CS3383 Lecture 1.3: Substitution method and randomized d&c

David Bremner

January 19, 2018

Contents

Even More Divide and Conquer Substitution Method for recurrences

Quicksort Randomized Quicksort Randomized median finding

Median of medians

Substitution method

The most general method:

- 1. Guess the form of the solution.
- **2.** *Verify* by induction.
- 3. Solve for constants.

Substitution method

The most general method:

- 1. Guess the form of the solution.
- 2. Verify by induction.
- 3. Solve for constants.

EXAMPLE: T(n) = 4T(n/2) + n

- [Assume that $T(1) = \Theta(1)$.]
- Guess $O(n^3)$. (Prove O and Ω separately.)
- Assume that $T(k) \le ck^3$ for k < n.
- Prove $T(n) \le cn^3$ by induction.

Example of substitution

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^3 + n$$

$$= (c/2)n^3 + n$$

$$= cn^3 - ((c/2)n^3 - n) \leftarrow desired - residual$$

$$\leq cn^3 \leftarrow desired$$
whenever $(c/2)n^3 - n \geq 0$, for example,
if $c \geq 2$ and $n \geq 1$.

Example (continued)

- We must also handle the initial conditions, that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

Example (continued)

- We must also handle the initial conditions. that is, ground the induction with base cases.
- **Base:** $T(n) = \Theta(1)$ for all $n < n_0$, where n_0 is a suitable constant.
- For $1 \le n < n_0$, we have " $\Theta(1)$ " $\le cn^3$, if we pick c big enough.

This bound is not tight!

We shall prove that $T(n) = O(n^2)$.

We shall prove that $T(n) = O(n^2)$.

Assume that $T(k) \le ck^2$ for k < n:

$$T(n) = 4T(n/2) + n$$

$$\leq 4c(n/2)^{2} + n$$

$$= cn^{2} + n$$

$$= O(n^{2})$$

We shall prove that $T(n) = O(n^2)$.

Assume that
$$T(k) \le ck^2$$
 for $k < n$:
$$T(n) = 4T(n/2) + n$$

$$\le 4c(n/2)^2 + n$$

$$= cn^2 + n$$

$$=cn^2+n$$

$$= cn + n$$

We shall prove that $T(n) = O(n^2)$.

Assume that
$$T(k) \le ck^2$$
 for $k < n$:

 $T(n) = 4T(n/2) + n$
 $\le 4c(n/2)^2 + n$
 $= cn^2 + n$
 $= 0$

Wrong! We must prove the I.H.
 $= cn^2 - (-n)$ [desired – residual]
 $\le cn^2$ for no choice of $c > 0$. Lose!

IDEA: Strengthen the inductive hypothesis.

• Subtract a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

IDEA: Strengthen the inductive hypothesis.

• **Subtract** a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1n^2 - 2c_2n + n$$

$$= c_1n^2 - c_2n - (c_2n - n)$$

$$\le c_1n^2 - c_2n \text{ if } c_2 \ge 1.$$

IDEA: Strengthen the inductive hypothesis.

• **Subtract** a low-order term.

Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n.

$$T(n) = 4T(n/2) + n$$

$$= 4(c_1(n/2)^2 - c_2(n/2)) + n$$

$$= c_1 n^2 - 2c_2 n + n$$

$$= c_1 n^2 - c_2 n - (c_2 n - n)$$

$$\leq c_1 n^2 - c_2 n \text{ if } c_2 \geq 1.$$

Pick c_1 big enough to handle the initial conditions.

More examples of solving recurrences by induction (board)

►
$$T(n) = T(n-1) + c^n$$

► $T(n) = T(n/5) + T(3n/4) + \Theta(n)$

Contents

Even More Divide and Conquer

Substitution Method for recurrences

Quicksort

Randomized Quicksort
Randomized median finding
Median of medians

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).

Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\le x \le$ elements in upper subarray.

```
\leq x  x \geq x
```

- **2.** *Conquer:* Recursively sort the two subarrays.
- 3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

```
Partition(A, p, q) \triangleright A[p ... q]
   x \leftarrow A[p] > pivot = A[p]
                                                Running time
    i \leftarrow p
                                                = O(n) for n
    for j \leftarrow p + 1 to q
                                                elements.
        do if A[i] \leq x
                then i \leftarrow i + 1
                        exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
    return i
Invariant:
                         < x
                                         \geq x
```


Pseudocode for quicksort

```
QUICKSORT(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

QUICKSORT(A, p, q-1)

QUICKSORT(A, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)

Analysis of quicksort

- lackbox Quicksort is $\Theta(n^2)$ in the worst case. What kind of input is bad?
- Quicksort is supposed to be fast "in practice".
- We can choose a better pivot in O(n) time, but we'll see it's a bit complicated.
- What if we choose a random element as pivot?

Contents

Even More Divide and Conquer

Substitution Method for recurrences Quicksort

Randomized Quicksort

Randomized median finding Median of medians

Randomized quicksort

IDEA: Partition around a *random* element.

- Running time is independent of the input order
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the output of a random-number generator.

Let T(n) = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator* random variable

$$X_k = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

 $E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.

Analysis (continued)

$$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & & \vdots \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \end{cases}$$

$$= \sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + \Theta(n) \right)$$

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

Take expectations of both sides.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$
$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

Linearity of expectation.

$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \bigg] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big(T(k) + T(n-k-1) + \Theta(n) \big) \big] \\ &= \sum_{k=0}^{n-1} E\big[X_k \big] \cdot E\big[T(k) + T(n-k-1) + \Theta(n) \big] \end{split}$$

Independence of X_k from other random choices.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

Linearity of expectation; $E[X_k] = 1/n$.

$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)$$
Summations have identical terms.

Hairy recurrence

$$E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$$

(The k = 0, 1 terms can be absorbed in the $\Theta(n)$.)

Prove: $E[T(n)] \le a n \lg n$ for constant a > 0.

• Choose a large enough so that $a n \lg n$ dominates E[T(n)] for sufficiently small $n \ge 2$.

Use fact:
$$\sum_{k=2}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
 (exercise).

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

Substitute inductive hypothesis.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2\right) + \Theta(n)$$

Use fact.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)$$

Express as *desired – residual*.

$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$= \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left(\frac{an}{4} - \Theta(n) \right)$$

$$\le an \lg n,$$

if a is chosen large enough so that an/4 dominates the $\Theta(n)$.

Contents

Even More Divide and Conquer

Substitution Method for recurrences

Quicksort

Randomized Quicksort

Randomized median finding

Median of medians

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- i = 1: minimum;
- i = n: maximum;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: median.

Naive algorithm: Sort and index *i*th element.

Worst-case running time =
$$\Theta(n \lg n) + \Theta(1)$$

= $\Theta(n \lg n)$,

using merge sort or heapsort (*not* quicksort).

Randomized divide-andconquer algorithm

RAND-SELECT $(A, p, q, i) \rightarrow i$ th smallest of A[p ...q]if p = q then return A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$ $k \leftarrow r - p + 1$ $\triangleright k = \operatorname{rank}(A[r])$ if i = k then return A[r]if i < kthen return RAND-SELECT(A, p, r-1, i) else return RAND-SELECT(A, r + 1, q, i - k)

$$\begin{array}{cccc}
& \leftarrow & k & \rightarrow \\
& & \leq A[r] & \geq A[r] \\
p & r & q
\end{array}$$

Select the i = 7th smallest:

Partition:

Select the 7 - 4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)

Lucky:

$$T(n) = T(9n/10) + \Theta(n)$$
 $n^{\log_{10/9} 1} = n^0 = 1$
= $\Theta(n)$ Case 3

Unlucky:

$$T(n) = T(n-1) + \Theta(n)$$
 arithmetic series
= $\Theta(n^2)$

Worse than sorting!

Analysis of randomized median finding (board)

```
Select2(A, p, q, i)
     \mathsf{n} \, < \!\! - \, \mathsf{q} \, - \, \mathsf{p} \, + \, 1
     do {
           r <- RandPartition(A,p,q)
           k < -r - p + 1
           if i = k then return A[r]
     } while ((k < n/4) \text{ or } (k > 3n/4));
```

ightharpoonup Call a pivot r good if $\lfloor n/4 \rfloor$ elements are on either side.

Odds are 50/50.

if i < k

then return Select2 (A, p, r - 1, i) else return Select2 (A, r + 1, q, i - k)

Contents

Even More Divide and Conquer

Substitution Method for recurrences

Quicksort

Randomized Quicksort

Randomized median finding

Median of medians

Deterministically choosing a good pivot.

it turns out we can achieve asymptotically the same worst case time as expected (although worse practically)

Deterministically choosing a good pivot.

- it turns out we can achieve asymptotically the same worst case time as expected (although worse practically)
- ➤ The deterministic algorithm is also more complicated; this is typically one of the main attractions of randomized algorithms, simplicity

Deterministically choosing a good pivot.

- it turns out we can achieve asymptotically the same worst case time as expected (although worse practically)
- ➤ The deterministic algorithm is also more complicated; this is typically one of the main attractions of randomized algorithms, simplicity
- The main idea of this algorithm is taking the median of medians

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

lesser

Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor /2 \rfloor = \lfloor n/10 \rfloor$ group medians.

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

• Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.

lesser

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\geq x$.

lesser

Minor simplification

- For $n \ge 50$, we have $3 \lfloor n/10 \rfloor \ge n/4$.
- Therefore, for $n \ge 50$ the recursive call to SELECT in Step 4 is executed recursively on $\le 3n/4$ elements.
- Thus, the recurrence for running time can assume that Step 4 takes time T(3n/4) in the worst case.
- For n < 50, we know that the worst-case time is $T(n) = \Theta(1)$.

Developing the recurrence

T(n)	Select(i, n)
0()	$\int 1$. Divide the <i>n</i> elements into groups of 5. Find
$\Theta(n)$	1. Divide the <i>n</i> elements into groups of 5. Find the median of each 5-element group by rote.
TP(15)	2. Recursively Select the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
T(n/5)	group medians to be the pivot.
$\Theta(n)$	3. Partition around the pivot x . Let $k = rank(x)$.
	4. if $i = k$ then return x elseif $i < k$
	elseif $i \leq k$
$T(3n/4) \prec$	then recursively Select the <i>i</i> th
	smallest element in the lower part
	else recursively Select the (<i>i</i> – <i>k</i>)th
	smallest element in the upper part

Luckily we already solved this recurrence

$$T(n) \le T(n/5) + T(3n/4) + \Theta(n)$$