
1 2SAT

function reduce (j ,C) {
C ′ ← C
for c ∈ C ′ {

i f j ∈ c {
remove c from C’

}
i f −j ∈ c {

remove −j from c
}

}
return C ′

}

As in class, represent clauses as lists of signed integers. To set x[j] = 1 (x[j] = 0, call reduce(j,C)
(reduce(−j,C)).

Removing a literal from a clause is O(1) because the clauses are constant size. Removing a
clause from the clause set in constant time requires e.g. a linked list representation of the clause
set. Total cost is O(m).

2 Subset Sum
Let’s represent our subproblems as the subset U ⊆ S already put in the subset, the set W ⊂ S \U
of remaining numbers, along with the total t we are trying to achieve.

function expand (W,U, t) {
Let w ∈W .
Let W ′ ←W \ {w}
return {(W ′, U ∪ {w}, t), (W ′, U, t)}

}

Obviously we keep the same representation for test.

function test (W,U, t) {
Let σW =

∑
w∈W w

Let σU =
∑

u∈U u

i f σU > t return FAIL # this also catches negative t
i f σU = t return SUCCESS

optional tes t
i f t− σu > σw return FAIL
return UNKNOWN

}

3 Independent Set
We can use a somewhat similar representation: U is the set of vertices definitely in the indepen-
dent set, S is the set of remaining candidates, and k the size of independent set we are trying to
achieve. Let G = (V,E) be a global variable, with n = |V |, m = |E|. We fix that P0 = (V, ∅, k).

1

3.1 Expand

function expand (S,U, k) {
Let v ∈ S # O(1)
S′ ← S \ {v} # O(logn)
for (v, w) ∈ E {

S′ ← S′ \ {w}
} # O(m logn) loop

return {(S′, U ∪ {v}, k), (S \ {v}, U, k)} # O(logn)
}

3.2 Test
Total complexity is O(m logn).

function test (S,U, k) {
i f |U | = k return SUCCESS
i f S = ∅ return FAIL # out of elements to add
return UNKNOWN

}

For reasonable set representation, this is O(1).

3.3 Proof
This is a decision problem, so we just need to make sure that the algorithm correctly reports YES
and NO answers.

3.3.1 YES case

For the YES case, let’s prove by induction that U is always an independent set.

Base case The empty set is an independent set.

Induction Suppose that for all |U | < n returned by extend are independent sets. Now consider
calling extend on a set of size n − 1. We either keep U unchanged, in which case the answer is
clear, or we add v to U . We know that v is not adjacent to any previously added vertex, since the
for loop would have removed it from S already. So the U returned is indeed an independent set.

3.3.2 NO case

Suppose the algorithm returns FAIL, but there really is some independent U∗ set of size k. Let
U ′ be the largest subset of U∗ for which test returns FAIL. We know in that case |U ′| < k, but
S = ∅. That means every element of V \ U ′ is adjacent to some element of U ′, which contradicts
the existence of U∗.

2

