CS3383 Unit 2.2: Union Find / Disjoint Set

David Bremner

February 23, 2018

QOutline

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Contents

Union Find
Motivation: MST

Minimum Spanning Trees: Cut Property
S V-5

Lemma

Let T' be a minimum spanning tree, X C T s.t. X does not connect
(S,V —S). Let e be the lightest edge from S toV —S. X Ue is
part of some MST.

Generic MST

X« {}

while | X| < |[V]|—1 do
Choose S s.t. X does not connect (S,V — 5)
Add the lightest crossing edge to X

end while
S

X[S]

Disjoint set operations

makeset(key) create a singleton set containing key

Disjoint set operations

makeset(key) create a singleton set containing key
find(key) find the set containing key

Disjoint set operations

makeset(key) create a singleton set containing key
find(key) find the set containing key
union(p,q) merge the sets of p and q

{CL, b7p7 ’f’}, {Z7 t? Q}
L

{a7b7p7r7z7t7Q}

Kruskal's MST algorithm

Vu € V makeset(u)
X+ {)
sort edges by weight
for (u,v) € E' do
if find(u) # find(v) then
X +— X U{(u,v)}
union(u,v)
end if
end for

» what is S7?

Contents

Union Find

Forest Representation of Disjoint sets

Forest representations

» each set is a tree.

Forest representations

» Each tree is represented by its root

» each set is a tree.

Forest representations

» Each tree is represented by its root
» find(B) returns D

» each set is a tree.

Forest representations

» Each tree is represented by its root
» find(B) returns D
» makeset(x) just creates a single tree node.

O

» each set is a tree.

Forest representations

Each tree is represented by its root
find(B) returns D
makeset(x) just creates a single tree node.

O

each set is a tree.

vV v.v. v Vv

union points the root of one tree to another node.

Makeset and Find

function MAKESET(key)
parent[key] + key
rank[key]=0

end function

function FIND(key)
while parent[key]#key do

key <— parent[key]

end while
return key

end function sibling
0

Union operation

function UNION(z, y)
r,. < find(z)
r, < find(y)
if r, # r, then
if rank[r,] > rank[r,] then
parent|r,| < r,

else
parent[r,] < r
if rank[r,] = rank[r,] then
rank|r, | —|— —|—
end if
end if

end if

Union Find Example 1/3

» after makeset(A) .. makeset(G)

Union Find Example 1/3

» after makeset A . makeset G

after unlon (A,D), unlon(B E), union(C,F)

Union Find Example 2/3

after unlon(C G), union(E,A)

after union(A,D), union(B,E),
unlon(C F) a

Union Find Example 3/3

after union(C,G), union(E,A) after union(B,G)

Contents

Union Find

Bounding the height of trees

Properties of Union Find trees

Property 1
For any = such that parent(z) # x, rank(x) < rank(parent(z))

~ Trees are height at most log, n

Properties of Union Find trees

Property 1
For any = such that parent(z) # x, rank(x) < rank(parent(z))

Property 2

Any node of rank k has at least 2 nodes in its subtree.

~ Trees are height at most log, n

Properties of Union Find trees

Property 1
For any = such that parent(z) # x, rank(x) < rank(parent(z))

Property 2

Any node of rank k has at least 2 nodes in its subtree.

Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

~ Trees are height at most log, n

Proof of Property 1
Property 1
For any x such that parent(z) # x, rank(z) < rank(parent(x))

Proof of Property 1
Property 1
For any = such that parent(z) # x, rank(x) < rank(parent(z))

Proof.

if rank[r,] > rank[r | then

» Initially every node parent[ry] T

has parent(x) = z. else]
: : parent|r_ | < r
» Updating parent in . r 4
union priserves this 1wl = rank[ry] U
oroperty rank|r,| + +
' end if

end if

Proof of Property 2
Property 2

Any node of rank k has at least 2% nodes in its subtree.

Proof of Property 2
Property 2

Any node of rank k has at least 2% nodes in its subtree.

Proof.

» Base case: true for k = 0.
» Rank k£ + 1 is created only when joining two trees of rank k.

if rank[r,| = rank[r,| then
rank[r, | + +
end if

Proof of property 3

Property 3

If there are n elements, are at most |n/2%| nodes of rank k.

Proof of property 3

Property 3

If there are n elements, are at most |n/2* | nodes of rank k.

Proof.

» By Property 1 any element has at most one ancestor of rank k.
» Therefore the children of two rank k£ nodes are distinct.
» Apply property 2.

]

Contents

Union Find

Path Compression

Motivation

Using union-find in Kruskal's Algorithm

» For unbounded edge weights, the sorting costs
Q|E|log |E|) = Q(|E|log|V])

Motivation

Using union-find in Kruskal's Algorithm

» For unbounded edge weights, the sorting costs
Q|E|log |E]) = Q(|E|log|V])

» Naive union-find is fast enough.

Motivation

Using union-find in Kruskal's Algorithm

» For unbounded edge weights, the sorting costs
Q| E|log|E]) = Q(|E|log |V])
» Naive union-find is fast enough.
» For small edge weights (e.g. weights bounded by |E|), sorting
is no longer the bottleneck.

Amortized analysis

» It's not easy to make union faster than O(logn) in the worst
case

Amortized analysis

» It's not easy to make union faster than O(logn) in the worst
case

» What we can do easily is make the average cost of all union
operations in one run of a program almost constant

Amortized analysis

» It's not easy to make union faster than O(logn) in the worst
case

» What we can do easily is make the average cost of all union
operations in one run of a program almost constant

» This kind of average cost analysis is called amortized analysis

Amortized analysis

» It's not easy to make union faster than O(logn) in the worst
case

» What we can do easily is make the average cost of all union
operations in one run of a program almost constant

» This kind of average cost analysis is called amortized analysis

» Like with randomized algorithms, the algorithms are simple,
but the analysis is a bit subtle.

"Memoizing” the find routine

Old

function FIND(key)
while parent[key]#key do
key < parent[key]
end while
return key
end function

"Memoizing” the find routine

Old New

function FIND(key)
if parent[key|#key then
parent [key] <
find(parent [key])
end if
return parent[key]
end function

function FIND(key)
while parent[key]#key do
key < parent[key]
end while
return key
end function

Example of new find, find(l)

B
0

Example of new find, find(l)

After find(])

find(1), find(K)

find(1), find(K)

Strong Memoization

» not only only repeating the same query will be fast, but also
any node on the path to the root.

2
DS
O®

Strong Memoization

» not only only repeating the same query will be fast, but also

any node on the path to the root.

e » After find(A)

Rank ordering is maintained

Property 1
For any z such that parent(z) # z, rank(z) < rank(parent(z))

Rank ordering is maintained

Property 1
For any x such that parent(z) # x, rank(xz) < rank(parent(x))

Shortcuts preserve order

parent(parent(x))
z

parent(x)

=

Size of subtrees is preserved, but not subtrees.

Property 2
Any node of rank k has at least 9
2% nodes in its subtree. e e e

Size of subtrees is preserved, but not subtrees.

Property 2

Any node of rank k has at least e

2% nodes in its subtree.

Property 2 6 e e

Any root node of rank k£ has at
least 2F nodes in its subtree.

Size of subtrees is preserved, but not subtrees.

Property 2

Any node of rank k has at least e

2% nodes in its subtree.

Property 2 e e e
Any root node of rank k£ has at

least 2% nodes in its subtree.

Proof of property 2.

Same induction as before; note that path compression never moves
nodes between trees [

Not too many nodes of rank £
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

Not too many nodes of rank k
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

proof

Not too many nodes of rank k
Property 3
If there are n elements, there are at most |n/2% | nodes of rank k.

proof

» From property 1, every node has < 1 rank k ancestor

Not too many nodes of rank k
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

proof

» From property 1, every node has < 1 rank k ancestor
» So descendents of a given rank k node are distinct.

Not too many nodes of rank &
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

proof

» From property 1, every node has < 1 rank k ancestor
» So descendents of a given rank k node are distinct.
» We charge each rank k node for all of its descendents at
moment of becoming rank k.

Not too many nodes of rank &
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

proof

» From property 1, every node has < 1 rank k ancestor
» So descendents of a given rank k node are distinct.
» We charge each rank k node for all of its descendents at
moment of becoming rank k.
» if path compression moves nodes from underneath a node, it
moves to a node of higher rank

Not too many nodes of rank &
Property 3

If there are n elements, there are at most |n/2% | nodes of rank k.

proof

» From property 1, every node has < 1 rank k ancestor
» So descendents of a given rank k node are distinct.

» We charge each rank k node for all of its descendents at
moment of becoming rank k.

» if path compression moves nodes from underneath a node, it
moves to a node of higher rank

» no node is ever charged towards more than one node of rank &

Contents

Union Find

Path Compression Analysis

1+ log™(log(n))

if log(n) <1
otherwise

Amortization

» We will keep track of (some) operations by counting them
locally at every node.

Amortization

» We will keep track of (some) operations by counting them
locally at every node.

» After a node ceases to be a root node, its rank never changes.

Amortization

» We will keep track of (some) operations by counting them
locally at every node.

» After a node ceases to be a root node, its rank never changes.

» In order to "pay” for future operations, we give every node 2%
“dollars” if its max rank is in

[k +1,...2%]

for some k = 27,

Amortization

» We will keep track of (some) operations by counting them
locally at every node.

» After a node ceases to be a root node, its rank never changes.

» In order to "pay” for future operations, we give every node 2%
“dollars” if its max rank is in

[k +1,...2%]

for some k = 27.
» We will count the total amount of money passed out

Amortization

» We will keep track of (some) operations by counting them
locally at every node.

» After a node ceases to be a root node, its rank never changes.

» In order to "pay” for future operations, we give every node 2%
“dollars” if its max rank is in

[k +1,...2%]

for some k = 27.
» We will count the total amount of money passed out
» And argue that no node runs out of money.

Rank Intervals

» We divide the numbers [1,n] into [k + 1,2%]

[1,1],12,2],[3,4], [5,16], ..., [k + 1,2%]

Rank Intervals

» We divide the numbers [1,n] into [k + 1,2%]
[1,1],[2,2],[3,4], [5,16], ..., [k + 1, 2%]
» The first p intervals cover

222"‘2}p — 1 times

Rank Intervals

» We divide the numbers [1,n] into [k + 1,2%]
[1,1],[2,2],[3,4], [5,16], ..., [k + 1, 2%]
» The first p intervals cover

222"‘2}p — 1 times

» It follows log™(n) + 1 intervals cover n, and log™(n) intervals
cover logn.

Bounding disbursements 1/2

» Recall that each node in an interval ending in 2% gets 2%
dollars.

Bounding disbursements 1/2

» Recall that each node in an interval ending in 2% gets 2%
dollars.

» By property 3, the total number of nodes in such an interval is
at most

n n n n

2k+1 + 2k+2 + 2k+3 + 22k

Bounding disbursements 1/2

» Recall that each node in an interval ending in 2% gets 2%
dollars.
» By property 3, the total number of nodes in such an interval is
at most
n n n n
2k+1 + 2k+2 + 2k+3 T 92k

» We need to bound

2k
> 2

i=k+1

Bounding disbursements 1/2

» Recall that each node in an interval ending in 2% gets 2%
dollars.
» By property 3, the total number of nodes in such an interval is

at most
n n n n

2k+1 + 2k+2 + 2k+3 + . 22k
» We need to bound

22_2_21@4—1 Z 2~

i=k+1

Bounding disbursements 1/2

» Recall that each node in an interval ending in 2% gets 2%

dollars.
» By property 3, the total number of nodes in such an interval is

at most
n n n n

2k+1 + 2k+2 + 2k+3 + 22k

» We need to bound

2k 1 2k _k—1
D2 =gy 2 2
i=k+1 1=0

Bounding disbursements 2/2

» We need to bound

2k_Lk—1

Z 27'= 2k+1 Z 2~

i=k+1

» nodes in each interval get at most n dollars in total (nlog*n
dollars over all intervals).

Bounding disbursements 2/2

» We need to bound

2k_Lk—1

Z 27'= 2k+1 Z 2~

i=k+1
g2 (3)
— 9k
kT £\ 2
1

1
S 2k —1/2

Geometric Series

» nodes in each interval get at most n dollars in total (nlog*n
dollars over all intervals).

Paying for find operations 1/2

function FIND(key)
if parent[key|#key then
parent [key] <— find(parent [key])
end if
return parent[key]
end function

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

Paying for find operations 1/2

function FIND(key)
if parent[key|#key then
parent [key] <— find(parent [key])
end if
return parent[key]
end function

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

. . * .
» Increasing intervals can happen at most log™ n times.

Paying for find operations 1/2

function FIND(key)
if parent[key|#key then
parent [key] <— find(parent [key])
end if
return parent[key]
end function

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

» Increasing intervals can happen at most log™ n times.
» If in the same interval, we say key pays a dollar back.

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

No node goes broke

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

. . k .
» Increasing intervals can happen at most log™ n times.

No node goes broke

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

» Increasing intervals can happen at most log™ n times.
» If in the same interval, we say key pays a dollar back.

No node goes broke

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

» Increasing intervals can happen at most log™ n times.
» If in the same interval, we say key pays a dollar back.

No node goes broke

» Each time x pays a dollar, it increases the rank of its parent.

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

» Increasing intervals can happen at most log™ n times.
» If in the same interval, we say key pays a dollar back.

No node goes broke

» Each time x pays a dollar, it increases the rank of its parent.

» If rank(z) € [k + 1...2%], that can repeat less than 2* times
before its parent is in a higher interval.

Paying for find operations 2/2

» Either rank(parent [key]) is in a later interval than rank(key)
or not.

» Increasing intervals can happen at most log™ n times.
» If in the same interval, we say key pays a dollar back.

No node goes broke

» Each time x pays a dollar, it increases the rank of its parent.

» If rank(z) € [k + 1...2%], that can repeat less than 2* times
before its parent is in a higher interval.

» Once that happens, payments stop.

Summing up

» Total cost for n operations

» < nlog"n total steps where parent is in next interval
» < nlog"n total steps where parent is in same interval

» Amortized cost in O(log”™ n) per operation.

	Union Find
	Motivation: MST
	Forest Representation of Disjoint sets
	Bounding the height of trees
	Path Compression
	Path Compression Analysis

