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Generic divide and conquer algorithm

function Solve(P)
if |𝑃 | is small then

SolveDirectly(𝑃)
else

𝑃1 … 𝑃𝑘 = Partition(𝑃 )
for 𝑖 = 1 … 𝑘 do

𝑆𝑖 = Solve(𝑃𝑖)
end for
Combine(𝑆1 … 𝑆𝑘)

end if
end function

▶ How many times do we
recurse?

▶ what fraction of input in
each subproblem?

▶ How much time to combine
results?



Generic divide and conquer algorithm

function Solve(P)
if |𝑃 | is small then

SolveDirectly(𝑃)
else

𝑃1 … 𝑃𝑘 = Partition(𝑃 )
for 𝑖 = 1 … 𝑘 do

𝑆𝑖 = Solve(𝑃𝑖)
end for
Combine(𝑆1 … 𝑆𝑘)

end if
end function

▶ How many times do we
recurse?

▶ what fraction of input in
each subproblem?

▶ How much time to combine
results?



Generic divide and conquer algorithm

function Solve(P)
if |𝑃 | is small then

SolveDirectly(𝑃)
else

𝑃1 … 𝑃𝑘 = Partition(𝑃 )
for 𝑖 = 1 … 𝑘 do

𝑆𝑖 = Solve(𝑃𝑖)
end for
Combine(𝑆1 … 𝑆𝑘)

end if
end function

▶ How many times do we
recurse?

▶ what fraction of input in
each subproblem?

▶ How much time to combine
results?



Common recursive structure
A typical Divide and Conquer algorithm has

b : the branch factor, number of recursive calls per instantiation
s : the split, the inverse of the input size reduction (so recursing

on 𝑛/2 would be 𝑠 = 2)
d : the degree of the polynomial of the running time of the

find+combine steps

Variations
▶ e.g. one call of 1

3 and one call of 2
3 ,

▶ partition+combine step Θ(𝑛 log 𝑛).
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The Master Theorem

If ∃ constants 𝑏 > 0, 𝑠 > 1 and 𝑑 ≥ 0 such that
𝑇 (𝑛) = 𝑏 ⋅ 𝑇 (⌈𝑛

𝑠 ⌉) + Θ(𝑛𝑑), then

𝑇 (𝑛) =
⎧{
⎨{⎩

Θ(𝑛𝑑) if 𝑑 > 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 < 𝑠𝑑)
Θ(𝑛𝑑 log 𝑛) if 𝑑 = 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 = 𝑠𝑑)
Θ(𝑛log𝑠 𝑏) if 𝑑 < 𝑙𝑜𝑔𝑠𝑏 (equiv. to 𝑏 > 𝑠𝑑)

A proof of this follows.
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Proof of Master theorem, in pictures
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Proof of Master Theorem
We assume w.l.o.g. 𝑛 is an integer power of 𝑠. (If not, then what
do we do?)

The height of our recursion tree is log𝑠 𝑛. At level 𝑖 of the
recursion tree (counting from 0) we have:

▶ the size of the data = 𝑛
𝑠𝑖

▶ the time for the combine step = 𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑

▶ the number of recursive instantiations = 𝑏𝑖

And so

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛
𝑠𝑖 )

𝑑
⋅ 𝑏𝑖
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Proof of Master theorem, 𝑏 = 𝑠𝑑

𝑇 (𝑛) =
log𝑠 𝑛

∑
𝑖=0

𝑐 ⋅ ( 𝑛𝑑

(𝑠𝑑)𝑖 ) ⋅ 𝑏𝑖 = 𝑐 ⋅ 𝑛𝑑 ⋅ ⎛⎜
⎝

log𝑠 𝑛

∑
𝑖=0

( 𝑏
𝑠𝑑 )

𝑖
⎞⎟
⎠

If 𝑏 = 𝑠𝑑, then

𝑇 (𝑛) = 𝑐 ⋅ 𝑛𝑑 ⋅ ⎛⎜
⎝

log𝑠 𝑛

∑
𝑖=0

1⎞⎟
⎠

= 𝑐 ⋅ 𝑛𝑑 log𝑠 𝑛

so 𝑇 (𝑛) is Θ(𝑛𝑑 log 𝑛).
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Proof of Master Theorem 𝑏 ≠ 𝑠𝑑 (1 of 2)
Otherwise (𝑏 ≠ 𝑠𝑑), we have a geometric series,

𝑇 (𝑛) = 𝑐 ⋅ 𝑛𝑑 ⋅ (
( 𝑏

𝑠𝑑 )log𝑠 𝑛+1 − 1
𝑏

𝑠𝑑 − 1
)

Applying 1
𝑝/𝑞 − 1

= 𝑞
𝑝 − 𝑞

𝑇 (𝑛) = 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑 ⋅ (( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 1)

= 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑
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Proof of Master Theorem 𝑏 ≠ 𝑠𝑑 (2 of 2)
From rules of powers and logarithms:

( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
= 𝑏

𝑠𝑑 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛
= 𝑏

𝑠𝑑 ⋅ 𝑏log𝑠 𝑛

(𝑠𝑑)log𝑠 𝑛

= 𝑏
𝑠𝑑 ⋅ 𝑏log𝑠 𝑛

𝑛𝑑 = 𝑏 ⋅ 𝑛log𝑠 𝑏

𝑠𝑑𝑛𝑑

Substituting in

𝑇 (𝑛) = 𝑠𝑑𝑛𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ ( 𝑏
𝑠𝑑 )

log𝑠 𝑛+1
− 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑

= 𝑏
𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏 − 𝑠𝑑

𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛𝑑
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Branching versus subproblem size

𝑇 (𝑛) = 𝑏
𝑏 − 𝑠𝑑 ⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏 − 𝑠𝑑
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Now we need to test 𝑏 versus 𝑠𝑑.

If 𝑏 > 𝑠𝑑 (log𝑠 𝑏 > 𝑑), first term dominates: Θ(𝑛log𝑠 𝑏).

If 𝑏 < 𝑠𝑑 (log𝑠 𝑏 < 𝑑), then

𝑇 (𝑛) = 𝑠𝑑

𝑠𝑑 − 𝑏
⋅ 𝑐 ⋅ 𝑛𝑑 − 𝑏

𝑠𝑑 − 𝑏
⋅ 𝑐 ⋅ 𝑛log𝑠 𝑏

new first term dominates: Θ(𝑛𝑑).
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Sanity check: Merge sort
Master Theorem

𝑇 (𝑛) =
⎧{
⎨{⎩

Θ(𝑛𝑑) if 𝑑 > 𝑙𝑜𝑔𝑠𝑏
Θ(𝑛𝑑 log 𝑛) if 𝑑 = 𝑙𝑜𝑔𝑠𝑏
Θ(𝑛log𝑠 𝑏) if 𝑑 < 𝑙𝑜𝑔𝑠𝑏

Merge Sort

▶ 𝑇 (𝑛) = 𝑏𝑇 (𝑛/𝑠) + 𝜃(𝑛𝑑)
▶ 𝑏 how many recursive calls?
▶ 𝑠 what is the the split (denominator of size)
▶ 𝑑 degree
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Matrix Multiplication
The product of two 𝑛 × 𝑛 matrices 𝑥 and 𝑦 is a third 𝑛 × 𝑛 matrix
𝑍 = 𝑋𝑌, with

𝑍𝑖𝑗 =
𝑛

∑
𝑘=1

𝑋𝑖𝑘𝑌𝑘𝑗

where 𝑍𝑖𝑗 is the entry in row 𝑖 and column 𝑗 of matrix 𝑍.

X Y Z

i

j

(i, j )× =

Calculating 𝑍 directly using this formula takes Θ(𝑛3) time.



Matrix Multiplication: Blocks
decompose the input matrices into four blocks each (cutting the
dimension 𝑛 in half):

𝑋 = [ 𝐴 𝐵
𝐶 𝐷 ] , 𝑌 = [ 𝐸 𝐹

𝐺 𝐻 ]

𝑋𝑌 = [ 𝐴 𝐵
𝐶 𝐷 ] [ 𝐸 𝐹

𝐺 𝐻 ]

= [ 𝐴𝐸 + 𝐵𝐺 𝐴𝐹 + 𝐵𝐻
𝐶𝐸 + 𝐷𝐺 𝐶𝐹 + 𝐷𝐻 ]

Eight subinstances 𝐴𝐸, 𝐵𝐺, 𝐴𝐹, 𝐵𝐻, 𝐶𝐸, 𝐷𝐺, 𝐶𝐹, 𝐷𝐻
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Matrix Multiplication: Blocks
Recursing 8 times on subinstances of dimension 𝑛

2 , and taking 𝑐𝑛2

time to add the results, gives the time recurrence:

𝑇 (𝑛) = 8 ⋅ 𝑇 (𝑛
2

) + 𝑐𝑛2

Using the Master Theorem (and observing that log2 8 = 3 > 2)
shows that this is a Θ(𝑛log2 8) = Θ(𝑛3) algorithm.
So, just as with integer multiplication, the most direct way to split
the instance does not produce an improvement in the running time.
(this is not technically “cubic algorithm”, input size 𝑛2.)
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Matrix Multiplication: Strassen Decomposition
As with Integer Multiplication, we find we need a decomposition
that reuses results.

Strassen found such a decomposition:

𝑋𝑌 = [ 𝑃5 + 𝑃4 − 𝑃2 + 𝑃6 𝑃1 + 𝑃2
𝑃3 + 𝑃4 𝑃1 + 𝑃5 − 𝑃3 − 𝑃7

]

where

𝑃1 = 𝐴(𝐹 − 𝐻) 𝑃5 = (𝐴 + 𝐷)(𝐸 + 𝐻)
𝑃2 = (𝐴 + 𝐵)𝐻 𝑃6 = (𝐵 − 𝐷)(𝐺 + 𝐻)
𝑃3 = (𝐶 + 𝐷)𝐸 𝑃7 = (𝐴 − 𝐶)(𝐸 + 𝐹)
𝑃4 = 𝐷(𝐺 − 𝐸)
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Matrix Multiplication: Strassen Decomposition
This may not look like it would be an improvement since the
decomposition is complicated, but in saving one recursive call, we
get a time recurrence of

𝑇 (𝑛) = 7 ⋅ 𝑇 (𝑛
2

) + 𝑐𝑛2

Using the Master Theorem (with log2 7 > log2 4 = 2) shows that
this is a Θ(𝑛log2 7) algorithm, approximately Θ(𝑛2.81).
Since the input size is 𝑚 = 𝑛2, the algorithm runs in approximately
Θ(𝑚1.404) time (versus the Θ(𝑚1.5) of the original).
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