(CS3383 Lecture 1.3: Substitution method and

randomized d&c

David Bremner

January 19, 2018

Contents

Even More Divide and Conquer
Substitution Method for recurrences

e ‘ Substitution method

The most general method.
1. Guess the form of the solution.

2. Verify by induction.
3. Solve for constants.

—\ Substitution method

The most general method.

1. Guess the form of the solution.
2. Verify by induction.
3. Solve for constants.

EXAMPLE: T(n)=4T(n/2)+n

* [Assume that 7(1) = ©(1).]

* Guess O(n?) . (Prove O and Q) separately.)
 Assume that 7(k) < ck’ fork<n .

* Prove 7(n) < cn’ by induction.

Example of substitution

T(n)=4T(n/2)+n
<4c(n/2)3 +n
=(c/2)n3+n
=cn3 —((¢/2)n® —n) — desired — residual
< cn3 — desired

whenever (¢/2)n’ —n > 0, for example,

ifc>2andn > 1.
residual

- ‘ Example (continued)

. We must also handle the initial conditions,
that 1s, ground the induction with base
cases.

* Base: T(n) = O(1) for all n < n,, where n,
1s a suitable constant.

e For 1 <n <n, we have “O(1)” < cn?, if we
pick ¢ big enough.

- ‘ Example (continued)

. We must also handle the initial conditions,
that 1s, ground the induction with base
cases.

* Base: T(n) = O(1) for all n < n,, where n,
1s a suitable constant.

e For 1 <n <n, we have “O(1)” < cn?, if we
pick ¢ big enough.

This bound is not tight!

:‘\ A tighter upper bound?

We shall prove that 7(n) = O(n?).

"% A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
T'(n)=4T(n/2)+n
S4c(n/2)2+n
.2
=cn” +n

= 0(n?)

A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
T(n)=4T(n/2)+n

<4c(n/ 2)2 +n

.2

=cn” +n

= %) Wrong! We must prove the I.H.

A tighter upper bound?

We shall prove that 7(n) = O(n?).

Assume that 7(k) < ck? for k < n:
T'(n)=4T(n/2)+n

<4c(n/ 2)2 +n

.2

=cn” +n

= %) Wrong! We must prove the I.H.

=cn? —(—n) [desired — residual]

<c¢n? for no choice of ¢ > 0. Lose!

- ‘ A tighter upper bound!

IDEA Strengthen the inductive hypothesis.
* Subtract a low-order term.

Inductive hypothesis: T(k) < c,k* — ¢,k for k < n.

A tighter upper bound!

IDEA: Strengthen the inductive hypothesis.
* Subtract a low-order term.
Inductive hypothesis: T(k) < c,k* — ¢,k for k < n.
T(n) =4T(n/2) +n
=4(c,(n/2)> — c,(n/2)) + n
=cn?—2c,nm+n
= c,n? — con — (co,n —n)
<cnt—cyn ife, > 1,

« A tighter upper bound!

IDEA Strengthen the inductive hypothesis.

* Subtract a low-order term.

Inductive hypothesis: T(k) < c,k* — ¢,k for k < n.

T(n) =4T(n/2) +n

=4(c,(n/2)> — c,(n/2)) + n
=cn?—2c,nm+n
= c,n? — con — (co,n —n)
<cnt—cyn ife, > 1,

Pick ¢, big enough to handle the initial conditions.

More examples of solving recurrences by induction

(board)

T(n—1)+c"
T(n/5)+T(3n/4)+ O(n)

Contents

Even More Divide and Conquer

Quicksort

~ 5~ Quicksort

* Proposed by C.A.R. Hoare in 1962.

* Divide-and-conquer algorithm.

* Sorts “in place” (like insertion sort, but not
like merge sort).

* Very practical (with tuning).

—_— ' Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays
around a pivot x such that elements in lower
subarray < x < elements in upper subarray.

<X X > X
2. Congquer: Recursively sort the two subarrays.

3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

ﬁ Partitioning subroutine

WY

PARTITION(A, p.q) >A[p..q]

x < A[p] >pivot=A[p] | Running time
[<p = O(n) for n
for; < p+1tog
doif A[j] <x
then /1< i+1
exchange A[i] <> A[]

exchange A| p| <> A[i]
return /

elements.

Invariant: | x <x > X ?

Example of partitioning

6 10|13 51| 8 3|2 11'

i]

Example of partitioning

6 10|13 51| 8 3|2 11'

i]

Example of partitioning

6 110|135 | 8|3 | 2|11

i —

_f Example of partitioning

6 | 10

13

11

6 |5

13

10

11

_f Example of partitioning

6 110113| 5| 8 11
6|5 13/10] 8 11
I —

_f Example of partitioning

6 110]13] 5] 8|3 11
6| 5]13]10] 8|3 11
I —J

M Example of partitioning

w) e

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

M Example of partitioning

w) e

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

M Example of partitioning

w) e

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

6 | 5|32 |8 |13]10]11

M Example of partitioning

w) e

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

M Example of partitioning

w) e

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

;_“H Example of partitioning

6 110|135 | 8|3 | 2|11

6 |5 |13]10| 8|3 | 2]1I

6 | 5|3 |10 813|211

6 | 5|32 |8 |13]10]11

215|136 |8 |131011

”{,!i Pseudocode for quicksort
QUICKSORT(4, p, 7)
ifp<r
then g <— PARTITION(4, p, r)
QUICKSORT(4, p, g—1)
QUICKSORT(4, g+1, 1)

Initial call: QUICKSORT(A4, 1, n)

Analysis of quicksort

» Quicksort is ©(n?) in the worst case. What kind of input is
bad?

P Quicksort is supposed to be fast "in practice”.

P We can choose a better pivot in O(n) time, but we'll see it's a
bit complicated.

P What if we choose a random element as pivot?

Contents

Even More Divide and Conquer

Randomized Quicksort

ETE—

v~ Randomized quicksort

) :

o
R
-

IDEA: Partition around a random clement.

* Running time is independent of the input
order.

* No assumptions need to be made about
the input distribution.

* No specific input elicits the worst-case
behavior.

* The worst case is determined only by the
output of a random-number generator.

I Nanaomizea quiCrkiyort
T .
= analysis

Let 7(n) = the random variable for the running
time of randomized quicksort on an input of size
n, assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

{ 1 if PARTITION generates a k : n—k—1 split,
X, = :
0 otherwise.

= Pr{X,= 1} = 1/n, since all splits are
equally likely, assuming elements are distinct.

H Analysis (continued)

[T(0) + T(n—1) + ®(n) if 0:n—1 split,

T(n) =< T(1) + T(n-2) + ©(n) if 1 : n-2 split,

L T(n—1) + T(0) + ©(n) 1f n—1:0 split,

_ i X, (T(k)+T(n—k—1)+0(n))

k=0

:J Calculating expectation

E[T(n)] = {ZXk(T(kHT(n k—1)+©(n)

k=0

Take expectations of both sides.

::W Calculating expectation

E[T(n)]= {HZIX/C(T(/\THT(” k—~ 1)+®(n))}

= S B (1) + T = k—1) + O)]
k=0

Linearity of expectation.

H\, Calculating expectation

E[T(n)]= Erz_l)(k (T +T(n—k-1)+ @(n))}
k=0

n—1

= Y E[X (T(k)+ T(n—k =1)+O(n))]
k=0

= HZ_IE[Xk | E[T(k)+T(n—k-1)+0(n)]
k=0

Independence of X, from other random
choices.

” Calculating expectation

\\‘\ \‘,

E[T(n)]= Erz_l)(k (Tk)+T(n—k-1)+ ®(n))}
k=0

n—1

= Y E[X,(T(h)+T(n—k=1)+O(n))]

k=0
= nz_lE[Xk | E[T(k)+T(n—k—1)+0(n)]
k=0
IS)1 S el k-l L S
k=0 k=0 " k=0

Linearity of expectation; £[.X,]| = 1/n.

Hs Calculating expectation

E[T(n)]= Erz_l)(k (T(k)+T(n—k—-1)+ @(n))}
k=0
= HZ_IE[X,((T(k)+T(n—k—1)+0(n))]
k=0

n—1

- z E[X,) E[T(k)+ T(n—k —1)+O(n)]

=15 Efro]s LS Hr—k -0l Sew)
L)) -0 k-0

n—1

~ 23 E[T(l)]+©(n) Summations have
=1 identical terms.

”ﬁ, Hairy recurrence
E[T(n)] =2 ZE T(k)]+©(n)

=2
(The £ =0, 1 terms can be absorbed in the ®(7).)

Prove: E[T(n)] <anlgn for constant a > 0.

* Choose a large enough so that anlgn
dominates £[7(n)] for sufficiently small n > 2.

Use fact: Z kelgh <In?lgn—p? (exercise).
k=2

:‘\" Substitution method

—1
E[T(n)] 322 ak gk +©(n)

Substitute inductive hypothesis.

ﬁ Substitution method

n—l1

E[T(m)]<2 aklgk+O(n)

<

S‘l\) O

(;nz lgn—én2)+®(n)

Use fact.

Substitution method

E[T(n)]< iak lgk +O(n)
=2

n
k
a

N I N

IA

(;nz lgn—énz)Jr@(n)

3 |

=anlgn— (‘Zl - @(n))

Express as desired — residual.

im, Substitution method

| l\)

—1
E[T(n)]< Z ak gk + O(n)

_2a(l, 2 12)
n“len—=n? |+0O(n
n(2 8 8 ()

=anlgn— (CZL — G)(n))

<anlgn,

if a 1s chosen large enough so that
an/4d dominates the G (7).

Contents

Even More Divide and Conquer

Randomized median finding

:J Order statistics
Select the ith smallest of » elements (the
element with rank 7).
* = 1: minimum;
° [=n: maximum,
e i=L(n+1)2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = O(n Ig n) + O(1)
=0O(nlg n),

using merge sort or heapsort (not quicksort).

g andomized divide-and-
2" conquer algorithm
RAND-SELECT(A4, p, ¢, i) > ith smallestof A[p..q]|

if p =g then return A[p]
1 <— RAND-PARTITION(4, p,)

k<«<—r—p+1 > k = rank(A[r])
if 1=/ then return 4| r|
if i<k

then return RAND-SELECT(A, p, ¥ — 1, 1)
else return RAND-SELECT(A, r + 1, ¢, i — k)
k |
< A[r] > A[r]

Example

Select the / = 7th smallest:

6 10135 |8 |3 |2 |11} i=7
pivot
Partition:
2 |53 |6 |8 |13[(10|11) k=4
“ ~ J

Select the 7 — 4 = 3rd smallest recursively.

— " Intuition for analysis

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) = T(9n/10) + O(n) nlogosl = 40 =1
= 0(n) CASE 3
Unlucky:
T(n)y=T(n—1)+ O(n) arithmetic series
= O(n?)

Worse than sorting!

Analysis of randomized median finding (board)

Select2 (A, p, q, i)
n<—q—p +1
do {
r <— RandPartition(A,p,q)
k <—r —p+1

if i = k then return A[r]

} while ((k < n/4) or (k > 3n/4));

if i <k
then return Select2 (A, p, r = 1, i)
else return Select2 (A, r + 1, q, i — k)

P Call a pivot 7 good if [n/4] elements are on either side.
» Odds are 50/50.

Contents

Even More Divide and Conquer

Median of medians

Deterministically choosing a good pivot.

P it turns out we can achieve asymptotically the same worst case
time as expected (although worse practically)

Deterministically choosing a good pivot.

P it turns out we can achieve asymptotically the same worst case
time as expected (although worse practically)

P The deterministic algorithm is also more complicated; this is
typically one of the main attractions of randomized algorithms,
simplicity

Deterministically choosing a good pivot.

P it turns out we can achieve asymptotically the same worst case
time as expected (although worse practically)

P The deterministic algorithm is also more complicated; this is
typically one of the main attractions of randomized algorithms,
simplicity

P The main idea of this algorithm is taking the median of
medians

Choosing the pivot

ﬁ Choosing the pivot

\\‘ =

1. Divide the » elements into groups of 5.

75 Choosing the pivot

o
)

1. Divide the 7 elements into groups of 5. Find /esser
the median of each 5-element group by rote. I

greater

:,\" Choosing the pivot

w

—— —
IS T3 e

1. Divide the 7 elements into groups of 5. Find /esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5
group medians to be the pivot. greater

::5 Analysis

)

At least half the group medians are < x, which ~ /esser
is at least| | n/ SJg/ZJ =] n/10 group medians. I

greater

e
wY

% Ana]ysis (Assume all elements are distinct.)

At least half the group medians are < x, which ~ /esser

is at least | |_n/5Jg/2J = n/10] group medians.

« Therefore, at least 3|7/10 elements are < x. I
greater

=

@ Ana]ysis (Assume all elements are distinct.)

wY

—— —
I T e

At least half the group medians are < x, which ~ /esser
is at least | |_n/5Jg/2J = n/10] group medians.
« Therefore, at least 3|7/10 elements are < x. I

* Similarly, at least 3 | 7/10] elements are > x. greater

| Mlnor simplification

. For n > 50, we have 3|.n/10] > n/4.

 Therefore, for n» > 50 the recursive call to
SELECT 1n Step 4 1s executed recursively
on < 3n/4 elements.

* Thus, the recurrence for running time
can assume that Step 4 takes time
7(3n/4) in the worst case.

* For n < 50, we know that the worst-case
time 1s 7(n) = O(1).

o

N —

"~ Developing the recurrence

T(n) SELECT(I, n)

1. Divide the » elements into groups of 5. Find
O(n) the median of each 5-element group by rote.
2. Recursively SELECT the median x of the | n/5]
I(n/5) { group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let & = rank(x).
(4.if i =k then return x
elseif / </
then recursively SELECT the ith
T(3n/4) 3 smallest e%]ement in the lower part
else recursively SELECT the (i—k)th
\ smallest element in the upper part

Luckily we already solved this recurrence

» T'(n) <T(n/5)+T(3n/4) + O(n)

	Even More Divide and Conquer
	Substitution Method for recurrences
	Quicksort
	Randomized Quicksort
	Randomized median finding
	Median of medians

