where he applied a iceganeral-
ization of the construction given by Santos #©§Qs3). Ziegler has given
coordinates here as well.

Andreas Pfienholz in [36] has investigated in detail the polytopal re-
alizations ofE(Qmn). In particular, he proved as well that the projective
realization space dE(Qs3) is at least nine-dimensional and thatE(Qas4)
at least four-dimensional (the latter result implies that24-cell is not pro-
jectively unique). He established as well that for all popasP realizing
E(Qmn) with relatively primem,n > 5 the combinatorial symmetry group
Aut(P) is greater than the geometric symmetry group Sy ( More-
over, even the grouf@m x Z,, which is always contained as a subgroup
in Aut(P), can be geometrically realized only in the five casasnf =
(3,3),(3,4),(3,5),(4,4),(3,6) allowed by condition (12) (up to interchang-
ing mandn). For further details see the Ph.D. thesis off@aholz [37].

(12)

3. CONSTRUCTING NON-UNIFORM MATROID POLYTOPES VIA BACKTRACKING

The task of finding a matroid polytope consistent with a ¢ereund-
ary complex can be viewed as a constraint satisfaction enobhere the
orientations of bases are the variables, and the congi@iathe chirotope
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axioms of oriented matroids (see e.g. [2]), along with ¢erémuations in-
duced by the boundary structure. In the uniform case, tBigt®in a varia-
tion of the well known Boolean Satisfiability (or SAT) probig21], where
the constraints are the 3-term Grassmann-Plucker retafiwhich can be
encoded in SAT as ternary exclusive-ors of binary exclusng), along with
the aforementioned equalities (which can be viewed as aingstojection
of the Grassmann-Pliicker relations). Although SAT is theocécal NP-
Complete problem, variations on the heuristic backtraglprocedure of
Davis-Putnam-Logemann-Loveland (DPLL) [17] have achieneasonable
success for certain classes of problems. In this subseatodescribe a
DPLL-like algorithm (and implementation) for the geneoatiof matroid
polytopes in the non-uniform case. This requires the use tbfee val-
ued “logic” of signs, and some additional constraints as gamd to the
uniform case.

The key idea of our constraint satisfaction algorithm ig thfavariable
forcing. This is based on the observation that if all but one of theates in
a disjunction are fixed, and the disjunction is not yet sa&iisfihen the value
of the last variable is forced. This forcing is knownwast propagationin
the DPLL context. In the constraint satisfaction algorittmplemented in
nuoms [12] a slightly more general inference system is used, dimceach
variable we maintain what subset{efl, 0, +1} is still possible; furthermore
the clauses are slightly more complex than disjunctionsndtlteless it is
possible after setting the value of a variable in a clausetlude constraints
on the values of the remaining variables (in the best casinfpthem to a
particular value). We discuss certain optimizations ofwhgable forcing
process after introducing the various types of clauses.

There are four types of constraints usechiroms: the boundary con-
straintsinduced by the boundary complex, tbenvexity constraints in-
sure no (relative) interior points are present in final reshématroid con-
straintsthat insure that the basis exchange axiom is not violated! tlae
3-term Grassmann-Plickeconstraints. They are checked in this order,
roughly in order of increasingfrt. In the uniform case, neither the con-
vexity constraints (implied by the boundary constraintsy the matroid
constraints (implied by the uniformity condition) are ngsary.

The boundary constraints are a set of equalities derived free input
boundary complex. Each top dimensionalBedf the input boundary com-
plex defines dacetof the resulting matroid polytope in the following sense.
In order to avoid interior points, it must be the case thataibboundary
simplices, i.e. (- 1)-setsG C F, for alli, j ¢ G, [Gi] =[G|]. Thus for each
input facet, we derive at least-r — 1 equalities where is the rank anah is
the total number of elements (in general of course many nuralgies are
implied by transitivity). It may be desirable to apply a pregessing step to
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eliminate sign variables using these equalities. In ordaupport working
with partial and dynamically discovered boundary informa{more inter-
esting in the context [13] where the uniform code was devedypwve con-
sider a constraint of the form that insists that the signsaskls derived as
single element extensions of boundary simplicesnap@otonegi.e. do not
contain both positive and negative signs. For problemseatisr approach-
able by constraint satisfaction, this constraint, and angifg of variables,
can be checked venyieciently via the use of bitmasks.

The convexity constraints check a combinatorial analogu@amatheo-
dory’s theorem for each element. Although in the uniformeaasutices to
establish that each element is contained in some faceteindh-uniform
case, the lower dimensional structure of the facets can bbe comnplicated,
so some kind of further constraint is necessary. These aie agduced to
checking for each element that a certain set of signs is nooeot&and the
implementation is similar to checking the boundary constsa

In order to simplify checking that the basis exchange axismatisfied,
we employ an observation of Guedes de Oliveira (see [2], 24)3hat in-
stead of checking every pair of non-zero bases flices to know that there
exists some non-zemoot basis B such that for every other bad, there
exists a pivot that moves closer By. This amounts to computing a span-
ning tree of the graph of all pivots and is much faster, algtou requires a
non-zero basis be known. The existence of a non-zero neigimgpbasis
to each basis can also be checked in a constant number otiopsrasing
bitmasks.

In general the largest set of constraints is the 3-term @Grase-Plicker
relations. Since these constraints are so numerous, buteoather hand
involve only six basis signs, we take some care to process #ieciently.
The permissable values are for each variable are storedhasealit mask,
and the state of a given Grassmann-Pllcker relation is theooed into a
single 18 bit number. A simple (although a bit large) statemnze is then
used to decide given the current state, and a new assignwmieat,is the
new state, and what if anything is forced.

The inductive structure of the algorithm is as follows. Gie partial
chirotope, choose some unoriented basis, and orient id &invariables
forced (constrained) by the previously described constisailf this does
not yield a contradiction, repeat. In order to systemdiiday all possible
orientations, a stack is used in the manner of the standgmtth fiest search
of a graph. When an unoriented basis is examined, all pessri#ntations
are pushed onto the stack, and after the program has exmoeedetting
in a depth first manner (i.e. tried to either complete a chpetor derive a
contradiction), it returns to the stack to retrieve the ophessibilities.
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Using the software [12] described in this section, we weile &b find
several million matroid polytopes consistent with the sphalescribed in
Section 2 after a computation of only a few seconds on a cudesktop
PC.

4. InpucTivE CONSTRUCTION OF HYPERLINE ARRANGMENTS

Hyperline arrangements have previously been used by Bdkocavsl
Guedes de Oliveira [8] to generate uniform oriented mag@fiokr complete
discussion of hyperline arrangements see [5]). In this@eete describe,
via some Haskell [25] code, the generalization to the nafeum case. In
general a rank hyperline arrangement om— 1 elements consists of all
rank 2 contractions of some oriented matroid. Each rank aotmon (i.e.
arow in Figure 5) is represented by the contracted elemehtalong with
ahyperline sequencee. an oriented matroid of rank 2y), represented as
a signed permutation. To extend this toraalement oriented matroid, we
need to insert the elementeither into the signed permutation, or, in the
non-uniform case, possibly into the set of contracted etgsadn order to
simplify the presentation, we restrict our attention tottuek 5 case.

For a hyperline sequence representation of a rank 5 matabytiope we
can use a special data structure. Our convexity requiremmaties that we
have never three elements within one line. Moreover, eadim2nsional
affine hull of vertices of a convex polytope is convex again. Timplies
that we can assume that each hyperline is that of a plagan. The cor-
responding rank 2 oriented matroid can be descibed via ttleayrder of
these elements. We can store the rank 5 oriented matroidistscéd pairs
of k-gons, withk > 3 depending on the hyperline, together with rank 2 ori-
ented matroids, the hyperline sequences, i.e., rank 2adiuns at these
hyperlines. The latter has a circular structure and we caumas to have
the smallest element with positive sign within their first $er then-gons
we can also assume that their lists begin with the smallesteht of each
n-gon. For one row in the hyperline representation we obt&iwple with
a zero sign when either two elements belong to the same lisinthe rank
2 oriented matroid or when we can choose four elements witterfirst
component of that row.

4.1. Theuniform case. Before delving into the non-uniform case, we first
recall extending a hyperline arrangement by one elemertténuniform
case.

4.1.1. The functioninRow in the uniform caseThe top level function in
the extension algorithm imRow The variablenyprepresents the list of all
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Ficure 5. Inserting elementinto the the hyperline structure
(uniform case)

hyperline sequences that we extend row by row. The varjalbépresents
the signs of all abstract simplices that we know so far.
inRow:: Int — Int — ([(Ngon OM2)],[Or]) — [([(NgonOM2)],[Or])]
inRow n romhyp x) =
[((firstRowsH [(A,ext s n pw)] + lastRow$, newsign$
|s—[-11]p[1..|wl],
newsigns— let st=[norm(a +[w ! (i—1),sxn],1)|i < [1..p]]
++ [norm(a +[sxnw!(i—-1)],1) i < [(p+1)..|wl]]
in newOrEmpty ry st]
where (firstRows((a, w) : lastRow$) = splitAt(row— 1) hyp
lw| = lengthw
For the most part, the notation used by Haskell is standasdméhtion
only a few notational aspects here (for further details,esge[25]).
(1) Lists are denoted by [], tuples by ()
(2) a+ b denotes the concatenation of listandb
(3) I ndenotes itemm in list |
(4) h:t =1 denotes the decomposition of lisinto first element and
remaindet.
We interpret the pair of a list of integers and a sign (wheradicates
unknown) as an oriented (abstract) simplex. The funatimmreturns such
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an oriented simplex with positive and sorted elements wWhettee sign has
changed accordingly.

norm::OB — OB
norm(tu@ (h: rest), s) = normPoglist, s+ signum prodl
where prod = product tylist = map abs tu
normPos: OB — OB
normPos (tuple@(h:res, sign
| rest=[] = ([h],sign)
| h = minimum tuple= ([ h] + fst nextsnd nexx
| odd (length res} = normPogrest+ [ h],—sign)
| otherwise= normPogrest+-[h], sign)
wher e next= normPogrest sign)

Splitting hyp at the positiorrow leads to the current row data structure
(A, w) as the head of the second component of list returned by treifun
splitAt We insert the new signed elemesi n in w by using the function
ext(described below) in all possible ways. The variadtlstores the list of
new signs that we know after the insertion has been compietenls row.
We compare the new signed elemerin with all other elements in this row
to obtain new signs of abstract simplices. When we canndtpeevsigns
we do not get an extension. This occurs when we have a sigrectiction
that will be detected in the functiamewOrEmpty

newOrEmpty: Int — [Or] — [(Tu,Or)] — [[Or]]
newOrEmpty iy [] = [x]
newOrEmpty ry ((tu,s):resf
le¢[s.2] =[]
| otherwise= newOrEmpty n newChi rest
wherei = head(elemindices titailTup n))
(a,(e: b)) = splitAti y;newChi= a+[s] +b

This function compares the preliminary sign jistvith st Within the list
tupelss finalN we determine the positiarof the actual tupléu and we find
the corresponding sigea When this sigre is different from 2, i.e., it has
been determined, and when it is not equas,tave obtain a contradiction,
i.e., the result is the empty set. Thus the funciidRowleads to a list of all
extensions within the row under consideration togethehn wew signs that
are compatible with the given sign vector.

The functiontailTup returns all new 5-tuples that occur the first time
when we have as the new element, i.e., all 5-tuples witlat the end. At
first the signs of all(g) signed bases are considered to be unknown, i.e.,
signsprovided such a list with entries 2.
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The details of inserting a signed element into a hyperlitpieace are
taken care of by the functioaxt It determines for a sigms of the new
elementn, its positionp and for the uniform rank 2 contraction along the
hyperline its one element extension.

ext::Int — Int — Int > OM2 —» OM2
extsnpw=a+[[sxn]] +b
where (a,b) = splitAt pw

We do not discuss the frame that is still missing to applykbiwel struc-
ture inRow repeatedly and that does the next extension when we do not
extend the matroid polytope by just one element.

4.2. Thenon-uniform case. We now discuss the changes needed to extend
a hyperline configuration in the non-uniform case.

The functioninRownow has two cases, depending on whether we insert
the new element into the hyperlim®n, or into the corresponding rank 2
oriented matroidv.

inRow:: Int — Int - (JOM5],[Or]) — [([OM5],[Or])]
inRow n row pair= (inHI n row pair) + (inOM2 n row pair)

The case of inserting into the rank 2 oriented matroid is@g@ls to the
uniform case ofnRow with the distinction that each position may have a
set of elements.

inOM2::Int — Int — ([OMS5],[Or]) — [([OM5],[Or])]
iNnOM2 n row(rows y)
= [((firstRowsH [(gonext s n p qu)] + lastRows,
newOrEmpty ry (newSigns q gow))
s [-L1Lp«[1..lwl].q<[0,1],
wher e (firstRows((gon w) : lastRow}) = splitAt(row— 1) rows
lw| = lengthw;

We omit here basic functiortaples tuplesL The functiontuplesreturns
all r-tuples of the list of the firgh natural numbers and the functituplesL
returns allr-tuples of any given list of integers.
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newSigns Int - Ngon— OM2 — [(Tu, Or)]
newsSigns between gan
| betweer= 0 =
[norm(a +[w!(i—-1),sxn],1)|i < [1..p—1],A « trs]
+ [norm(w ! (p) + [w ! (p),S*n],0)]
+H[norm(a +[s*nw!(i—1),1)|i < [p+1..|w|],A « trs]
+ [norm(c+[n],0) | O « tuplesL4 gon|
| betweers 1 =
[norm(a +[w!(i—1),s%n],1)|i < [1..p],A « trs]
+H[norm(A +[sxnw! (i—-1)],1)|i <« [p+1..|w|], 2 « trs]
+ [norm(c +[n],0) | O « tuplesL4 gon|
where
trs = tuplesL3 gon
The functioninHI considers the various ways to insert into the hyperline
(convex polygon).
inHI:: Int — Int —» ([OM5],[Or]) — [([OM5],[Or])]
inHI n row (rows y)
= [((firstRowsH [ (take g gon+[n] + drop g gonw)]

+ lastRows$, sign9

|g«[1..length gorj,

signs« let si=[norm(a + [ p1, p2],1)
| A < tuplesL3 (take g gon+[n] + drop g gon),
ne A,[p1, p2] « pairsw]

+[norm(a + [ p1, p2].0)
| A < tuplesL3 (take g gon[n] + drop g gon),
neA,u«[1..lengthw],
[ P1, p2] < tuplesL2 (w!! (u—-1))]

+[norm(a +[n,x],0) | A « tuplesL3 gon
ng¢ AU« [1..lengthw],
X (w!(u=1))+(gon\\ 2a)]

in newOrEmpty ry si]

where (firstRows((gon w) : lastRows$) = splitAt(row— 1) rows

pairs:: OM2 - OM2

pairsw = [[ X, Y] | [u,V] « tuples2 (lengthw),
Xe—w!l(u=-1),y < w!(v-1)]

The former functiorexthas now two cases (specified by the fipgle-
pending of whether we insert the new element at position piwian al-
ready existing list or as a new single element list betweenlists.

ext::Int — Int — Int —» Int - OM2 — OM2
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extsnpqu
|g=0=take(p—1)a+[(lastd +[sxn]] +Db
lg=1l=a+[[s*n]] +b
where (a,b) = splitAt pw

The method of the second author of using his specific SAT sdbre
finding matroid polytopes was much faster than the Haskskbtalgorithm
of the first author. However, flerent methods cast new light on each other
and facilitate the checking of results.

In this context we mention that Schewe [44] has used suadbssi-
isting SAT solvers dterent from that of the second author to decide the
embeddability of certain 2-manifolds and the realizapitif certain point-
line configurations.
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