CS3383 Unit 2.2: Union Find / Disjoint Set

David Bremner

February 23, 2018

Outline

Union Find

Motivation: MST Forest Representation of Disjoint sets Bounding the height of trees Path Compression Path Compression Analysis

Contents

Union Find Motivation: MST

Forest Representation of Disjoint sets Bounding the height of trees Path Compression Path Compression Analysis

Lemma

Let T be a minimum spanning tree, $X \subset T$ s.t. X does not connect (S, V - S). Let e be the lightest edge from S to V - S. $X \cup e$ is part of some MST.

Generic MST

 $\begin{array}{l} X \leftarrow \{\} \\ \text{while } |X| < |V| - 1 \text{ do} \\ \\ \text{Choose } S \text{ s.t. } X \text{ does not connect } (S, V-S) \\ \text{Add the lightest crossing edge to } X \\ \text{end while } \end{array}$

Disjoint set operations

makeset(key) create a singleton set containing key

makeset(key) create a singleton set containing key
find(key) find the set containing key

 $\begin{array}{l} {\rm makeset(key)} \ {\rm create\ a\ singleton\ set\ containing\ key} \\ {\rm find(key)} \ {\rm find\ the\ set\ containing\ key} \\ {\rm union(p,q)} \ {\rm merge\ the\ sets\ of\ p\ and\ q} \\ \hline \left\{ {a,b,p,r}, \{z,t,q\} \right\} \\ \hline \\ \hline \left\{ {a,b,p,r,z,t,q} \right\} \end{array}$

・ロット (四)・ (目)・ (日)・ (日)

Kruskal's MST algorithm

 $\forall u \in V \text{ makeset}(u)$ $X \leftarrow \{\}$ sort edges by weight for $(u, v) \in E$ do if find(u) \neq find(v) then $X \leftarrow X \cup \{(u, v)\}$ union(u,v)end if end for

▶ what is S?

Contents

Union Find

Motivation: MST

Forest Representation of Disjoint sets

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Bounding the height of trees Path Compression Path Compression Analysis

▶ each set is a tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

▶ Each tree is represented by its root

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- each set is a tree.
- Each tree is represented by its root
- find(B) returns D

- each set is a tree.
- Each tree is represented by its root
- find(B) returns D
- makeset(x) just creates a single tree node.

- each set is a tree.
- Each tree is represented by its root
- find(B) returns D
- makeset(x) just creates a single tree node.
- ▶ union points the root of one tree to another node.

function MAKESET(key) $parent[key] \leftarrow key$ rank[key]=0 end function function FIND(key) **while** parent[key] \neq key **do** key \leftarrow parent[key] end while return key end function

Union operation

```
function UNION(x, y)
      r_x \leftarrow \text{find}(x)
      r_y \leftarrow \text{find}(y)
      if r_u \neq r_x then
             if \operatorname{rank}[r_x] > \operatorname{rank}[r_y] then
                    \operatorname{parent}[r_{y}] \leftarrow r_{x}
             else
                    \operatorname{parent}[r_x] \leftarrow r_y
                    if \operatorname{rank}[r_{x}] = \operatorname{rank}[r_{y}] then
                          \operatorname{rank}[r_{y}] + +
                    end if
             end if
      end if
```

Union Find Example 1/3

Union Find Example 1/3

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A⊙

Union Find Example 2/3

Union Find Example 3/3

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへの

Contents

Union Find

Motivation: MST Forest Representation of Disjoint sets Bounding the height of trees Path Compression Path Compression Analysis

Properties of Union Find trees

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 \therefore Trees are height at most $\log_2 n$

Properties of Union Find trees

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

 \therefore Trees are height at most $\log_2 n$

Properties of Union Find trees

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

 \therefore Trees are height at most $\log_2 n$

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Property 1

For any x such that $\operatorname{parent}(x) \neq x$, $\operatorname{rank}(x) < \operatorname{rank}(\operatorname{parent}(x))$

Proof.

- ► Initially every node has parent(x) = x.
- Updating parent in union preserves this property.

if $\operatorname{rank}[r_x] > \operatorname{rank}[r_y]$ then $\operatorname{parent}[r_y] \leftarrow r_x$ else $\operatorname{parent}[r_x] \leftarrow r_y$ if $\operatorname{rank}[r_x] = \operatorname{rank}[r_y]$ then $\operatorname{rank}[r_{y}] + +$ end if end if

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

Proof.

- Base case: true for k = 0.
- Rank k + 1 is created only when joining two trees of rank k.

```
... if \operatorname{rank}[r_x] = \operatorname{rank}[r_y] then \operatorname{rank}[r_y] + + end if
```

Property 3

If there are n elements, are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Property 3

If there are n elements, are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

Proof.

• By Property 1 any element has at most one ancestor of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- ▶ Therefore the children of two rank k nodes are distinct.
- Apply property 2.

Contents

Union Find

Motivation: MST Forest Representation of Disjoint sets Bounding the height of trees

Path Compression

Path Compression Analysis

Motivation

Using union-find in Kruskal's Algorithm

For unbounded edge weights, the sorting costs $\Omega(|E|\log|E|) = \Omega(|E|\log|V|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Motivation

Using union-find in Kruskal's Algorithm

For unbounded edge weights, the sorting costs $\Omega(|E|\log|E|) = \Omega(|E|\log|V|)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Naive union-find is fast enough.

Motivation

Using union-find in Kruskal's Algorithm

- \blacktriangleright For unbounded edge weights, the sorting costs $\Omega(|E|\log|E|) = \Omega(|E|\log|V|)$
 - Naive union-find is fast enough.
- ▶ For small edge weights (e.g. weights bounded by |E|), sorting is no longer the bottleneck.

Amortized analysis

 \blacktriangleright It's not easy to make union faster than $O(\log n)$ in the worst case
Amortized analysis

- \blacktriangleright It's not easy to make union faster than $O(\log n)$ in the worst case
- What we can do easily is make the *average* cost of all union operations in one run of a program almost constant

Amortized analysis

- \blacktriangleright It's not easy to make union faster than $O(\log n)$ in the worst case
- What we can do easily is make the average cost of all union operations in one run of a program almost constant
- This kind of average cost analysis is called amortized analysis

Amortized analysis

- \blacktriangleright It's not easy to make union faster than $O(\log n)$ in the worst case
- What we can do easily is make the *average* cost of all union operations in one run of a program almost constant
- ► This kind of average cost analysis is called amortized analysis
- Like with randomized algorithms, the algorithms are simple, but the analysis is a bit subtle.

"Memoizing" the find routine

Old

function FIND(key)
while parent[key]≠key do
 key ← parent[key]
end while
return key
end function

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

"Memoizing" the find routine

Old

function FIND(key)
while parent[key]≠key do
 key ← parent[key]
end while
return key
end function

New

function FIND(key)
 if parent[key]≠key then
 parent [key] ←
 find(parent [key])
 end if
 return parent[key]
end function

Example of new find, find(I)

Example of new find, find(I)

find(I), find(K)

◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

find(I), find(K)

Strong Memoization

not only only repeating the same query will be fast, but also any node on the path to the root.

Strong Memoization

not only only repeating the same query will be fast, but also any node on the path to the root.

• After find(A) as a set as a sace

Rank ordering is maintained

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Rank ordering is maintained

Property 1

For any x such that $parent(x) \neq x$, rank(x) < rank(parent(x))

Shortcuts preserve order

Size of subtrees is preserved, but not subtrees.

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Size of subtrees is preserved, but not subtrees.

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

Property 2'

Any root node of rank k has at least 2^k nodes in its subtree.

Size of subtrees is preserved, but not subtrees.

Property 2

Any node of rank k has at least 2^k nodes in its subtree.

Property 2'

Any root node of rank k has at least 2^k nodes in its subtree.

Proof of property 2'.

Same induction as before; note that path compression never moves nodes between trees

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

proof

 \blacktriangleright From property 1, every node has ≤ 1 rank k ancestor

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- \blacktriangleright From property 1, every node has ≤ 1 rank k ancestor
 - ▶ So descendents of a given rank k node are distinct.

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- \blacktriangleright From property 1, every node has ≤ 1 rank k ancestor
 - \blacktriangleright So descendents of a given rank k node are distinct.
- We charge each rank k node for all of its descendents at moment of becoming rank k.

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- From property 1, every node has ≤ 1 rank k ancestor
 - ▶ So descendents of a given rank k node are distinct.
- We charge each rank k node for all of its descendents at moment of becoming rank k.
- if path compression moves nodes from underneath a node, it moves to a node of higher rank

Property 3

If there are n elements, there are at most $\lfloor n/2^k \rfloor$ nodes of rank k.

- From property 1, every node has ≤ 1 rank k ancestor
 - ▶ So descendents of a given rank k node are distinct.
- We charge each rank k node for all of its descendents at moment of becoming rank k.
- if path compression moves nodes from underneath a node, it moves to a node of higher rank
- \blacktriangleright no node is ever charged towards more than one node of rank k

Contents

Union Find

Motivation: MST Forest Representation of Disjoint sets Bounding the height of trees Path Compression Path Compression Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\log^* n$

$$\log^*(n) = \begin{cases} 1 & \text{if } \log(n) \leq \\ 1 + \log^*(\log(n)) & \text{otherwise} \end{cases}$$

1

 We will keep track of (some) operations by counting them locally at every node.

- We will keep track of (some) operations by counting them locally at every node.
- ▶ After a node ceases to be a root node, its rank never changes.

- We will keep track of (some) operations by counting them locally at every node.
- ▶ After a node ceases to be a root node, its rank never changes.
- In order to "pay" for future operations, we give every node 2^k
 "dollars" if its max rank is in

$$[k+1, \dots 2^k]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

for some $k = 2^j$.

- We will keep track of (some) operations by counting them locally at every node.
- ▶ After a node ceases to be a root node, its rank never changes.
- In order to "pay" for future operations, we give every node 2^k
 "dollars" if its max rank is in

$$[k+1, \dots 2^k]$$

for some $k = 2^j$.

▶ We will count the total amount of money passed out

- We will keep track of (some) operations by counting them locally at every node.
- ▶ After a node ceases to be a root node, its rank never changes.
- In order to "pay" for future operations, we give every node 2^k
 "dollars" if its max rank is in

$$[k+1, \dots 2^k]$$

for some $k = 2^j$.

- ▶ We will count the total amount of money passed out
- ► And argue that no node runs out of money.

Rank Intervals

• We divide the numbers [1, n] into $[k + 1, 2^k]$

$$[1,1], [2,2], [3,4], [5,16], \dots, [k+1,2^k]$$

Rank Intervals

• We divide the numbers [1, n] into $[k + 1, 2^k]$

$$[1,1], [2,2], [3,4], [5,16], \dots, [k+1,2^k]$$

▶ The first *p* intervals cover

$$2^{2^{2^{\cdots 2}}}
brace p-1$$
 times

Rank Intervals

• We divide the numbers [1, n] into $[k + 1, 2^k]$

$$[1, 1], [2, 2], [3, 4], [5, 16], \dots, [k + 1, 2^k]$$

▶ The first *p* intervals cover

$$2^{2^{2^{\cdots 2}}} \}^{p-1}$$
 times

▶ It follows log*(n) + 1 intervals cover n, and log*(n) intervals cover log n.

Bounding disbursements 1/2

Recall that each node in an interval ending in 2^k gets 2^k dollars.

Bounding disbursements 1/2

- Recall that each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots + \frac{n}{2^{2^k}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Bounding disbursements 1/2

- Recall that each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots \frac{n}{2^{2^k}}$$

We need to bound

$$\sum_{i=k+1}^{2^k} 2^{-i}$$
Bounding disbursements 1/2

- Recall that each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots \frac{n}{2^{2^k}}$$

We need to bound

$$\sum_{i=k+1}^{2^k} 2^{-i} = \frac{1}{2^{k+1}} \sum_{i=0}^{2^k-k-1} 2^{-i}$$

・ロト ・ ロト ・ ヨト ・ ヨト ・ 日 ・ シタク

Bounding disbursements 1/2

- Recall that each node in an interval ending in 2^k gets 2^k dollars.
- By property 3, the total number of nodes in such an interval is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \frac{n}{2^{k+3}} + \dots \frac{n}{2^{2^k}}$$

We need to bound

Bounding disbursements 2/2

▶ We need to bound

 nodes in each interval get at most n dollars in total (n log* n dollars over all intervals).

Bounding disbursements 2/2

▶ We need to bound

 nodes in each interval get at most n dollars in total (n log* n dollars over all intervals).

```
function FIND(key)
if parent[key]≠key then
        parent [key] ← find(parent [key])
end if
return parent[key]
end function
```

 Either rank(parent [key]) is in a later interval than rank(key) or not.

```
function FIND(key)
if parent[key]≠key then
        parent [key] ← find(parent [key])
end if
return parent[key]
end function
```

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.

```
function FIND(key)
if parent[key]≠key then
        parent [key] ← find(parent [key])
end if
return parent[key]
end function
```

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.
- ▶ If in the same interval, we say key pays a dollar back.

 Either rank(parent [key]) is in a later interval than rank(key) or not.

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.
- ▶ If in the same interval, we say key pays a dollar back.

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.
- ▶ If in the same interval, we say key pays a dollar back.

No node goes broke

 \blacktriangleright Each time x pays a dollar, it increases the rank of its parent.

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.
- ▶ If in the same interval, we say key pays a dollar back.

- \blacktriangleright Each time x pays a dollar, it increases the rank of its parent.
- If $rank(x) \in [k + 1 \dots 2^k]$, that can repeat less than 2^k times before its parent is in a higher interval.

- Either rank(parent [key]) is in a later interval than rank(key) or not.
- Increasing intervals can happen at most $\log^* n$ times.
- ▶ If in the same interval, we say key pays a dollar back.

- \blacktriangleright Each time x pays a dollar, it increases the rank of its parent.
- If rank(x) ∈ [k + 1...2^k], that can repeat less than 2^k times before its parent is in a higher interval.
- Once that happens, payments stop.

Summing up

- \blacktriangleright Total cost for n operations
 - $\blacktriangleright \ \leq n \log^* n$ total steps where parent is in next interval
 - ullet $\leq n \log^* n$ total steps where parent is in same interval

• Amortized cost in $O(\log^* n)$ per operation.