
CS3383 Unit 2.2: Union Find / Disjoint Set

David Bremner

February 23, 2018

Outline

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Contents

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Minimum Spanning Trees: Cut Property

¡

¢£

¤ ¤¥

¦ ¦

§ §

¨©

!

"#

$%

& &'

(()

e

S V − S

e'

Lemma
Let 𝑇 be a minimum spanning tree, 𝑋 ⊂ 𝑇 s.t. 𝑋 does not connect
(𝑆, 𝑉 − 𝑆). Let 𝑒 be the lightest edge from 𝑆 to 𝑉 − 𝑆. 𝑋 ∪ 𝑒 is
part of some MST.

Generic MST
𝑋 ← {}
while |𝑋| < |𝑉 | − 1 do

Choose 𝑆 s.t. 𝑋 does not connect (𝑆, 𝑉 − 𝑆)
Add the lightest crossing edge to 𝑋

end while

 ¡

¢£

¤ ¤¥

¦ ¦

§ §

¨©

!

"#

$%

&'

(()

0 0

1 1

2 2

3 3

4

4

5

5

6 6

7 7

X[S]

S V-S

Disjoint set operations

makeset(key) create a singleton set containing key

find(key) find the set containing key
union(p,q) merge the sets of p and q

{𝑎, 𝑏, 𝑝, 𝑟}, {𝑧, 𝑡, 𝑞}

{𝑎, 𝑏, 𝑝, 𝑟, 𝑧, 𝑡, 𝑞}

Disjoint set operations

makeset(key) create a singleton set containing key
find(key) find the set containing key

union(p,q) merge the sets of p and q
{𝑎, 𝑏, 𝑝, 𝑟}, {𝑧, 𝑡, 𝑞}

{𝑎, 𝑏, 𝑝, 𝑟, 𝑧, 𝑡, 𝑞}

Disjoint set operations

makeset(key) create a singleton set containing key
find(key) find the set containing key

union(p,q) merge the sets of p and q
{𝑎, 𝑏, 𝑝, 𝑟}, {𝑧, 𝑡, 𝑞}

{𝑎, 𝑏, 𝑝, 𝑟, 𝑧, 𝑡, 𝑞}

Kruskal’s MST algorithm
∀𝑢 ∈ 𝑉 makeset(u)
𝑋 ← {}
sort edges by weight
for (𝑢, 𝑣) ∈ 𝐸 do

if find(𝑢) ≠ 𝑓𝑖𝑛𝑑(𝑣) then
𝑋 ← 𝑋 ∪ {(𝑢, 𝑣)}
union(u,v)

end if
end for

▶ what is 𝑆?

Contents

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.

Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root

▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.

Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D

▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.

Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.

▶ union points the root of one tree to another node.

Forest representations

▶ each set is a tree.

A
0

D
2

B
0

E
1

C
0

G
0

F
1

▶ Each tree is represented by its root
▶ find(B) returns D
▶ makeset(x) just creates a single tree node.
▶ union points the root of one tree to another node.

Makeset and Find

function makeset(key)
parent[key] ← key
rank[key]=0

end function
function find(key)

while parent[key]≠key do
key ← parent[key]

end while
return key

end function

key

key
0

parent
1

sibling
0

root
2

uncle
1

Union operation
function union(𝑥, 𝑦)

𝑟𝑥 ← find(𝑥)
𝑟𝑦 ← find(𝑦)
if 𝑟𝑦 ≠ 𝑟𝑥 then

if rank[𝑟𝑥] > rank[𝑟𝑦] then
parent[𝑟𝑦] ← 𝑟𝑥

else
parent[𝑟𝑥] ← 𝑟𝑦
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if

end if
end if

end function

Union Find Example 1/3

▶ after makeset(A) … makeset(G)
A
0

B
0

C
0

D
0

E
0

F
0

G
0

▶ after union(A,D), union(B,E), union(C,F)

A
0

D
1

B
0

E
1

C
0

F
1

G
0

Union Find Example 1/3

▶ after makeset(A) … makeset(G)
A
0

B
0

C
0

D
0

E
0

F
0

G
0

▶ after union(A,D), union(B,E), union(C,F)

A
0

D
1

B
0

E
1

C
0

F
1

G
0

Union Find Example 2/3

after union(A,D), union(B,E),
union(C,F)

A
0

D
1

B
0

E
1

C
0

F
1

G
0

after union(C,G), union(E,A)

A
0

D
2

B
0

E
1

C
0

G
0

F
1

Union Find Example 3/3

after union(C,G), union(E,A)

A
0

D
2

B
0

E
1

C
0

G
0

F
1

after union(B,G)

A
0

D
2

B
0

E
1

C
0

G
0

F
1

Contents

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

∴ Trees are height at most log2 𝑛

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

∴ Trees are height at most log2 𝑛

Properties of Union Find trees
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

∴ Trees are height at most log2 𝑛

Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Proof.

▶ Initially every node
has parent(𝑥) = 𝑥.

▶ Updating parent in
union preserves this
property.

if rank[𝑟𝑥] > rank[𝑟𝑦] then
parent[𝑟𝑦] ← 𝑟𝑥

else
parent[𝑟𝑥] ← 𝑟𝑦
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if

end if

Proof of Property 1
Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Proof.

▶ Initially every node
has parent(𝑥) = 𝑥.

▶ Updating parent in
union preserves this
property.

if rank[𝑟𝑥] > rank[𝑟𝑦] then
parent[𝑟𝑦] ← 𝑟𝑥

else
parent[𝑟𝑥] ← 𝑟𝑦
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if

end if

Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Proof.
▶ Base case: true for 𝑘 = 0.
▶ Rank 𝑘 + 1 is created only when joining two trees of rank 𝑘.
…
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if
…

▶ by induction, each of these subtrees has at least 2𝑘−1 nodes

Proof of Property 2
Property 2
Any node of rank 𝑘 has at least 2𝑘 nodes in its subtree.

Proof.
▶ Base case: true for 𝑘 = 0.
▶ Rank 𝑘 + 1 is created only when joining two trees of rank 𝑘.
…
if rank[𝑟𝑥] = rank[𝑟𝑦] then

rank[𝑟𝑦] + +
end if
…

▶ by induction, each of these subtrees has at least 2𝑘−1 nodes

Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof.
▶ By Property 1 any element has at most one ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are distinct.
▶ Apply property 2.

Proof of property 3

Property 3
If there are 𝑛 elements, are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

Proof.
▶ By Property 1 any element has at most one ancestor of rank 𝑘.
▶ Therefore the children of two rank 𝑘 nodes are distinct.
▶ Apply property 2.

Contents

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

Motivation

Using union-find in Kruskal’s Algorithm
▶ For unbounded edge weights, the sorting costs

Ω(|𝐸| log |𝐸|) = Ω(|𝐸| log |𝑉 |)

▶ Naive union-find is fast enough.
▶ For small edge weights (e.g. weights bounded by |𝐸|), sorting

is no longer the bottleneck.

Motivation

Using union-find in Kruskal’s Algorithm
▶ For unbounded edge weights, the sorting costs

Ω(|𝐸| log |𝐸|) = Ω(|𝐸| log |𝑉 |)
▶ Naive union-find is fast enough.

▶ For small edge weights (e.g. weights bounded by |𝐸|), sorting
is no longer the bottleneck.

Motivation

Using union-find in Kruskal’s Algorithm
▶ For unbounded edge weights, the sorting costs

Ω(|𝐸| log |𝐸|) = Ω(|𝐸| log |𝑉 |)
▶ Naive union-find is fast enough.

▶ For small edge weights (e.g. weights bounded by |𝐸|), sorting
is no longer the bottleneck.

Amortized analysis

▶ It’s not easy to make union faster than 𝑂(log 𝑛) in the worst
case

▶ What we can do easily is make the average cost of all union
operations in one run of a program almost constant

▶ This kind of average cost analysis is called amortized analysis
▶ Like with randomized algorithms, the algorithms are simple,

but the analysis is a bit subtle.

Amortized analysis

▶ It’s not easy to make union faster than 𝑂(log 𝑛) in the worst
case

▶ What we can do easily is make the average cost of all union
operations in one run of a program almost constant

▶ This kind of average cost analysis is called amortized analysis
▶ Like with randomized algorithms, the algorithms are simple,

but the analysis is a bit subtle.

Amortized analysis

▶ It’s not easy to make union faster than 𝑂(log 𝑛) in the worst
case

▶ What we can do easily is make the average cost of all union
operations in one run of a program almost constant

▶ This kind of average cost analysis is called amortized analysis

▶ Like with randomized algorithms, the algorithms are simple,
but the analysis is a bit subtle.

Amortized analysis

▶ It’s not easy to make union faster than 𝑂(log 𝑛) in the worst
case

▶ What we can do easily is make the average cost of all union
operations in one run of a program almost constant

▶ This kind of average cost analysis is called amortized analysis
▶ Like with randomized algorithms, the algorithms are simple,

but the analysis is a bit subtle.

”Memoizing” the find routine

Old
function find(key)

while parent[key]≠key do
key ← parent[key]

end while
return key

end function

New
function find(key)

if parent[key]≠key then
parent [key] ←

find(parent [key])
end if
return parent[key]

end function

”Memoizing” the find routine

Old
function find(key)

while parent[key]≠key do
key ← parent[key]

end while
return key

end function

New
function find(key)

if parent[key]≠key then
parent [key] ←

find(parent [key])
end if
return parent[key]

end function

Example of new find, find(I)

B
0

A
3

D
0

C
1

I
0

F
1

E
2

J
0

K
0

G
1

H
0

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

After find(𝐼)

Example of new find, find(I)

B
0

A
3

D
0

C
1

I
0

F
1

E
2

J
0

K
0

G
1

H
0

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

After find(𝐼)

find(I), find(K)

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

find(I), find(K)

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

B
0

A
3

D
0

C
1

I
0

F
1

J
0

H
0

E
2

K
0

G
1

Strong Memoization
▶ not only only repeating the same query will be fast, but also

any node on the path to the root.

B
0

E
1

D
2

A
0

C
1

B
0

E
1

D
2

A
0

C
1

▶ After find(𝐴)
▶ Notice ranks look a bit odd,

but still increase.

Strong Memoization
▶ not only only repeating the same query will be fast, but also

any node on the path to the root.

B
0

E
1

D
2

A
0

C
1 B

0

E
1

D
2

A
0

C
1

▶ After find(𝐴)
▶ Notice ranks look a bit odd,

but still increase.

Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))

Rank ordering is maintained

Property 1
For any 𝑥 such that parent(𝑥) ≠ 𝑥, rank(𝑥) < rank(parent(𝑥))

Shortcuts preserve order

𝑥

parent(𝑥)

parent(parent(𝑥))

Size of subtrees is preserved, but not subtrees.
Property 2
Any node of rank 𝑘 has at least
2𝑘 nodes in its subtree.

Property 2’
Any root node of rank 𝑘 has at
least 2𝑘 nodes in its subtree.

B
0

E
1

D
2

A
0

C
1

Proof of property 2’.
Same induction as before; note that path compression never moves
nodes between trees

Size of subtrees is preserved, but not subtrees.
Property 2
Any node of rank 𝑘 has at least
2𝑘 nodes in its subtree.

Property 2’
Any root node of rank 𝑘 has at
least 2𝑘 nodes in its subtree.

B
0

E
1

D
2

A
0

C
1

Proof of property 2’.
Same induction as before; note that path compression never moves
nodes between trees

Size of subtrees is preserved, but not subtrees.
Property 2
Any node of rank 𝑘 has at least
2𝑘 nodes in its subtree.

Property 2’
Any root node of rank 𝑘 has at
least 2𝑘 nodes in its subtree.

B
0

E
1

D
2

A
0

C
1

Proof of property 2’.
Same induction as before; note that path compression never moves
nodes between trees

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof

▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.

▶ We charge each rank 𝑘 node for all of its descendents at
moment of becoming rank 𝑘.

▶ if path compression moves nodes from underneath a node, it
moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof

▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.

▶ We charge each rank 𝑘 node for all of its descendents at
moment of becoming rank 𝑘.

▶ if path compression moves nodes from underneath a node, it
moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof
▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.
▶ We charge each rank 𝑘 node for all of its descendents at

moment of becoming rank 𝑘.
▶ if path compression moves nodes from underneath a node, it

moves to a node of higher rank
▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof
▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.

▶ We charge each rank 𝑘 node for all of its descendents at
moment of becoming rank 𝑘.

▶ if path compression moves nodes from underneath a node, it
moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof
▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.
▶ We charge each rank 𝑘 node for all of its descendents at

moment of becoming rank 𝑘.

▶ if path compression moves nodes from underneath a node, it
moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof
▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.
▶ We charge each rank 𝑘 node for all of its descendents at

moment of becoming rank 𝑘.
▶ if path compression moves nodes from underneath a node, it

moves to a node of higher rank

▶ no node is ever charged towards more than one node of rank 𝑘

Not too many nodes of rank 𝑘
Property 3
If there are 𝑛 elements, there are at most ⌊𝑛/2𝑘⌋ nodes of rank 𝑘.

proof
▶ From property 1, every node has ≤ 1 rank 𝑘 ancestor

▶ So descendents of a given rank 𝑘 node are distinct.
▶ We charge each rank 𝑘 node for all of its descendents at

moment of becoming rank 𝑘.
▶ if path compression moves nodes from underneath a node, it

moves to a node of higher rank
▶ no node is ever charged towards more than one node of rank 𝑘

Contents

Union Find
Motivation: MST
Forest Representation of Disjoint sets
Bounding the height of trees
Path Compression
Path Compression Analysis

log∗ 𝑛

log∗(𝑛) = {1 if log(𝑛) ≤ 1
1 + log∗(log(𝑛)) otherwise

nnnnnnnnn
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n
lo

g
*

n

10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵10²⁵ 10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹10⁵¹ 10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷10⁷⁷
111111111

222222222

333333333

444444444

555555555

Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.

▶ After a node ceases to be a root node, its rank never changes.
▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.

Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.
▶ After a node ceases to be a root node, its rank never changes.

▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.

Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.
▶ After a node ceases to be a root node, its rank never changes.
▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.

▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.

Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.
▶ After a node ceases to be a root node, its rank never changes.
▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out

▶ And argue that no node runs out of money.

Amortization
▶ We will keep track of (some) operations by counting them

locally at every node.
▶ After a node ceases to be a root node, its rank never changes.
▶ In order to ”pay” for future operations, we give every node 2𝑘

“dollars” if its max rank is in

[𝑘 + 1, … 2𝑘]

for some 𝑘 = 2𝑗.
▶ We will count the total amount of money passed out
▶ And argue that no node runs out of money.

Rank Intervals

▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ It follows log∗(𝑛) + 1 intervals cover 𝑛, and log∗(𝑛) intervals
cover log 𝑛.

Rank Intervals

▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ It follows log∗(𝑛) + 1 intervals cover 𝑛, and log∗(𝑛) intervals
cover log 𝑛.

Rank Intervals

▶ We divide the numbers [1, 𝑛] into [𝑘 + 1, 2𝑘]

[1, 1], [2, 2], [3, 4], [5, 16], … , [𝑘 + 1, 2𝑘]

▶ The first 𝑝 intervals cover

222⋯2}𝑝 − 1 times

▶ It follows log∗(𝑛) + 1 intervals cover 𝑛, and log∗(𝑛) intervals
cover log 𝑛.

Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.

▶ By property 3, the total number of nodes in such an interval is
at most 𝑛

2𝑘+1 + 𝑛
2𝑘+2 + 𝑛

2𝑘+3 + … 𝑛
22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖

= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖 = 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

Bounding disbursements 1/2
▶ Recall that each node in an interval ending in 2𝑘 gets 2𝑘

dollars.
▶ By property 3, the total number of nodes in such an interval is

at most 𝑛
2𝑘+1 + 𝑛

2𝑘+2 + 𝑛
2𝑘+3 + … 𝑛

22𝑘

▶ We need to bound
2𝑘

∑
𝑖=𝑘+1

2−𝑖 = 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1

2−𝑖= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

= 1
2𝑘+1

1
1 − 1/2

Geometric Series

▶ nodes in each interval get at most 𝑛 dollars in total (𝑛 log∗ 𝑛
dollars over all intervals).

Bounding disbursements 2/2
▶ We need to bound

2𝑘

∑
𝑖=𝑘+1

2−𝑖= 1
2𝑘+1

2𝑘−𝑘−1
∑
𝑖=0

2−𝑖

≤ 1
2𝑘+1

∞
∑
𝑖=0

(1
2

)
𝑖

= 1
2𝑘+1

1
1 − 1/2

Geometric Series

▶ nodes in each interval get at most 𝑛 dollars in total (𝑛 log∗ 𝑛
dollars over all intervals).

Paying for find operations 1/2
function find(key)

if parent[key]≠key then
parent [key] ← find(parent [key])

end if
return parent[key]

end function

▶ Either rank(parent [key]) is in a later interval than rank(key)
or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

Paying for find operations 1/2
function find(key)

if parent[key]≠key then
parent [key] ← find(parent [key])

end if
return parent[key]

end function

▶ Either rank(parent [key]) is in a later interval than rank(key)
or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.

▶ If in the same interval, we say key pays a dollar back.

Paying for find operations 1/2
function find(key)

if parent[key]≠key then
parent [key] ← find(parent [key])

end if
return parent[key]

end function

▶ Either rank(parent [key]) is in a later interval than rank(key)
or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.

▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.
▶ Once that happens, payments stop.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.
▶ Increasing intervals can happen at most log∗ 𝑛 times.

▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.
▶ Once that happens, payments stop.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.
▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.
▶ Once that happens, payments stop.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.
▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.

▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times
before its parent is in a higher interval.

▶ Once that happens, payments stop.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.
▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.

▶ Once that happens, payments stop.

Paying for find operations 2/2
▶ Either rank(parent [key]) is in a later interval than rank(key)

or not.
▶ Increasing intervals can happen at most log∗ 𝑛 times.
▶ If in the same interval, we say key pays a dollar back.

No node goes broke

▶ Each time 𝑥 pays a dollar, it increases the rank of its parent.
▶ If rank(𝑥) ∈ [𝑘 + 1 … 2𝑘], that can repeat less than 2𝑘 times

before its parent is in a higher interval.
▶ Once that happens, payments stop.

Summing up

▶ Total cost for 𝑛 operations
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in next interval
▶ ≤ 𝑛 log∗ 𝑛 total steps where parent is in same interval

▶ Amortized cost in 𝑂(log∗ 𝑛) per operation.

	Union Find
	Motivation: MST
	Forest Representation of Disjoint sets
	Bounding the height of trees
	Path Compression
	Path Compression Analysis

