CS3383 Unit 1: Divide and Conquer

Introduction

David Bremner

January 7, 2018

unit preregs

» mergesort
» geometric series (CLRS A.5)

Contents

Divide and Conquer
Intro

Structure of divide and conquer

function SOLVE(P)
if |P| is small then
SolveDirectly(P)
else
P, ... P, = Partition(P)
fori=1...k do
S; = Solve(P;)
end for
Combine(S; ... S)
end if
end function

» Where is the actual
work?

Structure of divide and conquer

function SOLVE(P)
if |P| is small then
SolveDirectly(P)
else
P, ... P, = Partition(P)
fori=1...k do
S; = Solve(P;)
end for
Combine(S; ... S)
end if
end function

» Where is the actual
work?

» How many
subproblems?

Structure of divide and conquer

function SOLVE(P)
if |P| is small then
SolveDirectly(P)
else
P, ... P, = Partition(P)
fori=1...k do
S; = Solve(P;)
end for
Combine(S; ... S)
end if
end function

» Where is the actual
work?

» How many
subproblems?

» How big are the
subproblems?

Contents

Divide and Conquer

Merge Sort

Merge Sort

Figure 2_4 in DPV

2_4

::W Merge sort

MERGE-SORT A1 .. n]
1. If n=1, done.

2. Recursively sort A[1 ..[n/21]
and A[[n/2H1 .. n1].

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE

:‘—\ ~ Merglng two sorted arrays

20 12
13 11
7 9
2 1

:‘—\ ~ Merglng two sorted arrays

20 12
13 11
7 9
P

1

~ &~ Merging two sorted arrays

\\\‘;
20 12 | 20 12
13 11 | 13 11
7 9 7 9
2 @ 2

1

~ &~ Merging two sorted arrays

\\\‘;

20 12 20 12
13 11 13 11
7 9 7 9

PR

1 2

~ &~ Merging two sorted arrays
20 12 20 12 20 12
13 11 13 11 13 11

7 9 7 9 7 9

PR

1 2

~ &~ Merging two sorted arrays

o
)

20 12 20 12 20 12
13 11 13 11 13 11

7 9 799

PR

1 2 7

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

;,- Merging two sorted arrays

20 12
13 11
9

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

;,- Merging two sorted arrays

20 12
13 11

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

;,- Merging two sorted arrays

20 12
13 11

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

;,- Merging two sorted arrays

20 12
13

11

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

20 12
13

11

;,- Merging two sorted arrays

20 12
13

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

20 12
13

11

;,- Merging two sorted arrays

20
13

12

wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

7

20 12
13 11

9

20 12
13

11

Time = O(n) to merge a total
of n elements (linear time).

;,- Merging two sorted arrays

20 (12

13

12

g
\
)

T(n)
O(1)
2T(n/2)

/ O(n)

" Analyzing merge sort

MERGE-SORTA[1 . . n]
1. If n = 1, done.

2. Recursively sort A[1. .[n/2]]
and Al [n/2H1..n].

3. “Merge” the 2 sorted lists

Sloppiness: Should be T([n/2]) + T([n/2]),
but it turns out not to matter asymptotically.

-

~ 4~ Recurrence for merge sort

T(m) = O1)iftn=1;
()= {2T(n/2) +@n)ifn > 1.

» We shall usually omit stating the base
case when T(n) = ©O(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

* We will see several ways starting with "Rec. Tree"

to find a good upper bound on T(n).

k'-'*'\ﬁ,w Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

k'-'ﬁ,w Recursion tree
Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.
I(n)

- "~ Recursion tree
Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

/ cn \
T(n/2) T(n/2)

~ & Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

cn
/ \
cn/?2 cn/?2
VAN /N

T(n/d) T4 Twd) T(n/d)

- " Recursion tree
Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.
cn
T
cn/2 cn/2
7\ VAN

cn/4 cn/4 cn/4 cn/4
/

@(/1)

~ & Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

cn
T
cn/?2 cn/?2
VAN /N

h=lgn cn/4 cn/4 cn/4 cn/4
/

@(/1)

ﬂ, Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

cn/?2 cn/?2
VAN /N

=lgn cn/4 cn/4 cn/4 cn/4
/

o(1)

ﬂ, Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

cn/2 Cnf2 cn
VAN /N

=lgn cn/4 cn/4 cn/4 cn/4
/

o(1)

ﬂ, Recursion tree

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

cn/2 Cnf2 cn
VAN /N

=lgn cn/4 cn/4 cn/4 cnl/4d cn
/

o(1)

Recursion tree

Ol ~—
\\‘\ “ i

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

(67 7 Cn
/ \
cn/2 CN[2D e cn
VRN S\
:lgn Ci’l/4 Cn/4 Cl’l/4 C}/l/4 777777777 on
/
:

O(l) —— #leaves = n | ----------------------------- O(n)

Recursion tree

Ol ~—
\\‘\ “ i

Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

(67 7 Cn
/ \
cn/2 CN[2D e cn
VRN S\
:lgn Ci’l/4 Cn/4 Cl’l/4 C}/l/4 777777777 on
/
:

O(l) —— #leaves = n | ----------------------------- O(n)

Total = O(n lg n)

Contents

Divide and Conquer

Recursion Tree for recurrences

-

~ &+ Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* The recursion-tree method promotes intuition,
however.

* The recursion tree method is good for
generating guesses for the substitution method.

< Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n*

« Example of recursion tree

SOI\./C T(n) = T(n/4) + T(n2) + n*:
1(n)

=+ Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n?:

2
/ " \
T(n/4) T(n/2)

= &+ Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n?:
(n/4)? (n/2)?

7\ VRN
I(n/16) 1T(n/8) T(n/8) T(n/4)

= &+ Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n?:

(n/4)? (n/2)?
VRN VRN
(n/16)?> (n/8)? (n/8)? (n/4)?

®(/1)

(n/16)?> (n/8)? (n/8)? (n/4)?

®(/1)

= ~+ Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n?:

(n/4)? (/22— D 2
VRN V2N

(n/16)?> (n/8)? (n/8)? (n/4)?

®(/1)

Example of recursion tree

. S
\\‘\ ‘-‘ i

Solve T(n) = T(n/4) + T(n/2) + n:

N2 "2
/ \
(n/4y?) 156}12
7o 7 25
(n/16)> (n/8)* (/8> (n/4)* 256 n?
/

®(/1)

N2 "2
(n/4)* (1)2)2 s 16}12
7o 7 25
(n/16)> (n/8)* (/8> (n/4)* 256 n?
./ .
/
O(1) 2 3
(1) Total =n (1+156+(156) +(156) +)

= ®(n2) oceometric series@l

Appendix: geometric series

n+l
—X
1
1+x+x2+---=1 for x| <1
—X

Return to last
slide viewed. U

extra example

T(n) =2T(3n/8) + n?

» board

Contents

Divide and Conquer

Integer Multiplication

Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Input: positive integers x and y, each n bits long
Output: positive integer z where z = x - y

Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Input: positive integers x and y, each n bits long
Output: positive integer z where z = x - y

A straightforward approach using base-2 arithmetic, akin to how we
multiply by hand, takes ©(n?) time.

Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Input: positive integers x and y, each n bits long
Output: positive integer z where z = x - y

A straightforward approach using base-2 arithmetic, akin to how we
multiply by hand, takes ©(n?) time.

Could we do better if we used results from subinstances?

Integer Multiplication

A Divide and Conquer approach can be considered to be a very
bl

large scale version of multiplication, only using base 2L2! instead of
a constant base.

Integer Multiplication

A Divide and Conquer approach can be considered to be a very
bl

large scale version of multiplication, only using base 2L2! instead of
a constant base.

For simplicity we assume that n is a power of 2, so 5 will always be
integer.

Integer Multiplication
A Divide and Conquer approach can be considered to be a very

n
2

large scale version of multiplication, only using base 2L2! instead of
a constant base.

For simplicity we assume that n is a power of 2, so 5 will always be
integer.

So we split the bitstring for each of x and y in half,
generating x;, *p, Y, Yr such that

$:2%-azL—l—$R
y=2% -y, +yp.

Using z;, %R, Y, Yr We can now express our multiplication of the
n-bit integers as four multiplications of Z-bit integers:

r-y= (22 -z, +xg) (22 -y, +yp)
=2 . xry; + 27 - (xpyr +TRYL) + TRYR

Using z;, %R, Y, Yr We can now express our multiplication of the
n-bit integers as four multiplications of Z-bit integers:

r-y= (22 -z, +xg) (22 -y, +yp)
=2 . xry; + 27 - (xpyr +TRYL) + TRYR

Computing this with four half-size multiplications gives us a time
recurrence of n

T(n) = 4T<2

)—I—cn

Computing this with four half-size multiplications gives us a time
recurrence of n
T(n) = 4T<§> +cn

since the operations to split the numbers and put the multiplication
results together all take time linear in the number of bits:

» the numbers are split by bitshifting

Computing this with four half-size multiplications gives us a time
recurrence of n
T(n) = 4T<§> +cn

since the operations to split the numbers and put the multiplication
results together all take time linear in the number of bits:

» the numbers are split by bitshifting

» combining the recursion results takes three addition operations
and two bitshifts, all linear

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.
Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n

T(n):Zc-%-éﬂ

1=0

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n
mn .
— E i
=0
log, n i log, n

:cn-;izcn-gﬁ

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n
mn .
— E i
=0
log, n i log, n

:cn-;izcn-gﬁ

A geometric series

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n
mn .
— E i
=0
log, n i log, n

:cn-;izcn-gﬁ

A geometric series
2log2 n+l 1

= cn - 5 1 = 2cn - 28" _cp

To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n
mn .
— E i
=0
log, n i log, n

:cn-;izcn-gﬁ

A geometric series
2log2 n+l 1

= cn - 5 1 = 2cn - 28" _cp

= 2cn-n—cn = 2cn® —cn € O(n?)

Gauss's Method

Consider a different way of computing (x;yr + Ty), the
coefficient of 22

Gauss's Method

Consider a different way of computing (x;yr + Ty), the
coefficient of 22

We are already computing z;y; and xpyp

Gauss's Method

Consider a different way of computing (x;yr + Ty), the
coefficient of 22

We are already computing z;y; and xpyp

Considering the binomial product

(x;, +2r)(yy +Yr) =Yy + TrYr + TRYL + YRTR
we get that

rryr +2gyr = (v +2R) (YL +Yr) —TLYL — TrRYR

Gauss's Method

Consider a different way of computing (x;yr + Ty), the
coefficient of 22

We are already computing z;y; and xpyp

Considering the binomial product
(x;, +2r)(yy +Yr) =Yy + TrYr + TRYL + YRTR
we get that
rryp +TrYL, = (vp +Tr)WL +YR) —TrYL — TRYR

This might be better because we already compute x;y; and
TRYR

So the recursive algorithm is:

» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time

So the recursive algorithm is:
» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
» then calculate z;y;, xpyp, and (x; + 25) (Y + Ygr)
recursively

So the recursive algorithm is:
» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
» then calculate z;y;, xpyp, and (x; + 25) (Y + Ygr)
recursively
» and assemble the results in linear time

So the recursive algorithm is:
» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
» then calculate z;y;, xpyp, and (x; + 25) (Y + Ygr)
recursively
» and assemble the results in linear time

Using this approach, we make three recursive calls, each of size Z,
yielding the time recurrence

n

T(n) = 3T(2

)—i—cn

So the recursive algorithm is:
» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
» then calculate z;y;, xpyp, and (x; + 25) (Y + Ygr)
recursively
» and assemble the results in linear time

Using this approach, we make three recursive calls, each of size Z,
yielding the time recurrence

n

T(n) = 3T(2

)—i—cn

Except that's not quite right. What we actually have is

T(n) = 2T<g> + T 1)+ 0n)

n

2

Solving the recurrence (board)

T(n) = 2T(%>—|—T(g+l)—|—0(n)

» Does the +1 make any
difference? Probably not,
but how to be sure?

Figure 2_2 in DPV

2_2

	Divide and Conquer
	Intro
	Merge Sort
	Recursion Tree for recurrences
	Integer Multiplication

