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Structure of divide and conquer

function SOLVE(P)
if |P| is small then
SolveDirectly(P)
else
P, ... P, = Partition(P)
fori=1...k do
S; = Solve(P;)
end for
Combine(S; ... S)
end if
end function

» Where is the actual
work?
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Structure of divide and conquer

function SOLVE(P)
if |P| is small then
SolveDirectly(P)
else
P, ... P, = Partition(P)
fori=1...k do
S; = Solve(P;)
end for
Combine(S; ... S)
end if
end function

» Where is the actual
work?

» How many
subproblems?

» How big are the
subproblems?
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Merge Sort

Figure 2_4 in DPV



2_4

::W Merge sort

MERGE-SORT A1 .. n]
1. If n=1, done.

2. Recursively sort A[ 1 ..[n/21]
and A[ [n/2H1 .. n1].

3. “Merge” the 2 sorted lists.

Key subroutine: MERGE



:‘—\ ~ Merglng two sorted arrays

20 12
13 11
7 9
2 1



:‘—\ ~ Merglng two sorted arrays

20 12
13 11
7 9
P

1



~ &~ Merging two sorted arrays

\\\‘;
20 12 | 20 12
13 11 | 13 11
7 9 7 9
2 @ 2

1




~ &~ Merging two sorted arrays

\\\‘;

20 12 20 12
13 11 13 11
7 9 7 9

PR

1 2




~ &~ Merging two sorted arrays
20 12 20 12 20 12
13 11 13 11 13 11

7 9 7 9 7 9

PR

1 2




~ &~ Merging two sorted arrays

o
)

20 12 20 12 20 12
13 11 13 11 13 11

7 9 799

PR

1 2 7




wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

;,- Merging two sorted arrays

20 12
13 11
9



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

;,- Merging two sorted arrays

20 12
13 11



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

;,- Merging two sorted arrays

20 12
13 11



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

;,- Merging two sorted arrays

20 12
13

11



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

20 12
13

11

;,- Merging two sorted arrays

20 12
13



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

20 12
13 11

20 12
13

11

;,- Merging two sorted arrays

20
13

12



wr—

)

20 12
13 11
7 9
P

1

20 12
13 11
7 9

N

2

20 12
13 11

9

7

20 12
13 11

9

20 12
13

11

Time = O(n) to merge a total
of n elements (linear time).
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T(n)
O(1)
2T(n/2)

/ O(n)

" Analyzing merge sort

MERGE-SORTA[1 . . n]
1. If n = 1, done.

2. Recursively sort A[ 1. .[n/2]]
and Al [n/2H1..n].

3. “Merge” the 2 sorted lists

Sloppiness: Should be T( [n/2]) + T( [n/2]),
but it turns out not to matter asymptotically.
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~ 4~ Recurrence for merge sort

T(m) = O1)iftn=1;
()= {2T(n/2) +@n)ifn > 1.

» We shall usually omit stating the base
case when T(n) = ©O(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

* We will see several ways starting with "Rec. Tree"

to find a good upper bound on T(n).
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Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.
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Solve 7(n) = 27(n/2) + cn, where ¢ > 0 is constant.

(67 7 Cn
/ \
cn/2 CN[2D e cn
VRN S\
:lgn Ci’l/4 Cn/4 Cl’l/4 C}/l/4 777777777 on
/
:

O(l) —— #leaves = n | ----------------------------- O(n)

Total = O(n lg n)
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~ &+ Recursion-tree method

* A recursion tree models the costs (time) of a
recursive execution of an algorithm.

* The recursion-tree method can be unreliable,
just like any method that uses ellipses (...).

* The recursion-tree method promotes intuition,
however.

* The recursion tree method is good for
generating guesses for the substitution method.



< Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n*



« Example of recursion tree

SOI\./C T(n) = T(n/4) + T(n2) + n*:
1(n)
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Solve T(n) = T(n/4) + T(n/2) + n?:
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= ~+ Example of recursion tree

Solve T(n) = T(n/4) + T(n/2) + n?:

(n/4)? (/22— D 2
VRN V2N

(n/16)?>  (n/8)?  (n/8)?  (n/4)?

®(/1)



Example of recursion tree
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Solve T(n) = T(n/4) + T(n/2) + n:

N2 "2
/ \
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Appendix: geometric series

n+l
—X
1
1+x+x2+---=1 for x| <1
—X

Return to last
slide viewed. U




extra example

T(n) =2T(3n/8) + n?

» board
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Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Input: positive integers x and y, each n bits long
Output: positive integer z where z = x - y

A straightforward approach using base-2 arithmetic, akin to how we
multiply by hand, takes ©(n?) time.



Integer Multiplication

Consider the problem of multiplying together two arbitrarily large
numbers.

Input: positive integers x and y, each n bits long
Output: positive integer z where z = x - y

A straightforward approach using base-2 arithmetic, akin to how we
multiply by hand, takes ©(n?) time.

Could we do better if we used results from subinstances?
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large scale version of multiplication, only using base 2L2! instead of
a constant base.
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Integer Multiplication
A Divide and Conquer approach can be considered to be a very

n
2

large scale version of multiplication, only using base 2L2! instead of
a constant base.

For simplicity we assume that n is a power of 2, so 5 will always be
integer.

So we split the bitstring for each of x and y in half,
generating x;, *p, Y, Yr such that

$:2%-azL—l—$R
y=2% -y, +yp.



Using z;, %R, Y, Yr We can now express our multiplication of the
n-bit integers as four multiplications of Z-bit integers:

r-y= (22 -z, +xg) (22 -y, +yp)
=2 . xry; + 27 - (xpyr +TRYL) + TRYR



Using z;, %R, Y, Yr We can now express our multiplication of the
n-bit integers as four multiplications of Z-bit integers:

r-y= (22 -z, +xg) (22 -y, +yp)
=2 . xry; + 27 - (xpyr +TRYL) + TRYR

Computing this with four half-size multiplications gives us a time
recurrence of n

T(n) = 4T<2

)—I—cn



Computing this with four half-size multiplications gives us a time
recurrence of n
T(n) = 4T<§> +cn

since the operations to split the numbers and put the multiplication
results together all take time linear in the number of bits:

» the numbers are split by bitshifting



Computing this with four half-size multiplications gives us a time
recurrence of n
T(n) = 4T<§> +cn

since the operations to split the numbers and put the multiplication
results together all take time linear in the number of bits:

» the numbers are split by bitshifting

» combining the recursion results takes three addition operations
and two bitshifts, all linear



To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.
Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:
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Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n

T(n):Zc-%-éﬂ

1=0
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To solve T'(n) = 4T(%5) + cn, we can use recursion tree analysis.

Each instantiation makes four calls, each on half the size, and takes
linear time otherwise, so:

log, n
mn .
— E i
=0
log, n i log, n

:cn-;izcn-gﬁ

A geometric series
2log2 n+l 1

= cn - 5 1 = 2cn - 28" _cp

= 2cn-n—cn = 2cn® —cn € O(n?)
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Consider a different way of computing (x;yr + Ty ), the
coefficient of 22

We are already computing z;y; and xpyp

Considering the binomial product
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we get that
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Gauss's Method

Consider a different way of computing (x;yr + Ty ), the
coefficient of 22

We are already computing z;y; and xpyp

Considering the binomial product
(x;, +2r)(yy +Yr) =Yy + TrYr + TRYL + YRTR
we get that
rryp +TrYL, = (vp +Tr)WL +YR) —TrYL — TRYR

This might be better because we already compute x;y; and
TRYR



So the recursive algorithm is:

» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
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So the recursive algorithm is:
» first compute x;,25,y;,Yr and x; + TR, y; + Yg in linear
time
» then calculate z;y;, xpyp, and (x; + 25) (Y + Ygr)
recursively
» and assemble the results in linear time

Using this approach, we make three recursive calls, each of size Z,
yielding the time recurrence

n

T(n) = 3T(2

)—i—cn

Except that's not quite right. What we actually have is

T(n) = 2T<g> + T 1)+ 0n)

n

2



Solving the recurrence (board)

T(n) = 2T(%>—|—T(g+l)—|—0(n)

» Does the +1 make any
difference? Probably not,
but how to be sure?

Figure 2_2 in DPV
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