1 2SAT

function reduce(j,C) {

C'«+C
for cc C' {
if jec {
remove c¢ from C’
1
if —jec {
remove —j from c
}
}
return C’

As in class, represent clauses as lists of signed integers. To set z[j] = 1 (z[j] = 0, call reduce(j,C)
(reduce(—j,C)).

Removing a literal from a clause is O(1) because the clauses are constant size. Removing a
clause from the clause set in constant time requires e.g. a linked list representation of the clause
set. Total cost is O(m).

2 Subset Sum

Let’s represent our subproblems as the subset U C S already put in the subset, the set W C S\ U
of remaining numbers, along with the total ¢t we are trying to achieve.

function expand (W,U,t) {
Let weW.
Let W'+ W\ {w}
return {(W' U U {w},t),(W' U,t)}

Obviously we keep the same representation for test.

function test (W, U,t) {
Let ow =) e w
Let oy =) ,cpu

if oy >t return FAIL # this also catches negative ¢
if oy =t return SUCCESS

optional test
if t — o0, > 0, return FAIL
return UNKNOWN

3 Independent Set

We can use a somewhat similar representation: U is the set of vertices definitely in the indepen-
dent set, S is the set of remaining candidates, and k the size of independent set we are trying to
achieve. Let G = (V, E) be a global variable, with n = |V|, m = |E|. We fix that P, = (V. 0, k).

3.1 Expand

function expand(S,U, k)1

Let ves§ # 0(1)
S S\ {v} # O(logn)
for (v,w) e E {
S S\ {w}
} # O(mlogn) loop
return {(S", UU{v}, k), (S\ {v},U,k)} # O(logn)
}
3.2 Test

Total complexity is O(mlogn).

function test(S,U, k) {
if |U| =k return SUCCESS
if S=0 return FAIL # out of elements to add
return UNKNOWN

}

For reasonable set representation, this is O(1).

3.3 Proof

This is a decision problem, so we just need to make sure that the algorithm correctly reports YES
and NO answers.

3.3.1 YES case

For the YES case, let’s prove by induction that U is always an independent set.
Base case The empty set is an independent set.

Induction Suppose that for all |U| < n returned by extend are independent sets. Now consider
calling extend on a set of size n — 1. We either keep U unchanged, in which case the answer is
clear, or we add v to U. We know that v is not adjacent to any previously added vertex, since the
for loop would have removed it from S already. So the U returned is indeed an independent set.

3.3.2 NO case

Suppose the algorithm returns FAIL, but there really is some independent U* set of size k. Let
U’ be the largest subset of U* for which test returns FAIL. We know in that case |U’| < k, but
S = (. That means every element of V' \ U’ is adjacent to some element of U’, which contradicts
the existence of U*.

