CS3383 Unit 3: Dynamic Programming

David Bremner

February 23, 2018

Outline

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

Contents

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

March Break Hotels

Scenario

March Break Hotels

Scenario

Wanted Cheap holiday

Costs Hotel + Taxi, no charge for inconvenience

Input

	Taxi Cost				Hotel Price				
	а	b	С	airport		1		3	1
а	0	10	30	50	2	_	_	100	100
b	10	0	30	50	a h	80		120	
С	30	30	0	50	D	50	80	80	
airport	50	50	50	0	C	50	00	00	80

The Obvious Algorithm

Begin at the beginning

The Obvious Algorithm

- Begin at the beginning
- Take it day by day

The Obvious Algorithm

- Begin at the beginning
- Take it day by day

► How does this do on our example data?

The Obvious Algorithm

- Begin at the beginning
- Take it day by day

- How does this do on our example data?
- Can we find a better solution?

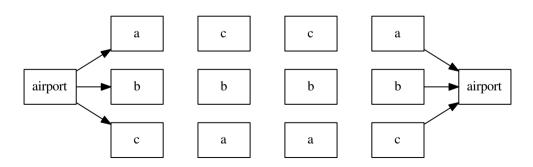
The Obvious Algorithm

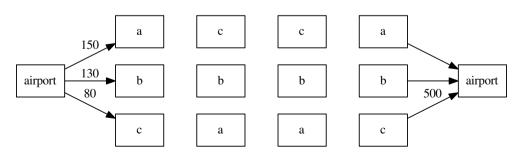
- Begin at the beginning
- Take it day by day

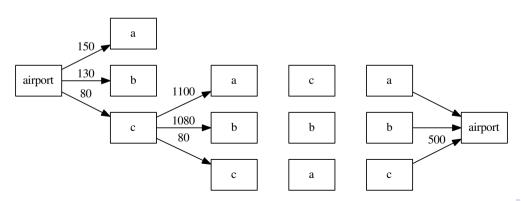
- How does this do on our example data?
- Can we find a better solution?
- What if Taxis charge 1000 to pick up at Hotel C(alifornia)?

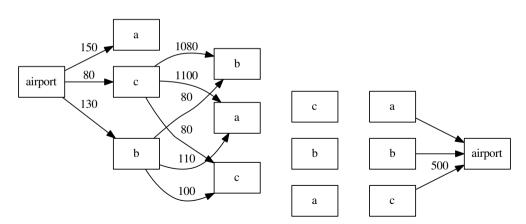
It's a trap!

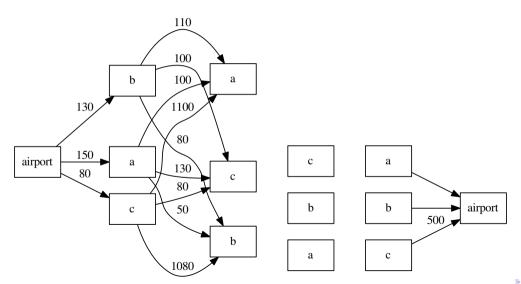
	⊔م+۵	l Pric	•			Taxi Cost				
				4		а	b	С	airport	
	_	_	3	-	а	0	10	30	50	
			100		b	10	0	30	50	
	80	_		120	С	1000	1000	1000	500	
С	50	80	80	80	airport	50	50	50	0	











► There are no negative edge weights

- There are no negative edge weights
- We know how to find the shortest path in such a graph

- There are no negative edge weights
- We know how to find the shortest path in such a graph
- ► Even better, we have an *acyclic* graph (why?)

- There are no negative edge weights
- We know how to find the shortest path in such a graph
- Even better, we have an acyclic graph (why?)
- So we find a shortest path in linear time after topological sorting.

- There are no negative edge weights
- We know how to find the shortest path in such a graph
- Even better, we have an acyclic graph (why?)
- So we find a shortest path in linear time after topological sorting.
- We can do topological sort by DFS or by (essentially) BFS.

"Recursive" topological sort

Recursive version

- 1. Remove a source from the DAG, and put it first.
- 2. Topologically sort the remaining graph.

how to quickly find a source?

"Recursive" topological sort

Recursive version

- 1. Remove a *source* from the DAG, and put it first.
- 2. Topologically sort the remaining graph.

- how to quickly find a source?
- Use some auxilary data structure to track sources across iterations

"Recursive" topological sort

Recursive version

- 1. Remove a *source* from the DAG, and put it first.
- 2. Topologically sort the remaining graph.

- how to quickly find a source?
- Use some auxilary data structure to track sources across iterations

```
1: function TopSort(G)
       Q \leftarrow \mathsf{All} \; \mathsf{Sources}
       while !empty(Q) do
3:
4:
5:
6:
       end while
7:
8: end function
```

```
1: function TopSort(G)
       Q \leftarrow \mathsf{All} \; \mathsf{Sources}
       while !empty(Q) do
3:
            v \leftarrow \deg(Q)
4:
5:
6:
       end while
7:
8: end function
```

```
1: function TopSort(G)
       Q \leftarrow \mathsf{All} \; \mathsf{Sources}
       while !empty(Q) do
3:
            v \leftarrow \deg(Q)
4:
            Output v
5:
6:
       end while
7:
8: end function
```

```
1: function TopSort(G)
      Q \leftarrow \mathsf{All} \; \mathsf{Sources}
     while !empty(Q) do
3:
          v \leftarrow \deg(Q)
           Output v
5:
           Remove v, add new sources to Q
6:
       end while
7:
8: end function
```

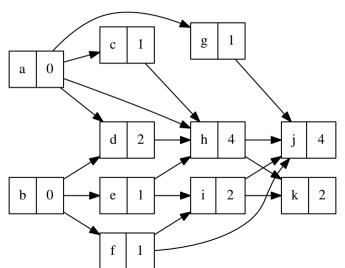
BFS-like topological sort

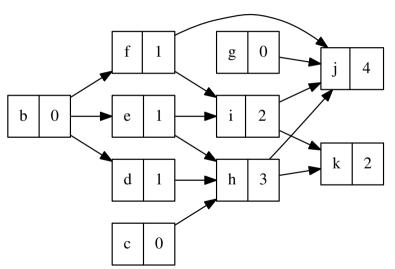
```
1: function TopSort(G)
      Q \leftarrow \mathsf{All} \; \mathsf{Sources}
    while !empty(Q) do
3:
          v \leftarrow \deg(Q)
           Output v
5:
           Remove v, add new sources to Q
6:
       end while
7:
8: end function
```

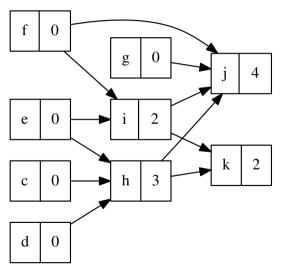
What is the complexity of step 6?

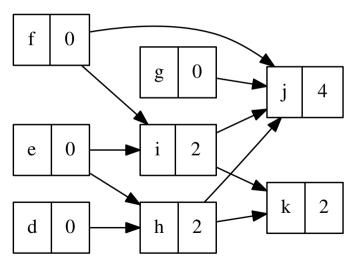
```
1: function TopSort(G)
       Q \leftarrow \mathsf{All} \; \mathsf{Sources}
      while !empty(Q) do
3:
           v \leftarrow \deg(Q)
4:
           Output v
5:
           Remove v, add new sources to Q
6:
      end while
7:
8: end function
```

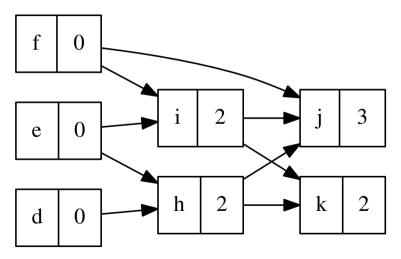
- ▶ What is the complexity of step 6?
- ▶ We can simplify e.g. using counters











Avoiding a priority queue

```
function RemoveSource(v, G)
   for u child of v do
      decrement counter[u]
      if counter[u] == 0 then
         enq(u)
      end if
   end for
   Remove v from G
end function
```

Every path in a DAG goes through nodes in linearized (topological sort) order.

- Every path in a DAG goes through nodes in linearized (topological sort) order.
- every node is reached via its predecessors

- Every path in a DAG goes through nodes in linearized (topological sort) order.
- every node is reached via its predecessors
- So we need a single loop after sorting.

- Every path in a DAG goes through nodes in linearized (topological sort) order.
- every node is reached via its predecessors
- So we need a single loop after sorting.

Dist in Top Sorted Graph

- \blacktriangleright dist(*) = ∞
- dist(s) = 0
- ▶ foreach $v \in V \{s\}$ in top sort order
- $dist(v) = \min_{(u,v) \in E} dist(u) + l(u,v)$

So what does this have to do with Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need

ightharpoonup An ordered set of subproblems L(i)

So what does this have to do with Dynamic Programming?

Ordered Subproblems

In order to solve our problem in a single pass, we need

- \blacktriangleright An ordered set of subproblems L(i)
- Each subproblem L(i) can be solved using only the answers for L(j), for j < i.

Contents

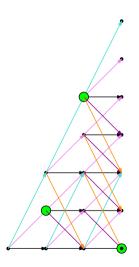
Dynamic Programming

Shortest path in DAG

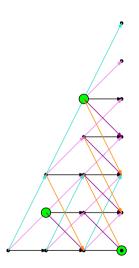
Balloon Flight Planning

Longest Common Subsequence

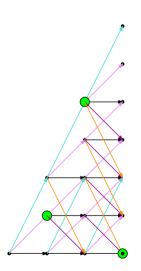
ightharpoonup Start at (0,0)



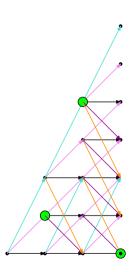
- \triangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.



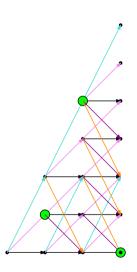
- \triangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.



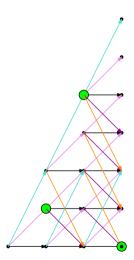
- \blacktriangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x
- Maximize value of collected prizes



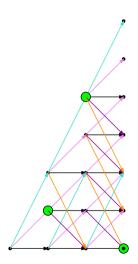
- \triangleright Start at (0,0)
- At every time step, increase or decrease altitude up to k steps, and increase x by 1.
- There is one prize per positive integer x coordinate.
- Maximize value of collected prizes
- ▶ We can discretize/simulate the problem as a graph search



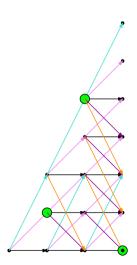
▶ We can discretize/simulate the problem as a graph search



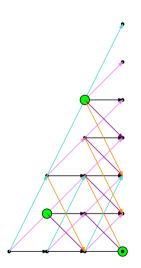
- ▶ We can discretize/simulate the problem as a graph search
- lacktriangle After n steps we could reach as high as kn



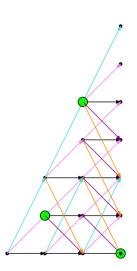
- ▶ We can discretize/simulate the problem as a graph search
- ightharpoonup After n steps we could reach as high as kn
- ▶ Worse, there could be a prize that high



- ▶ We can discretize/simulate the problem as a graph search
- ightharpoonup After n steps we could reach as high as kn
- Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.



- ▶ We can discretize/simulate the problem as a graph search
- ightharpoonup After n steps we could reach as high as kn
- ▶ Worse, there could be a prize that high
- On the other hand the input (ignoring weights) is only $O(n \log n + n \log k)$.
- ▶ This means we have a bad dependence on k; more about this later

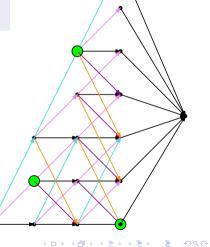


Finding a maximum value path

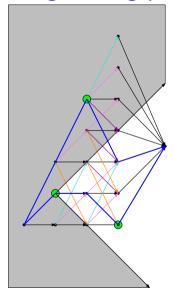
An easy case of a hard problem

In general NP-Hard, but not in DAGs.

```
function BestPath(V, E)
   for v \in \mathsf{TopSort}(V) do
       Score[v] = -\infty // unreachable
       for (u, v) \in E do // incoming edges
           Score[v] = max(Score[v],
                Value[v]+Score[u])
       end for
   end for
end function
```



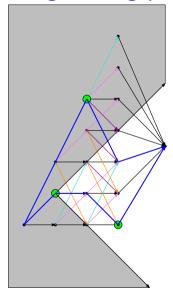
Straightening paths



Lemma (Straightening Paths)

If there is a feasible path from p to q then the segment [p,q] is feasible.

Straightening paths



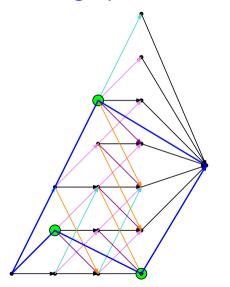
Lemma (Straightening Paths)

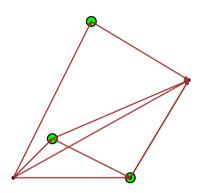
If there is a feasible path from p to q then the segment [p,q] is feasible.

Proof

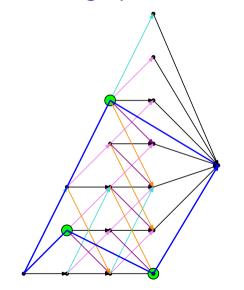
The path cannot escape the cone define by the steepest possible segments.

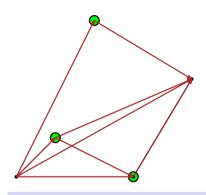
A new graph





A new graph





Improved graph size

The new graph is $O(p^2)$, where $p \le n$ is the number of prizes.

Contents

Dynamic Programming

Shortest path in DAG Balloon Flight Planning

Longest Common Subsequence

Ordering Subproblems

- In the two problems we saw so far, the DAG of subproblem dependence was defined by time.
- ▶ In general this need not be the case; a very natural way of deriving this DAG is from a recursive algorithm.
- We'll explore this strategy with the Longest Common Subsequence problem.

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

— "a" *not* "the"

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

— "a" *not* "the"

x: A B C B D A B

v: B D C A B A

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.

but not a function

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ... n].

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ... n].

Analysis

- Checking = O(n) time per subsequence.
- 2^m subsequences of x (each bit-vector of length *m* determines a distinct subsequence of x).

Worst-case running time = $O(n2^m)$ = exponential time.

Pruning subproblems

- Part (but only part) of the problem is that the brute force algorithm considers many sequences that can't possibly be the maximal one.
- In order to recursively compute an optimal answer, an obvious strategy is to compute answers that are optimal for some subset of the input
- Unlike in strong induction proofs, considering all smaller subsets is clearly a losing strategy.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1...i], y[1...j])|.
- Then, c[m, n] = |LCS(x, y)|.

Recursive formulation

Theorem.

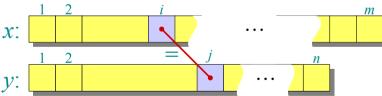
$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:

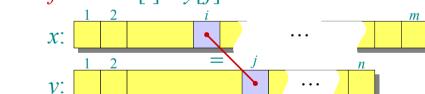


Recursive formulation

Theorem.

reorem.
$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:



Let
$$z[1 ... k] = LCS(x[1 ... i], y[1 ... j])$$
, where $c[i, j] = k$. Then, $z[k] = x[i]$, or else z could be extended.

Thus, z[1...k-1] is CS of x[1...i-1] and v[1...i-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], v[1 ... j-1]).Suppose w is a longer CS of x[1 ... i-1] and v[1...j-1], that is, |w| > k-1. Then, cut and **paste**: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j]with |w||z[k]| > k. Contradiction, proving the claim.

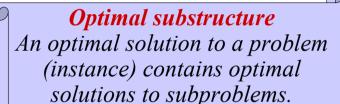
Proof (continued)

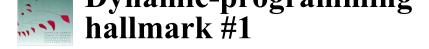
Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]).Suppose w is a longer CS of x[1 ... i-1] and y[1...j-1], that is, |w| > k-1. Then, cut and **paste**: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j]with |w||z[k]| > k. Contradiction, proving the claim.

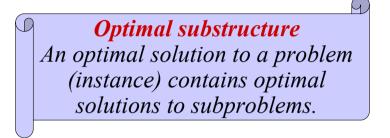
Thus, c[i-1, j-1] = k-1, which implies that c[i, j]= c[i-1, j-1] + 1.

Other cases are similar.

hallmark #1







If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

The trouble with recursion

► Although recursion is a useful step to a dynamic programming algorithm, naive recursion is often expensive because of repeated subproblems

Recursive algorithm for LCS

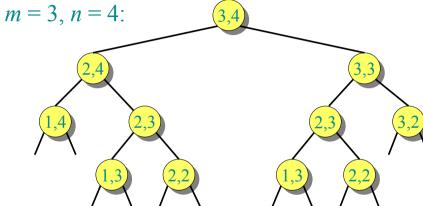
```
LCS(x, y, i, j)
if x[i] = y[j]
then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1
else c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}
```


Recursive algorithm for LCS

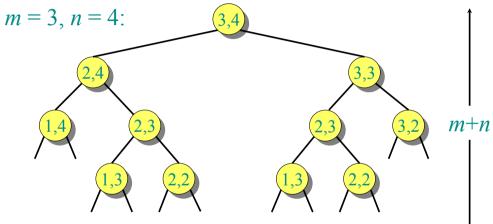
```
LCS(x, y, i, j)
   if x[i] = v[j]
       then c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1
       else c[i, j] \leftarrow \max \{ LCS(x, y, i-1, j), 
                               LCS(x, y, i, j-1)
```

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

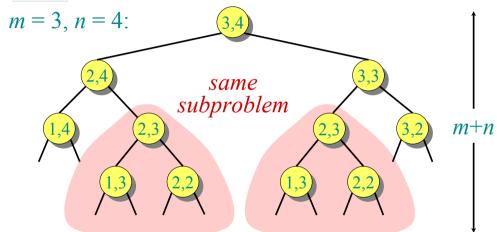
Recursion tree



Recursion tree



Height = $m + n \Rightarrow$ work potentially exponential.



Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

Overlapping subproblems
A recursive solution contains a

"small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Memoization

```
Recursive Version function \operatorname{RECUR}(p_1, \dots p_k) : return val end function
```

Memoization

Recursive Version

```
\begin{array}{c} \textbf{function} \ \operatorname{Recur}(p_1, \dots p_k) \\ \vdots \\ \text{return val} \\ \textbf{end function} \end{array}
```

Memoized version

```
function Memo(p_1, ..., p_k)
    if cache[p_1, \dots p_k] \neq \text{NIL then}
        return cache [p_1, \dots p_k]
    end if
    cache[p_1, \dots p_k] = val
    return val
end function
```


Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

```
LCS(x, y, i, j)
      if c[i, j] = NIL
             then if x[i] = y[j]
                   then c[i,j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i,j] \leftarrow \max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}
same
LCS(x, y, i, j-1)\}
```

Memoized LCS (with base case)

```
function \mathrm{LCS}(x,y,i,j)

if (i < 1) or (j < 1) then

return 0

end if

if c[i,j] = \mathrm{NIL} then

if x[i] = y[j] then

c[i,j] \leftarrow LCS(x,y,i-1,j-1) + 1
```

 $c[i, j] \leftarrow \max(LCS(x, y, i - 1, j),$

LCS(x, y, i, j-1)

else

end if

return c|i, j|

end if

c[i,j] written

at most once.

Memoized LCS (with base case) function LCS(x, y, i, j)

```
\begin{array}{c} \textbf{if } (i < 1) \textbf{ or } (j < 1) \textbf{ then} \\ \textbf{ return 0} \\ \textbf{end if} \\ \textbf{if } c[i,j] = \text{NIL then} \\ \textbf{ if } x[i] = y[j] \textbf{ then} \\ c[i,j] \leftarrow LCS(x,y) \\ \textbf{else} \end{array}
```

end if

return c|i, j|

end if

 $c[i] = ext{NIL then}$ c[i] = y[j] then $c[i,j] \leftarrow LCS(x,y,i-1,j-1) + 1$ e $c[i,j] \leftarrow \max(LCS(x,y,i-1,j), LCS(x,y,i,j-1))$

c[i,j] written

at most once.

Memoized LCS (with base case) function LCS(x, y, i, j)

if (i < 1) or (j < 1) then return 0 end if

if c[i, j] = NIL then

if x[i] = y[j] then

 $c[i, j] \leftarrow LCS(x, y, i - 1, j - 1) + 1$ else

end if

return c|i, j|

end if

 $c[i, j] \leftarrow \max(LCS(x, y, i - 1, j),$ LCS(x, y, i, j-1)

written immediately charge all work

c[i,j] written

at most once.

returned value

to writes

Eliminating Recursion completely

```
function LCS(x, y)
    \forall i : c[i, 0] = 0
    \forall i : c[0, j] = 0
    for i \in 1 \dots |x| do
        for i \in 1 \dots |y| do
             if x[i] = y[j] then
                 c[i, j] \leftarrow c[i-1, j-1] + 1
             else
                 c[i, j] \leftarrow \max(c[i-1, j], c[i, j-1])
             end if
        end for
    end for
end function
```

Asymptotic time is the same

- Asymptotic time is the same
- Iterative version is typically faster/more robust in practice

- Asymptotic time is the same
- ▶ Iterative version is typically faster/more robust in practice
- memoized version is easier to derive (even automatically) from the recursive version.

- Asymptotic time is the same
- ▶ Iterative version is typically faster/more robust in practice
- memoized version is easier to derive (even automatically) from the recursive version.
- Iterative version is easier to analyze

- Asymptotic time is the same
- ▶ Iterative version is typically faster/more robust in practice
- memoized version is easier to derive (even automatically) from the recursive version.
- Iterative version is easier to analyze
- Both versions add extra memory use to pure recursion.

- Asymptotic time is the same
- Iterative version is typically faster/more robust in practice
- memoized version is easier to derive (even automatically) from the recursive version.
- Iterative version is easier to analyze
- Both versions add extra memory use to pure recursion.
- Memoization never solves unneeded subproblems.

Reading back the sequence

end function

```
function BACKTRACK(i, j)
   if (i < 1) or (j < 1) then
       return ""
   end if
   if x[i] = y[j] then
       return backtrack(i-1, j-1) + x[i]
   end if
   if c[i, j-1] > c[i-1, j] then
       return backtrack(i, j-1)
   else
       return backtrack(i-1, j)
   end if
```