
CS3383 Unit 3.2: Dynamic Programming
Examples

David Bremner

March 1, 2018

Outline

Dynamic Programming
Longest increasing subsequence
Edit Distance

Contents

Dynamic Programming
Longest increasing subsequence
Edit Distance

Longest increasing subsequence problem
Input Integers 𝑎1, 𝑎2 … 𝑎𝑛

Output

𝑎𝑖1
, 𝑎𝑖2

, … 𝑎𝑖𝑘

Such that

𝑖1 < 𝑖2 ⋯ < 𝑖𝑘

and

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑘

5 2 8 6 7

▶ (𝑎𝑖, 𝑎𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and
𝑎𝑖 < 𝑎𝑗.

▶ DPV 6.2, JE 5.2

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:

𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:

𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:
𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial

Longest path in DAG, working backwards

▶ Define 𝐿[𝑖] as the longest path
ending at 𝑎𝑖

For i = 1…n:
L[i] = 1 + max { L(j) | (j,i) in E }

▶ total cost is 𝑂(|𝐸|), after
computing 𝐸.

5 2 8 6 7

Improving memory use
▶ We can inline the definition of 𝐸.

▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}
function LIS(𝑎1 … 𝑎𝑛)

∀𝑖 𝐿[𝑖] = −∞
for 𝑖 ∈ 1 … 𝑛 do

for 𝑗 ∈ 1 … 𝑖 − 1 do
if 𝑎𝑗 < 𝑎𝑖 then

𝐿[𝑖] ← max(𝐿[𝑖], 𝐿[𝑗] + 1)
end if

end for
end for
return max(𝐿[1] … 𝐿[𝑛])

end function

Improving memory use
▶ We can inline the definition of 𝐸.
▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}

function LIS(𝑎1 … 𝑎𝑛)
∀𝑖 𝐿[𝑖] = −∞
for 𝑖 ∈ 1 … 𝑛 do

for 𝑗 ∈ 1 … 𝑖 − 1 do
if 𝑎𝑗 < 𝑎𝑖 then

𝐿[𝑖] ← max(𝐿[𝑖], 𝐿[𝑗] + 1)
end if

end for
end for
return max(𝐿[1] … 𝐿[𝑛])

end function

Improving memory use
▶ We can inline the definition of 𝐸.
▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}
function LIS(𝑎1 … 𝑎𝑛)

∀𝑖 𝐿[𝑖] = −∞
for 𝑖 ∈ 1 … 𝑛 do

for 𝑗 ∈ 1 … 𝑖 − 1 do
if 𝑎𝑗 < 𝑎𝑖 then

𝐿[𝑖] ← max(𝐿[𝑖], 𝐿[𝑗] + 1)
end if

end for
end for
return max(𝐿[1] … 𝐿[𝑛])

end function

Contents

Dynamic Programming
Longest increasing subsequence
Edit Distance

Edit (Levenshtein) Distance
▶ DPV 6.3, JE5.5
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake

▶ Using mostly insertions and deletions

i i i i d d d d d s
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

Total cost 10.

Edit (Levenshtein) Distance
▶ DPV 6.3, JE5.5
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake

▶ Using more substitutions

s s s s s d s
T I M B E R L A K E
F R U I T _ C A K E

Total cost 7.

Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
If we remove any column from an optimal alignment, we have an
optimal alignment for the remaining substrings.

proof.
By contradiction

Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
If we remove any column from an optimal alignment, we have an
optimal alignment for the remaining substrings.

proof.
By contradiction

Alignments (gap representation)

Theorem (Optimal substructure)
If we remove any column from an optimal alignment, we have an
optimal alignment for the remaining substrings.

proof.
By contradiction

Subproblems (prefixes)
▶ Define 𝐸[𝑖, 𝑗] as the minimum edit cost for 𝐴[1 … 𝑖] and

𝐵[1 … 𝑗]

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

justification.
We know deleting a column removes an element from one or both
strings; all edit operations cost 1.

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion
▶ what are the base cases?

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion

▶ what are the base cases?

order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion
▶ what are the base cases?

	Dynamic Programming
	Longest increasing subsequence
	Edit Distance

