CS3383 Unit 0: Asymptotic Review

David Bremner

Asymptotics

Unit prereqs

The view from 10000m

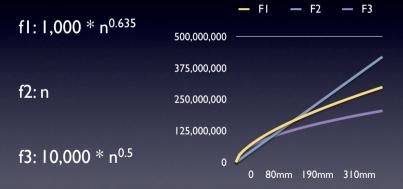
Definitions

Unit prereqs

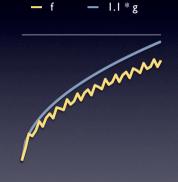
- \triangleright O and Ω (CS2383)
- limits, derivatives (calculus)
- induction (CS1303)
- working with inequalities
- monotone functions

The Big Question(s)

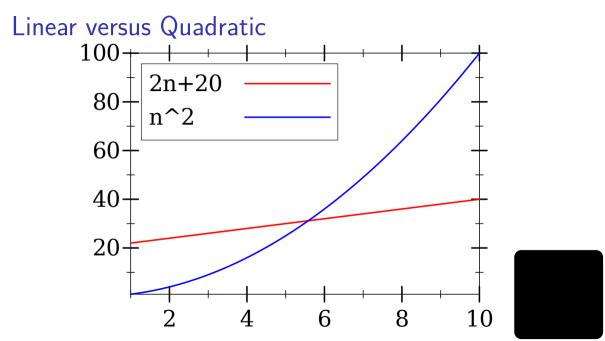
- When is Algorithm A better than Algorithm B w.r.t. running time and memory use?
- If we know the input, we can just run the two algorithms.
- In general we assume performance is a function of the input size (bits / bytes)
- So we need to know how to compare functions.
- We also need not to drown in details.



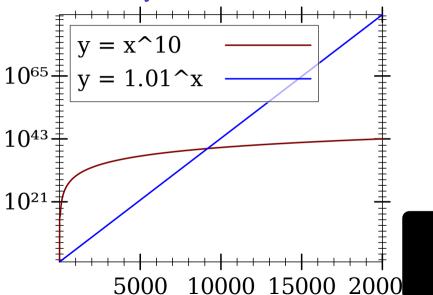
• f = O(g)



• $f = \Omega(g)$



Exponential versus Polynomial



O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

O-notation (upper bounds):

We write
$$f(n) = O(g(n))$$
 if there exist constants $c > 0$, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ functions, not values

O-notation (upper bounds):

We write f(n) = O(g(n)) if there exist constants c > 0, $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.

EXAMPLE:
$$2n^2 = O(n^3)$$
 $(c = 1, n_0 = 2)$ funny, "one-way" equality

Set definition of O-notation


```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```


Set definition of O-notation


```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

\text{for all } n \ge n_0 \}
```

EXAMPLE: $2n^2 \in O(n^3)$

Set definition of O-notation


```
O(g(n)) = \{ f(n) : \text{there exist constants} 

c > 0, n_0 > 0 \text{ such} 

\text{that } 0 \le f(n) \le cg(n) 

for all n \ge n_0 \}
```

EXAMPLE: $2n^2 \in O(n^3)$

(*Logicians*: $\lambda n.2n^2 \in O(\lambda n.n^3)$, but it's convenient to be sloppy, as long as we understand what's *really* going on.)

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:
$$f(n) = n^3 + O(n^2)$$

means
 $f(n) = n^3 + h(n)$
for some $h(n) \in O(n^2)$.

Macro substitution

Convention: A set in a formula represents an anonymous function in the set.

Example:
$$n^2 + O(n) = O(n^2)$$

means
for any $f(n) \in O(n)$:
 $n^2 + f(n) = h(n)$
for some $h(n) \in O(n^2)$.

Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

```
\Omega(g(n)) = \{ f(n) : \text{there exist constants} 
c > 0, n_0 > 0 \text{ such} 
\text{that } 0 \le cg(n) \le f(n) 
\text{for all } n \ge n_0 \}
```


Ω -notation (lower bounds)

O-notation is an *upper-bound* notation. It makes no sense to say f(n) is at least $O(n^2)$.

$$\Omega(g(n)) = \{ f(n) : \text{there exist constants} \ c > 0, n_0 > 0 \text{ such} \ \text{that } 0 \le cg(n) \le f(n) \ \text{for all } n \ge n_0 \}$$

EXAMPLE:
$$\sqrt{n} = \Omega(\lg n)$$
 ($c = 1, n_0 = 16$)