CS3383 Unit 2: Greedy

David Bremner

January 31, 2018

Greedy Huffman Coding MST

Huffman Coding

- ▶ DPV 5.2
- http://jeffe.cs.illinois.edu/teaching/algorithms/ notes/07-greedy.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▶ Huffman Coding is covered in §7.4

Char	Freq	Symbol
А	70	0
В	3	001
С	20	01
D	37	11

variable length symbols

Char	Freq	Symbol
А	70	0
В	3	001
С	20	01
D	37	11

- variable length symbols
- ▶ avoiding ambiguous bitstreams: what is 001?

Char	Freq	Symbol
А	70	0
В	3	001
С	20	01
D	37	11

- variable length symbols
- ▶ avoiding ambiguous bitstreams: what is 001?
- ▶ no symbol should be a prefix of another.

Char	Freq	Symbol
А	70	0
В	3	001
С	20	01
D	37	11

- variable length symbols
- ▶ avoiding ambiguous bitstreams: what is 001?
- no symbol should be a prefix of another.
- if A is 0, what is D?

Huffman coding

Figure 5_10 in DPV

$$\operatorname{cost}(T) = \sum_{i=1}^{n} f_i \operatorname{depth}_i \qquad \qquad (\operatorname{Avg \ cost})$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Lightest leaves are deepest

Figure 5_10b in DPV

proof by swapping

・ロット (四)・ (目)・ (日)・ (日)

Huffman Algorithm

Greedy Huffman Coding MST

Minimum spanning tree

Definition (Minimum Spanning Tree)

Given G = (V, E), $w : E \to \mathbb{R}$, a minimum spanning tree T is a spanning tree (i.e. connecting all vertices) that minimizes $\cot(T) = \sum_{e \in T} w(e)$

Minimum Spanning trees

Figure 5_0 in DPV Is this solution unique?

Minimum Spanning trees

Figure 5_0 in DPV Is this solution unique?

Figure 5_1 in DPV How about this one?

・ロト・西・・田・・田・・日・

Cut Property

Figure 5_2 in DPV

Lemma (Board)

Let T be a minimum spanning tree, $X \subset T$ s.t. X does not connect (S, V - S). Let e be the lightest edge from S to V - S. $X \cup e$ is part of some MST.

Generic MST

 $\begin{array}{l} X \leftarrow \{\} \\ \text{while } |X| < |V| - 1 \text{ do} \\ \\ \text{Choose } S \text{ s.t. } X \text{ does not connect } (S,V-S) \\ \\ \text{Add the lightest crossing edge to } X \\ \text{end while} \end{array}$

Figure 5_8a in DPV

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

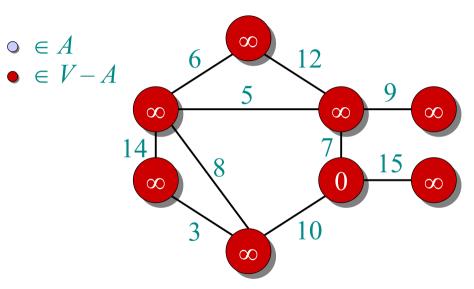
Greedy Algorithms in General Discrete Optimization Problems

- solution defined by a sequence of choices
- solutions are ranked from best to worst

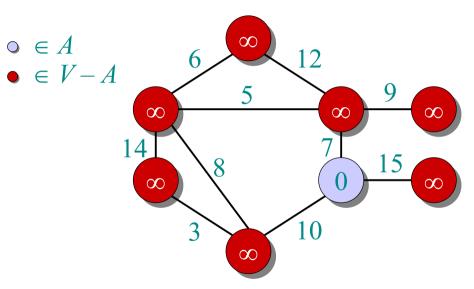
Greedy Algorithms in General Discrete Optimization Problems

- solution defined by a sequence of choices
- solutions are ranked from best to worst

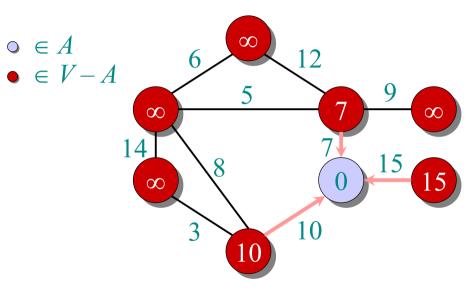
Greedy Design Strategy

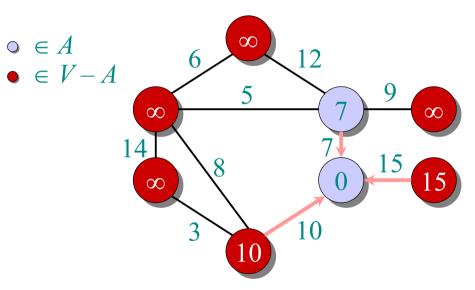

- ▶ Each choice leaves one smaller subproblem
- \blacktriangleright Prove that \exists an optimal solution that makes the greedy choice
- Show that the greedy choice, combined with an optimal solution to the subproblem, yields an optimal solution to the original problem.

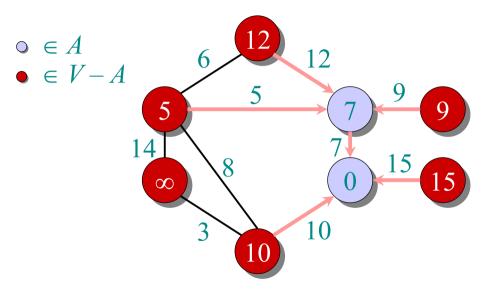
Prim's Algorithm

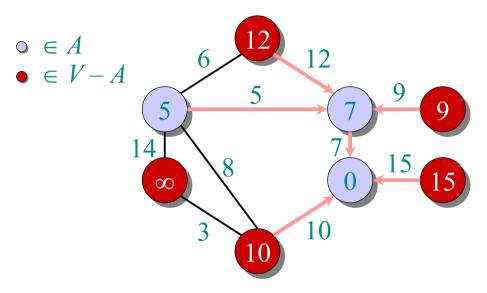

Figure 5_8 in DPV

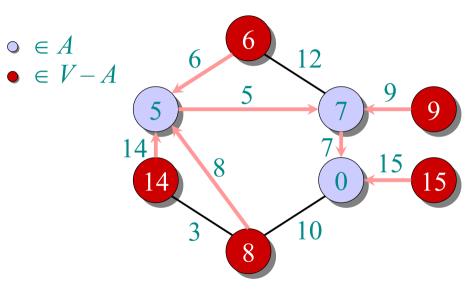
S = nodes reached so far

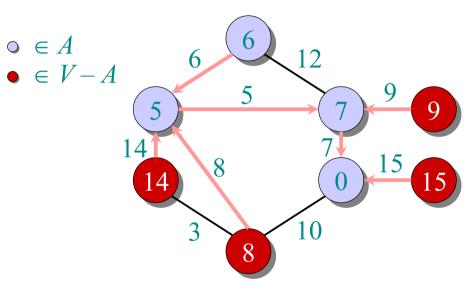


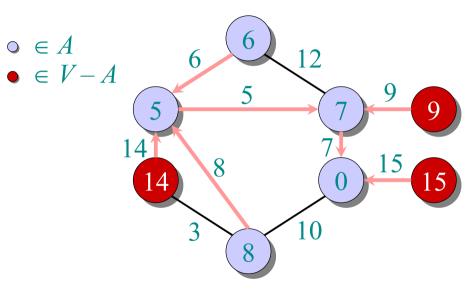


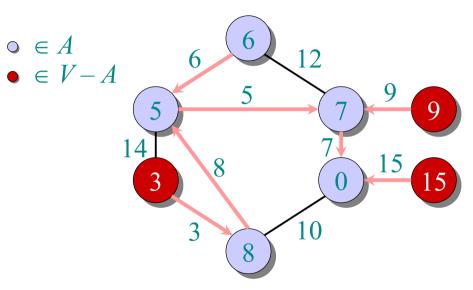


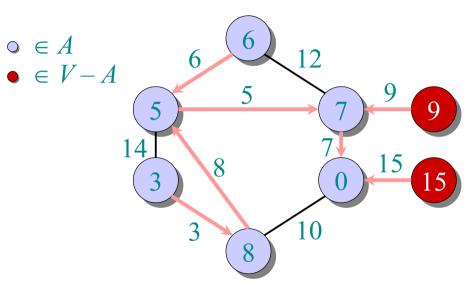


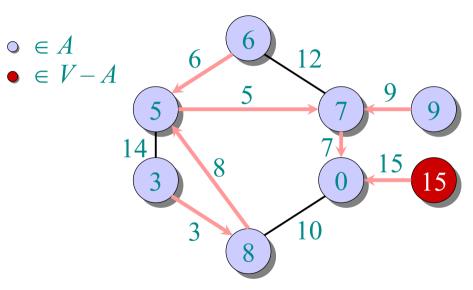


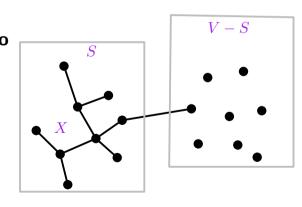












Prim's Algorithm

 $u_0 = \text{arbitrary vertex}$ $cost(u_0) = 0; cost(v) = \infty, v \neq u_0$ for $v \in V$: eng(H, v)while *H* is not empty **do** $v = \mathsf{deletemin}(H)$ for $e = \{v, z\}, e \in E, z \in H$ do if cost(z) > w(v, z) then cost(z) = w(v, z)prev(z) = vdecreasekey(H,z)end if end for end while

Analysis of Prim's Algorithm (board)

- Correctness follows from the cut property, induction
- Closely connected with the Djikstra's Shortest path algorithm; only two lines change
- ▶ Tree can be read back from prev
- Cost is dominated by priority queue operations