CS3383 Unit 1: Divide and Conquer Introduction

David Bremner

January 7, 2018

unit prereqs

- mergesort
- geometric series (CLRS A.5)

Contents

Divide and Conquer Intro

Merge Sort Recursion Tree for recurrences Integer Multiplication

Structure of divide and conquer

```
function Solve(P)
    if |P| is small then
        SolveDirectly(P)
    else
        P_1 \dots P_k = \mathsf{Partition}(P)
        for i = 1 \dots k do
            S_i = \mathsf{Solve}(P_i)
        end for
        Combine(S_1 \dots S_k)
    end if
end function
```

Where is the actual work?

Structure of divide and conquer

```
function Solve(P)
    if |P| is small then
        SolveDirectly(P)
    else
        P_1 \dots P_k = \mathsf{Partition}(P)
        for i = 1 \dots k do
            S_i = \mathsf{Solve}(P_i)
        end for
        Combine(S_1 \dots S_k)
    end if
end function
```

- Where is the actual work?
- How many subproblems?

Structure of divide and conquer

```
function Solve(P)
    if |P| is small then
        SolveDirectly(P)
    else
        P_1 \dots P_k = \mathsf{Partition}(P)
        for i = 1 \dots k do
            S_i = \mathsf{Solve}(P_i)
        end for
        Combine(S_1 \dots S_k)
    end if
end function
```

- Where is the actual work?
- How many subproblems?
- How big are the subproblems?

Contents

Divide and Conquer

Intro

Merge Sort

Recursion Tree for recurrences Integer Multiplication

Merge Sort

Figure 2_4 in DPV

MERGE-SORT A[1 ... n]

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

- 20 12
- 13 11
 - 7
- 2


```
20 12
13 11
7 9
2 1
```


Time = $\Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

```
T(n)MERGE-SORT A[1 ... n]\Theta(1)1. If n = 1, done.2T(n/2)2. Recursively sort A[1 ... [n/2]]<br/>and A[\lceil n/2 \rceil + 1 ... n \rceil.\Theta(n)3. "Merge" the 2 sorted lists
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- We shall usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small *n*, but only when it has no effect on the asymptotic solution to the recurrence.
- We will see several ways starting with "Rec. Tree" to find a good upper bound on T(n).

$$T(n/2)$$
 $T(n/2)$

Contents

Divide and Conquer

Intro

Merge Sort

Recursion Tree for recurrences

Integer Multiplication

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- The recursion-tree method promotes intuition, however.
- The recursion tree method is good for generating guesses for the substitution method.

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:
 $T(n)$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

$$T(n/4)$$
 $T(n/2)$

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$(n/4)^2$$
 $(n/2)^2$ $T(n/16)$ $T(n/8)$ $T(n/8)$ $T(n/4)$

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

$$(n/4)^{2} \qquad (n/2)^{2}$$

$$(n/16)^{2} \qquad (n/8)^{2} \qquad (n/8)^{2} \qquad (n/4)^{2}$$

$$\vdots$$

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Solve
$$T(n) = T(n/4) + T(n/2) + n^2$$
:

Appendix: geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \text{ for } x \neq 1$$

$$1 + x + x^{2} + \dots = \frac{1}{1 - x} \text{ for } |x| < 1$$

Return to last slide viewed.

extra example

$$T(n) = 2T(3n/8) + n^2$$

Contents

```
Divide and Conquer
Intro
Merge Sort
Recursion Tree for recurrences
Integer Multiplication
```

Consider the problem of multiplying together two arbitrarily large numbers.

Consider the problem of multiplying together two arbitrarily large numbers.

Input: positive integers x and y, each n bits long

Output: positive integer z where $z = x \cdot y$

Consider the problem of multiplying together two arbitrarily large numbers.

Input: positive integers x and y, each n bits long

Output: positive integer z where $z = x \cdot y$

A straightforward approach using base-2 arithmetic, akin to how we multiply by hand, takes $\Theta(n^2)$ time.

Consider the problem of multiplying together two arbitrarily large numbers.

Input: positive integers x and y, each n bits long

Output: positive integer z where $z = x \cdot y$

A straightforward approach using base-2 arithmetic, akin to how we multiply by hand, takes $\Theta(n^2)$ time.

Could we do better if we used results from subinstances?

A Divide and Conquer approach can be considered to be a very large scale version of multiplication, only using base $2^{\lfloor \frac{n}{2} \rfloor}$ instead of a constant base.

A Divide and Conquer approach can be considered to be a very large scale version of multiplication, only using base $2^{\lfloor \frac{n}{2} \rfloor}$ instead of a constant base.

For simplicity we assume that n is a power of 2, so $\frac{n}{2}$ will always be integer.

A Divide and Conquer approach can be considered to be a very large scale version of multiplication, only using base $2^{\lfloor \frac{n}{2} \rfloor}$ instead of a constant base.

For simplicity we assume that n is a power of 2, so $\frac{n}{2}$ will always be integer.

So we split the bitstring for each of x and y in half, generating x_L , x_R , y_L , y_R such that

$$\begin{split} x &= 2^{\frac{n}{2}} \cdot x_L + x_R \\ y &= 2^{\frac{n}{2}} \cdot y_L + y_R \,. \end{split}$$

Using x_L, x_R, y_L, y_R we can now express our multiplication of the

$$n$$
-bit integers as $four$ multiplications of $\frac{n}{2}$ -bit integers:

 $=2^{n} \cdot x_{I} y_{I} + 2^{\frac{n}{2}} \cdot (x_{I} y_{R} + x_{R} y_{I}) + x_{R} y_{R}$

 $x \cdot y = (2^{\frac{n}{2}} \cdot x_I + x_R) \cdot (2^{\frac{n}{2}} \cdot y_I + y_R)$

Using x_L, x_R, y_L, y_R we can now express our multiplication of the n-bit integers as four multiplications of $\frac{n}{2}$ -bit integers:

$$\begin{aligned} x \cdot y &= (2^{\frac{n}{2}} \cdot x_L + x_R) \cdot (2^{\frac{n}{2}} \cdot y_L + y_R) \\ &= 2^n \cdot x_L y_L + 2^{\frac{n}{2}} \cdot (x_L y_R + x_R y_L) + x_R y_R \end{aligned}$$

Computing this with four half-size multiplications gives us a time recurrence of

$$T(n) = 4T\left(\frac{n}{2}\right) + cn$$

Computing this with four half-size multiplications gives us a time recurrence of

$$T(n) = 4T\left(\frac{n}{2}\right) + cn$$

since the operations to split the numbers and put the multiplication results together all take time linear in the number of bits:

the numbers are split by bitshifting

Computing this with four half-size multiplications gives us a time recurrence of

$$T(n) = 4T\left(\frac{n}{2}\right) + cn$$

since the operations to split the numbers and put the multiplication results together all take time linear in the number of bits:

- the numbers are split by bitshifting
- combining the recursion results takes three addition operations and two bitshifts, all linear

To solve $T(n)=4T(\frac{n}{2})+cn$, we can use recursion tree analysis. Each instantiation makes four calls, each on half the size, and takes linear time otherwise, so:

To solve $T(n)=4T(\frac{n}{2})+cn$, we can use recursion tree analysis. Each instantiation makes four calls, each on half the size, and takes linear time otherwise, so:

$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

linear time otherwise, so:
$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

 $= cn \cdot \sum_{i=0}^{\log_2 n} \frac{4^i}{2^i} = cn \cdot \sum_{i=0}^{\log_2 n} 2^i$

Each instantiation makes four calls, each on half the size, and takes linear time otherwise, so:
$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

$$= cn \cdot \sum_{i=0}^{\log_2 n} \frac{4^i}{2^i} = cn \cdot \sum_{i=0}^{\log_2 n} 2^i$$
 A geometric series

Each instantiation makes four calls, each on half the size, and takes linear time otherwise, so:
$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

$$= cn \cdot \sum_{i=0}^{\log_2 n} \frac{4^i}{2^i} = cn \cdot \sum_{i=0}^{\log_2 n} 2^i$$
 A geometric series
$$= cn \cdot \frac{2^{\log_2 n+1}-1}{2-1} = 2cn \cdot 2^{\log_2 n} - cn$$

Each instantiation makes four calls, each on half the size, and takes linear time otherwise, so:
$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{n} \cdot 4^i$$

linear time otherwise, so:
$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

$$T(n) = \sum_{i=0}^{2} c \cdot \frac{n}{2^i} \cdot 4^i$$

$$= cn \cdot \sum_{i=0}^{\log_2 n} \frac{4^i}{2^i} = cn \cdot \sum_{i=0}^{\log_2 n} 2^i$$

 $= cn \cdot \frac{2^{\log_2 n + 1} - 1}{2} = 2cn \cdot 2^{\log_2 n} - cn$

A geometric series

$$T(n) = \sum_{i=0}^{\log_2 n} c \cdot \frac{n}{2^i} \cdot 4^i$$

$$= cn \cdot \sum_{i=0}^{\log_2 n} 4^i = cn \cdot \sum_{i=0}^{\log_2 n} 2^i$$

 $= 2cn \cdot n - cn = 2cn^2 - cn \in \Theta(n^2)$

Consider a different way of computing $(x_L y_R + x_R y_L)$, the coefficient of $2^{\frac{n}{2}}$.

Consider a different way of computing $(x_L y_R + x_R y_L)$, the coefficient of $2^{\frac{n}{2}}$.

We are already computing $x_L y_L$ and $x_R y_R$

Consider a different way of computing $(x_L y_R + x_R y_L)$, the coefficient of $2^{\frac{n}{2}}$.

We are already computing $x_L y_L$ and $x_R y_R$

Considering the binomial product

$$(x_L + x_R)(y_L + y_R) = x_L y_L + x_L y_R + x_R y_L + y_R x_R$$

we get that

$$x_L y_R + x_R y_L = (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

Consider a different way of computing $(x_Ly_R+x_Ry_L)$, the coefficient of $2^{\frac{n}{2}}$.

We are already computing $x_L y_L$ and $x_R y_R$

Considering the binomial product

$$(x_L + x_R)(y_L + y_R) = x_L y_L + x_L y_R + x_R y_L + y_R x_R$$

we get that

$$x_L y_R + x_R y_L \ = \ (x_L + x_R)(y_L + y_R) - x_L y_L - x_R y_R$$

This might be better because we already compute $x_L y_L$ and $x_R y_R$

 \blacktriangleright first compute x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ in linear time

- \blacktriangleright first compute x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ in linear time
 - time then calculate $x_L y_L$, $x_R y_R$, and $(x_L + x_R)(y_L + y_R)$ recursively

recursively

- first compute x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ in linear time
 - time $\qquad \qquad \text{then calculate } x_L y_L \text{, } x_R y_R \text{, and } (x_L + x_R) (y_L + y_R)$
 - and assemble the results in linear time

- \blacktriangleright first compute x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ in linear time
- \blacktriangleright then calculate $x_Ly_L,\ x_Ry_R,\ {\rm and}\ (x_L+x_R)(y_L+y_R)$ recursively
- and assemble the results in linear time

Using this approach, we make three recursive calls, each of size $\frac{n}{2}$, yielding the time recurrence

$$T(n) = 3T\left(\frac{n}{2}\right) + cn$$

- \blacktriangleright first compute x_L, x_R, y_L, y_R and $x_L + x_R, y_L + y_R$ in linear time
- \blacktriangleright then calculate x_Ly_L , x_Ry_R , and $(x_L+x_R)(y_L+y_R)$ recursively
- and assemble the results in linear time

Using this approach, we make $\it three$ recursive calls, each of size $\frac{n}{2}$, yielding the time recurrence

$$T(n) = 3T\left(\frac{n}{2}\right) + cn$$

Except that's not quite right. What we actually have is

$$T(n) = 2T\left(\frac{n}{2}\right) + T(\frac{n}{2} + 1) + O(n)$$

Solving the recurrence (board)

$$T(n) = 2T\left(\frac{n}{2}\right) + T\left(\frac{n}{2} + 1\right) + O(n)$$

▶ Does the +1 make any difference? Probably not, but how to be sure? Figure 2_2 in DPV