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Minimum Spanning Trees: Cut Property
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Lemma
Let 𝑇 be a minimum spanning tree, 𝑋 ⊂ 𝑇 s.t. 𝑋 does not connect
(𝑆, 𝑉 − 𝑆). Let 𝑒 be the lightest edge from 𝑆 to 𝑉 − 𝑆. 𝑋 ∪ 𝑒 is
part of some MST.



Generic MST
𝑋 ← {}
while |𝑋| < |𝑉 | − 1 do

Choose 𝑆 s.t. 𝑋 does not connect (𝑆, 𝑉 − 𝑆)
Add the lightest crossing edge to 𝑋

end while
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Disjoint set operations

makeset(key) create a singleton set containing key

find(key) find the set containing key
union(p,q) merge the sets of p and q

{𝑎, 𝑏, 𝑝, 𝑟}, {𝑧, 𝑡, 𝑞}

{𝑎, 𝑏, 𝑝, 𝑟, 𝑧, 𝑡, 𝑞}
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Kruskal’s MST algorithm
∀𝑢 ∈ 𝑉 makeset(u)
𝑋 ← {}
sort edges by weight
for (𝑢, 𝑣) ∈ 𝐸 do

if find(𝑢) ≠ 𝑓𝑖𝑛𝑑(𝑣) then
𝑋 ← 𝑋 ∪ {(𝑢, 𝑣)}
union(u,v)

end if
end for

▶ what is 𝑆?
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Forest representations

▶ each set is a tree.
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▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.



Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root

▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.



Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D

▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.



Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.

▶ union points the root of one tree to another node.



Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.



Makeset and Find

function makeset(key)
parent[key] ← key
rank[key]=0

end function
function find(key)

while parent[key]≠key do
key ← parent[key]

end while
return key

end function

key
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2
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1



Union operation
function union(𝑥, 𝑦)

𝑟𝑥 ← find(𝑥)
𝑟𝑦 ← find(𝑦)
if 𝑟𝑦 ≠ 𝑟𝑥 then

if rank[𝑟𝑥] > rank[𝑟𝑦] then
parent[𝑟𝑦] ← 𝑟𝑥

else
parent[𝑟𝑥] ← 𝑟𝑦
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if

end if
end if

end function



Union Find Example 1/3

▶ after makeset(A) … makeset(G)
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Union Find Example 2/3

after union(A,D), union(B,E),
union(C,F)
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Union Find Example 3/3

after union(C,G), union(E,A)
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Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

∴ Trees are height at most log2 𝑛
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Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Proof.

▶ Initially every node
has parent(𝑥) = 𝑥.

▶ Updating parent in
union preserves this
property.

if rank[𝑟𝑥] > rank[𝑟𝑦] then
parent[𝑟𝑦] ← 𝑟𝑥

else
parent[𝑟𝑥] ← 𝑟𝑦
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if

end if
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Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Proof.
▶ Base case: true for 𝑘 = 0.
▶ Rank 𝑘 + 1 is created only when joining two trees of rank 𝑘.
…
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if
…

▶ by induction, each of these subtrees has at least 2𝑘−1 nodes
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Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof.
▶ By Property 1 any element has at most one ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are distinct.
▶ Apply property 2.
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Motivation

Using union-find in Kruskal’s Algorithm
▶ For unbounded edge weights, the sorting costs

Ω(|𝐸| log |𝐸|) = Ω(|𝐸| log |𝑉 |)

▶ Naive union-find is fast enough.
▶ For small edge weights (e.g. weights bounded by |𝐸|), sorting

is no longer the bottleneck.
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Amortized analysis

▶ It’s not easy to make union faster than 𝑂(log 𝑛) in the worst
case

▶ What we can do easily is make the average cost of all union
operations in one run of a program almost constant

▶ This kind of average cost analysis is called amortized analysis
▶ Like with randomized algorithms, the algorithms are simple,

but the analysis is a bit subtle.
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”Memoizing” the find routine

Old
function find(key)

while parent[key]≠key do
key ← parent[key]

end while
return key

end function

New
function find(key)

if parent[key]≠key then
parent [key] ←

find(parent [key])
end if
return parent[key]

end function
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Example of new find, find(I)
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Example of new find, find(I)
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find(I), find(K)
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Strong Memoization
▶ not only only repeating the same query will be fast, but also

any node on the path to the root.
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▶ After find(𝐴)
▶ Notice ranks look a bit odd,

but still increase.
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Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))



Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))



Size of subtrees is preserved, but not subtrees.
Property 2
Any node of rank 𝑘 has at least
2𝑘 nodes in its subtree.

Property 2’
Any root node of rank 𝑘 has at
least 2𝑘 nodes in its subtree.
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Proof of property 2’.
Same induction as before; note that path compression never moves
nodes between trees
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Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof

▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.

▶ We charge each rank 𝑘 node for all of its descendents at
moment of becoming rank 𝑘.

▶ if path compression moves nodes from underneath a node, it
moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘
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log∗ 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise
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Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.

▶ After a node ceases to be a root node, its rank never changes.
▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.
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Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.

▶ By property 3, the total number of nodes in such an interval is
at most 𝑛

2𝑘+1 + 𝑛
2𝑘+2 + 𝑛

2𝑘+3 + … 𝑛
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▶ We need to bound
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∑
𝑖=𝑘+1

2−𝑖
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Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1

2−𝑖= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

= 1
2𝑘+1

1
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Geometric Series

▶ nodes in each interval get at most 𝑛 dollars in total (𝑛 log∗ 𝑛
dollars over all intervals).
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function find(key)

if parent[key]≠key then
parent [key] ← find(parent [key])

end if
return parent[key]

end function

▶ Either rank(parent [key]) is in a later interval than rank(key)
or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.
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Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.
▶ Once that happens, payments stop.
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Summing up

▶ Total cost for 𝑛 operations
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in next interval
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in same interval

▶ Amortized cost in 𝑂(log∗ 𝑛) per operation.
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