
CS3383 Unit 3: Dynamic Programming

David Bremner

February 23, 2018

Outline

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

Contents

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

March Break Hotels
Scenario

Wanted Cheap holiday
Costs Hotel + Taxi, no charge for inconvenience

Input
Taxi Cost

a b c airport
a 0 10 30 50
b 10 0 30 50
c 30 30 0 50

airport 50 50 50 0

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80

March Break Hotels
Scenario

Wanted Cheap holiday
Costs Hotel + Taxi, no charge for inconvenience

Input
Taxi Cost

a b c airport
a 0 10 30 50
b 10 0 30 50
c 30 30 0 50

airport 50 50 50 0

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80

What to do?

The Obvious Algorithm

▶ Begin at the beginning

▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?

What to do?

The Obvious Algorithm

▶ Begin at the beginning
▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?

What to do?

The Obvious Algorithm

▶ Begin at the beginning
▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?

What to do?

The Obvious Algorithm

▶ Begin at the beginning
▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?

What to do?

The Obvious Algorithm

▶ Begin at the beginning
▶ Take it day by day

▶ How does this do on our
example data?

▶ Can we find a better
solution?

▶ What if Taxis charge 1000
to pick up at Hotel
C(alifornia)?

It’s a trap!

Hotel Price
1 2 3 4

a 100 100 100 100
b 80 40 120 120
c 50 80 80 80

Taxi Cost
a b c airport

a 0 10 30 50
b 10 0 30 50
c 1000 1000 1000 500

airport 50 50 50 0

Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

airport

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

500
airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

c

a
1100

b1080

c

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

a

110

b

80

c
100

c 1100

1080

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80

Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

airport

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

500
airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

c

a
1100

b1080

c

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

a

110

b

80

c
100

c 1100

1080

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80

Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

airport

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

500
airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

c

a
1100

b1080

c

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

a

110

b

80

c
100

c 1100

1080

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80

Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

airport

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

500
airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

c

a
1100

b1080

c

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

a

110

b

80

c
100

c 1100

1080

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80

Let’s get graphical

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

airport

Day 1 Day 2 Day 3 Day 4

a

b

c a

b

c

a

b

c a

airportb

c

500
airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

c

a
1100

b1080

c

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

b

a

110

b

80

c
100

c 1100

1080

80

a

b

c a

airportb

c

500

airport

150

130

80

Day 1 Day 2 Day 3 Day 4

a

a100

b

50

c
130

b

110

80

100

c

1100

1080

80

a

b

c a

airportb

c

500

airport 150

130

80

Djikstra considered overkill

▶ There are no negative edge weights

▶ We know how to find the shortest path in such a graph
▶ Even better, we have an acyclic graph (why?)
▶ So we find a shortest path in linear time after topological

sorting.
▶ We can do topological sort by DFS or by (essentially) BFS.

Djikstra considered overkill

▶ There are no negative edge weights
▶ We know how to find the shortest path in such a graph

▶ Even better, we have an acyclic graph (why?)
▶ So we find a shortest path in linear time after topological

sorting.
▶ We can do topological sort by DFS or by (essentially) BFS.

Djikstra considered overkill

▶ There are no negative edge weights
▶ We know how to find the shortest path in such a graph
▶ Even better, we have an acyclic graph (why?)

▶ So we find a shortest path in linear time after topological
sorting.

▶ We can do topological sort by DFS or by (essentially) BFS.

Djikstra considered overkill

▶ There are no negative edge weights
▶ We know how to find the shortest path in such a graph
▶ Even better, we have an acyclic graph (why?)
▶ So we find a shortest path in linear time after topological

sorting.

▶ We can do topological sort by DFS or by (essentially) BFS.

Djikstra considered overkill

▶ There are no negative edge weights
▶ We know how to find the shortest path in such a graph
▶ Even better, we have an acyclic graph (why?)
▶ So we find a shortest path in linear time after topological

sorting.
▶ We can do topological sort by DFS or by (essentially) BFS.

”Recursive” topological sort

Recursive version
1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

▶ how to quickly find a source?

▶ Use some auxilary data structure to track sources across
iterations

”Recursive” topological sort

Recursive version
1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

▶ how to quickly find a source?
▶ Use some auxilary data structure to track sources across

iterations

”Recursive” topological sort

Recursive version
1. Remove a source from the DAG, and put it first.
2. Topologically sort the remaining graph.

▶ how to quickly find a source?
▶ Use some auxilary data structure to track sources across

iterations

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4:

𝑣 ← deq(𝑄)

5:

Output 𝑣

6:

Remove 𝑣, add new sources to 𝑄

7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4: 𝑣 ← deq(𝑄)
5:

Output 𝑣

6:

Remove 𝑣, add new sources to 𝑄

7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4: 𝑣 ← deq(𝑄)
5: Output 𝑣
6:

Remove 𝑣, add new sources to 𝑄

7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4: 𝑣 ← deq(𝑄)
5: Output 𝑣
6: Remove 𝑣, add new sources to 𝑄
7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4: 𝑣 ← deq(𝑄)
5: Output 𝑣
6: Remove 𝑣, add new sources to 𝑄
7: end while
8: end function

▶ What is the complexity of step 6?

▶ We can simplify e.g. using counters

Using a Queue
BFS-like topological sort

1: function TopSort(G)
2: 𝑄 ← All Sources
3: while !empty(Q) do
4: 𝑣 ← deq(𝑄)
5: Output 𝑣
6: Remove 𝑣, add new sources to 𝑄
7: end while
8: end function

▶ What is the complexity of step 6?
▶ We can simplify e.g. using counters

Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2

b 0

d 1

e 1

f 1

c 0

h 3

i 2

j 4
g 0

k 2
c 0 h 3

d 0

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 4
g 0

k 2
d 0 h 2

e 0 i 2

f 0

j 3

k 2

Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2

b 0

d 1

e 1

f 1

c 0

h 3

i 2

j 4
g 0

k 2

c 0 h 3

d 0

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 4
g 0

k 2
d 0 h 2

e 0 i 2

f 0

j 3

k 2

Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2

b 0

d 1

e 1

f 1

c 0

h 3

i 2

j 4
g 0

k 2

c 0 h 3

d 0

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 4
g 0

k 2
d 0 h 2

e 0 i 2

f 0

j 3

k 2

Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2

b 0

d 1

e 1

f 1

c 0

h 3

i 2

j 4
g 0

k 2
c 0 h 3

d 0

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 3

k 2

Topological sort with counters

a 0

c 1

d 2

g 1

h 4

b 0 e 1

f 1

i 2

j 4

k 2

b 0

d 1

e 1

f 1

c 0

h 3

i 2

j 4
g 0

k 2
c 0 h 3

d 0

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 4
g 0

k 2

d 0 h 2

e 0 i 2

f 0

j 3

k 2

Avoiding a priority queue

function RemoveSource(𝑣, 𝐺)
for 𝑢 child of 𝑣 do

decrement counter[𝑢]
if counter[𝑢] == 0 then

enq(𝑢)
end if

end for
Remove 𝑣 from 𝐺

end function

Shortest Paths in DAGs
▶ Every path in a DAG goes through nodes in linearized

(topological sort) order.

▶ every node is reached via its predecessors
▶ So we need a single loop after sorting.

Dist in Top Sorted Graph

▶ dist(∗) = ∞
▶ dist(𝑠) = 0
▶ foreach 𝑣 ∈ 𝑉 {𝑠} in top sort order
▶ dist(𝑣) = min(𝑢,𝑣)∈𝐸 dist(𝑢) + 𝑙(𝑢, 𝑣)

Shortest Paths in DAGs
▶ Every path in a DAG goes through nodes in linearized

(topological sort) order.
▶ every node is reached via its predecessors

▶ So we need a single loop after sorting.

Dist in Top Sorted Graph

▶ dist(∗) = ∞
▶ dist(𝑠) = 0
▶ foreach 𝑣 ∈ 𝑉 {𝑠} in top sort order
▶ dist(𝑣) = min(𝑢,𝑣)∈𝐸 dist(𝑢) + 𝑙(𝑢, 𝑣)

Shortest Paths in DAGs
▶ Every path in a DAG goes through nodes in linearized

(topological sort) order.
▶ every node is reached via its predecessors
▶ So we need a single loop after sorting.

Dist in Top Sorted Graph

▶ dist(∗) = ∞
▶ dist(𝑠) = 0
▶ foreach 𝑣 ∈ 𝑉 {𝑠} in top sort order
▶ dist(𝑣) = min(𝑢,𝑣)∈𝐸 dist(𝑢) + 𝑙(𝑢, 𝑣)

Shortest Paths in DAGs
▶ Every path in a DAG goes through nodes in linearized

(topological sort) order.
▶ every node is reached via its predecessors
▶ So we need a single loop after sorting.

Dist in Top Sorted Graph

▶ dist(∗) = ∞
▶ dist(𝑠) = 0
▶ foreach 𝑣 ∈ 𝑉 {𝑠} in top sort order
▶ dist(𝑣) = min(𝑢,𝑣)∈𝐸 dist(𝑢) + 𝑙(𝑢, 𝑣)

So what does this have to do with Dynamic
Programming?

Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)

▶ Each subproblem 𝐿(𝑖) can be solved using only the answers for
𝐿(𝑗), for 𝑗 < 𝑖.

So what does this have to do with Dynamic
Programming?

Ordered Subproblems
In order to solve our problem in a single pass, we need

▶ An ordered set of subproblems 𝐿(𝑖)
▶ Each subproblem 𝐿(𝑖) can be solved using only the answers for

𝐿(𝑗), for 𝑗 < 𝑖.

Contents

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

Balloon Flight Planning

▶ Start at (0, 0)

▶ At every time step, increase or decrease
altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as

a graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.

▶ There is one prize per positive integer 𝑥
coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as

a graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.

▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as

a graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.
▶ Maximize value of collected prizes

▶ We can discretize/simulate the problem as
a graph search

Balloon Flight Planning

▶ Start at (0, 0)
▶ At every time step, increase or decrease

altitude up to 𝑘 steps, and increase 𝑥 by 1.
▶ There is one prize per positive integer 𝑥

coordinate.
▶ Maximize value of collected prizes
▶ We can discretize/simulate the problem as

a graph search

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛

▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high

▶ On the other hand the input (ignoring
weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).

▶ This means we have a bad dependence on
k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).

▶ This means we have a bad dependence on
k; more about this later

Big Graph is Big

▶ We can discretize/simulate the problem as
a graph search

▶ After 𝑛 steps we could reach as high as 𝑘𝑛
▶ Worse, there could be a prize that high
▶ On the other hand the input (ignoring

weights) is only 𝑂(𝑛 log 𝑛 + 𝑛 log 𝑘).
▶ This means we have a bad dependence on

k; more about this later

Finding a maximum value path
An easy case of a hard problem
In general NP-Hard, but not in DAGs.

function BestPath(𝑉 , 𝐸)
for 𝑣 ∈ TopSort(𝑉) do

Score[v] = −∞ // unreachable
for (𝑢, 𝑣) ∈ 𝐸 do // incoming edges

Score[v] = max(Score[v],
Value[v]+Score[u])

end for
end for

end function

Straightening paths

Lemma (Straightening Paths)
If there is a feasible path from 𝑝 to 𝑞 then the
segment [𝑝, 𝑞] is feasible.

Proof
The path cannot escape the cone define by the
steepest possible segments.

Straightening paths

Lemma (Straightening Paths)
If there is a feasible path from 𝑝 to 𝑞 then the
segment [𝑝, 𝑞] is feasible.

Proof
The path cannot escape the cone define by the
steepest possible segments.

A new graph

Improved graph size
The new graph is 𝑂(𝑝2), where
𝑝 ≤ 𝑛 is the number of prizes.

A new graph

Improved graph size
The new graph is 𝑂(𝑝2), where
𝑝 ≤ 𝑛 is the number of prizes.

Contents

Dynamic Programming
Shortest path in DAG
Balloon Flight Planning
Longest Common Subsequence

Ordering Subproblems

▶ In the two problems we saw so far, the DAG of subproblem
dependence was defined by time.

▶ In general this need not be the case; a very natural way of
deriving this DAG is from a recursive algorithm.

▶ We’ll explore this strategy with the Longest Common
Subsequence problem.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.2

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.3

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.
“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.4

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.5

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.6

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.7

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

Pruning subproblems

▶ Part (but only part) of the problem is that the brute force
algorithm considers many sequences that can’t possibly be the
maximal one.

▶ In order to recursively compute an optimal answer, an obvious
strategy is to compute answers that are optimal for some
subset of the input

▶ Unlike in strong induction proofs, considering all smaller
subsets is clearly a losing strategy.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.8

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.9

Towards a better algorithm

Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.10

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.
Notation: Denote the length of a sequence s
by | s |.
Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.11

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.13

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.14

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.15

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.16

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.17

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

The trouble with recursion

▶ Although recursion is a useful step to a dynamic programming
algorithm, naive recursion is often expensive because of
repeated subproblems

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.18

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.19

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.20

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

2,32,3

1,31,3 2,22,2

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.21

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

m+n2,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.22

Recursion tree

same
subproblem

,
but we’re solving subproblems already solved!

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.23

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.24

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

Memoization

Recursive Version
function Recur(𝑝1, … 𝑝𝑘)

⋮
return val

end function

Memoized version
function Memo(𝑝1, … 𝑝𝑘)

if cache[𝑝1, … 𝑝𝑘] ≠ NIL then
return cache[𝑝1, … 𝑝𝑘]

end if
⋮
cache[𝑝1, … 𝑝𝑘] = val
return val

end function

Memoization

Recursive Version
function Recur(𝑝1, … 𝑝𝑘)

⋮
return val

end function

Memoized version
function Memo(𝑝1, … 𝑝𝑘)

if cache[𝑝1, … 𝑝𝑘] ≠ NIL then
return cache[𝑝1, … 𝑝𝑘]

end if
⋮
cache[𝑝1, … 𝑝𝑘] = val
return val

end function

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

same
as
before

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.25

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

November 7, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L15.26

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.
LCS(x, y, i, j)

if c[i, j] = NIL
then if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

same
as
before

Memoized LCS (with base case)
function LCS(𝑥, 𝑦, 𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return 0

end if
if 𝑐[𝑖, 𝑗] = NIL then

if 𝑥[𝑖] = 𝑦[𝑗] then
𝑐[𝑖, 𝑗] ← 𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗 − 1) + 1

else
𝑐[𝑖, 𝑗] ← max(𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗),

𝐿𝐶𝑆(𝑥, 𝑦, 𝑖, 𝑗 − 1))
end if

end if
return 𝑐[𝑖, 𝑗]

end function

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Memoized LCS (with base case)
function LCS(𝑥, 𝑦, 𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return 0

end if
if 𝑐[𝑖, 𝑗] = NIL then

if 𝑥[𝑖] = 𝑦[𝑗] then
𝑐[𝑖, 𝑗] ← 𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗 − 1) + 1

else
𝑐[𝑖, 𝑗] ← max(𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗),

𝐿𝐶𝑆(𝑥, 𝑦, 𝑖, 𝑗 − 1))
end if

end if
return 𝑐[𝑖, 𝑗]

end function

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Memoized LCS (with base case)
function LCS(𝑥, 𝑦, 𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return 0

end if
if 𝑐[𝑖, 𝑗] = NIL then

if 𝑥[𝑖] = 𝑦[𝑗] then
𝑐[𝑖, 𝑗] ← 𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗 − 1) + 1

else
𝑐[𝑖, 𝑗] ← max(𝐿𝐶𝑆(𝑥, 𝑦, 𝑖 − 1, 𝑗),

𝐿𝐶𝑆(𝑥, 𝑦, 𝑖, 𝑗 − 1))
end if

end if
return 𝑐[𝑖, 𝑗]

end function

▶ 𝑐[𝑖, 𝑗] written
at most once.

▶ returned value
written
immediately

▶ charge all work
to writes

Eliminating Recursion completely
function LCS(𝑥, 𝑦)

∀𝑖 ∶ 𝑐[𝑖, 0] = 0
∀𝑗 ∶ 𝑐[0, 𝑗] = 0
for 𝑖 ∈ 1 … |𝑥| do

for 𝑗 ∈ 1 … |𝑦| do
if 𝑥[𝑖] = 𝑦[𝑗] then

𝑐[𝑖, 𝑗] ← 𝑐[𝑖 − 1, 𝑗 − 1] + 1
else

𝑐[𝑖, 𝑗] ← max(𝑐[𝑖 − 1, 𝑗], 𝑐[𝑖, 𝑗 − 1])
end if

end for
end for

end function

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same

▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in practice

▶ memoized version is easier to derive (even automatically) from
the recursive version.

▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.

▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.
▶ Iterative version is easier to analyze

▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.

▶ Memoization never solves unneeded subproblems.

Comparing Memoized to Iterative LCS

▶ Asymptotic time is the same
▶ Iterative version is typically faster/more robust in practice
▶ memoized version is easier to derive (even automatically) from

the recursive version.
▶ Iterative version is easier to analyze
▶ Both versions add extra memory use to pure recursion.
▶ Memoization never solves unneeded subproblems.

Reading back the sequence
function backtrack(𝑖, 𝑗)

if (𝑖 < 1) or (𝑗 < 1) then
return ””

end if
if x[i] = y[j] then

return backtrack(𝑖 − 1, 𝑗 − 1) + 𝑥[𝑖]
end if
if 𝑐[𝑖, 𝑗 − 1] > 𝑐[𝑖 − 1, 𝑗] then

return backtrack(𝑖, 𝑗 − 1)
else

return backtrack(𝑖 − 1, 𝑗)
end if

end function
▶ What is a recurrence bounding the running time?
▶ How could +𝑥[𝑖] be expensive?

	Dynamic Programming
	Shortest path in DAG
	Balloon Flight Planning
	Longest Common Subsequence

