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March Break Hotels
Scenario

Wanted Cheap holiday
Costs Hotel + Taxi, no charge for inconvenience

Input
Taxi Cost

a b c airport
a 0 10 30 50
b 10 0 30 50
c 30 30 0 50

airport 50 50 50 0

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80
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What to do?

The Obvious Algorithm

▶ Begin at the beginning

▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?
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It’s a trap!

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80

Taxi Cost
a b c airport

a 0 10 30 50
b 10 0 30 50
c 1000 1000 1000 500

airport 50 50 50 0



Let’s get graphical
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Djikstra considered overkill

▶ There are no negative edge weights

▶ We know how to find the shortest path in such a graph
▶ Even better, we have an acyclic graph (why?)
▶ So we find a shortest path in linear time after topological

sorting.
▶ We can do topological sort by DFS or by (essentially) BFS.
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”Recursive” topological sort

Recursive version
1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

▶ how to quickly find a source?

▶ Use some auxilary data structure to track sources across
iterations
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Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4:

𝑣 ← deq(𝑄)

5:

Output 𝑣

6:

Remove 𝑣, add new sources to 𝑄

7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters
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Topological sort with counters
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Avoiding a priority queue

function RemoveSource(𝑣, 𝐺)
for 𝑢 child of 𝑣 do

decrement counter[𝑢]
if counter[𝑢] == 0 then

enq(𝑢)
end if

end for
Remove 𝑣 from 𝐺

end function



Shortest Paths in DAGs
▶ Every path in a DAG goes through nodes in linearized

(topological sort) order.

▶ every node is reached via its predecessors
▶ So we need a single loop after sorting.

Dist in Top Sorted Graph

▶ dist(∗) = ∞
▶ dist(𝑠) = 0
▶ foreach 𝑣 ∈ 𝑉 {𝑠} in top sort order
▶ dist(𝑣) = min(𝑢,𝑣)∈𝐸 dist(𝑢) + 𝑙(𝑢, 𝑣)
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So what does this have to do with Dynamic
Programming?

Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)

▶ Each subproblem 𝐿(𝑖) can be solved using only the answers for
𝐿(𝑗), for 𝑗 < 𝑖.
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Balloon Flight Planning

▶ Start at (0, 0)

▶ At every time step, increase or decrease
altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as

a graph search
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Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later
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Finding a maximum value path
An easy case of a hard problem
In general NP-Hard, but not in DAGs.

function BestPath(𝑉 , 𝐸)
for 𝑣 ∈ TopSort(𝑉 ) do

Score[v] = −∞ // unreachable
for (𝑢, 𝑣) ∈ 𝐸 do // incoming edges

Score[v] = max(Score[v],
Value[v]+Score[u])

end for
end for

end function



Straightening paths

Lemma (Straightening Paths)
If there is a feasible path from 𝑝 to 𝑞 then the
segment [𝑝, 𝑞] is feasible.

Proof
The path cannot escape the cone define by the
steepest possible segments.
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A new graph

Improved graph size
The new graph is 𝑂(𝑝2), where
𝑝 ≤ 𝑛 is the number of prizes.
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Ordering Subproblems

▶ In the two problems we saw so far, the DAG of subproblem
dependence was defined by time.

▶ In general this need not be the case; a very natural way of
deriving this DAG is from a recursive algorithm.

▶ We’ll explore this strategy with the Longest Common
Subsequence problem.
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Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.
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Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA = 
LCS(x, y)

functional notation, 
but not a function
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Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].
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Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x).

Worst-case running time = O(n2m)
= exponential time.
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Pruning subproblems

▶ Part (but only part) of the problem is that the brute force
algorithm considers many sequences that can’t possibly be the
maximal one.

▶ In order to recursively compute an optimal answer, an obvious
strategy is to compute answers that are optimal for some
subset of the input

▶ Unlike in strong induction proofs, considering all smaller
subsets is clearly a losing strategy.
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Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] 
= k.  Then, z[k] = x[i], or else z could be extended.  
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].
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Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the 
claim.
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Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the 
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] 
= c[i–1, j–1] + 1.
Other cases are similar.
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Dynamic-programming 
hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.
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Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.



The trouble with recursion

▶ Although recursion is a useful step to a dynamic programming
algorithm, naive recursion is often expensive because of
repeated subproblems
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Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[ j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}
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else c[i, j] ← max{LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[ j], in which case the 
algorithm evaluates two subproblems, each 
with only one parameter decremented.
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Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2
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Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.
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Recursion tree

same 
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.
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m+n
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Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.
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Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct LCS subproblems for 
two strings of lengths m and n is only mn.
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Memoization

Recursive Version
function Recur(𝑝1, … 𝑝𝑘)

⋮
return val

end function

Memoized version
function Memo(𝑝1, … 𝑝𝑘)

if cache[𝑝1, … 𝑝𝑘] ≠ NIL then
return cache[𝑝1, … 𝑝𝑘]

end if
⋮
cache[𝑝1, … 𝑝𝑘] = val
return val

end function
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Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work.
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Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}

same 
as 
before
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Memoized LCS (with base case)
function LCS(𝑥, 𝑦, 𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return 0

end if
if 𝑐[𝑖, 𝑗] = NIL then

if 𝑥[𝑖] = 𝑦[𝑗] then
𝑐[𝑖, 𝑗] ← 𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗 − 1) + 1

else
𝑐[𝑖, 𝑗] ← max(𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗),

𝐿𝐶𝑆(𝑥, 𝑦, 𝑖, 𝑗 − 1))
end if

end if
return 𝑐[𝑖, 𝑗]

end function
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▶ returned value
written
immediately
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Memoized LCS (with base case)
function LCS(𝑥, 𝑦, 𝑖, 𝑗)
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Eliminating Recursion completely
function LCS(𝑥, 𝑦)

∀𝑖 ∶ 𝑐[𝑖, 0] = 0
∀𝑗 ∶ 𝑐[0, 𝑗] = 0
for 𝑖 ∈ 1 … |𝑥| do

for 𝑗 ∈ 1 … |𝑦| do
if 𝑥[𝑖] = 𝑦[𝑗] then

𝑐[𝑖, 𝑗] ← 𝑐[𝑖 − 1, 𝑗 − 1] + 1
else

𝑐[𝑖, 𝑗] ← max(𝑐[𝑖 − 1, 𝑗], 𝑐[𝑖, 𝑗 − 1])
end if

end for
end for

end function



Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same

▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.
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Reading back the sequence
function backtrack(𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return ””

end if
if x[i] = y[j] then

return backtrack(𝑖 − 1, 𝑗 − 1) + 𝑥[𝑖]
end if
if 𝑐[𝑖, 𝑗 − 1] > 𝑐[𝑖 − 1, 𝑗] then

return backtrack(𝑖, 𝑗 − 1)
else

return backtrack(𝑖 − 1, 𝑗)
end if

end function
▶ What is a recurrence bounding the running time?
▶ How could +𝑥[𝑖] be expensive?
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