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Longest increasing subsequence problem
Input Integers 𝑎1, 𝑎2 … 𝑎𝑛

Output

𝑎𝑖1
, 𝑎𝑖2

, … 𝑎𝑖𝑘

Such that

𝑖1 < 𝑖2 ⋯ < 𝑖𝑘

and

𝑎𝑖1
< 𝑎𝑖2

< ⋯ < 𝑎𝑖𝑘

5 2 8 6 7

▶ (𝑎𝑖, 𝑎𝑗) ∈ 𝐸 if 𝑖 < 𝑗 and
𝑎𝑖 < 𝑎𝑗.

▶ DPV 6.2, JE 5.2



Defining subproblems

▶ Define 𝐹(𝑖) as the length of longest
sequence starting at position 𝑖

▶ We could do 𝑛 longest path in
DAG queries.

▶ Thinking recursively:

𝐹(𝑖) = 1 + max{𝐹(𝑗) ∣ (𝑖, 𝑗) ∈ 𝐸}

▶ We could solve this reasonably fast
e.g. by memoization.

5 2 8 6 7

▶ Topological sort is
trivial
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Longest path in DAG, working backwards

▶ Define 𝐿[𝑖] as the longest path
ending at 𝑎𝑖

For i = 1…n:
L[i] = 1 + max { L(j) | (j,i) in E }

▶ total cost is 𝑂(|𝐸|), after
computing 𝐸.

5 2 8 6 7



Improving memory use
▶ We can inline the definition of 𝐸.

▶ 𝐿(𝑖) = 1 + max{𝐿(𝑗) ∣ 𝑗 < 𝑖 and 𝑎𝑗 < 𝑎𝑖}
function LIS(𝑎1 … 𝑎𝑛)

∀𝑖 𝐿[𝑖] = −∞
for 𝑖 ∈ 1 … 𝑛 do

for 𝑗 ∈ 1 … 𝑖 − 1 do
if 𝑎𝑗 < 𝑎𝑖 then

𝐿[𝑖] ← max(𝐿[𝑖], 𝐿[𝑗] + 1)
end if

end for
end for
return max(𝐿[1] … 𝐿[𝑛])

end function
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Edit (Levenshtein) Distance
▶ DPV 6.3, JE5.5
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake

▶ Using mostly insertions and deletions

i i i i d d d d d s
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

Total cost 10.



Edit (Levenshtein) Distance
▶ DPV 6.3, JE5.5
▶ Minimum number of insertions, deletions, substitutions to

transform one string into another.

Example: timberlake → fruitcake

▶ Using more substitutions

s s s s s d s
T I M B E R L A K E
F R U I T _ C A K E

Total cost 7.



Alignments (gap representation)
1 1 1 1 0 1 1 1 1 1 1 0 0 0
_ _ _ _ T I M B E R L A K E
F R U I T _ _ _ _ _ C A K E

▶ top line has letters from 𝐴, in order, or _
▶ bottom line has has letters from 𝐵 or _
▶ cost per column is 0 or 1.

Theorem (Optimal substructure)
If we remove any column from an optimal alignment, we have an
optimal alignment for the remaining substrings.

proof.
By contradiction
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Subproblems (prefixes)
▶ Define 𝐸[𝑖, 𝑗] as the minimum edit cost for 𝐴[1 … 𝑖] and

𝐵[1 … 𝑗]

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

justification.
We know deleting a column removes an element from one or both
strings; all edit operations cost 1.



order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion
▶ what are the base cases?



order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion

▶ what are the base cases?



order of subproblems

𝐸[𝑖, 𝑗] =

⎧{{
⎨{{⎩

𝐸[𝑖 − 1, 𝑗] + 1 deletion
𝐸[𝑖, 𝑗 − 1] + 1 insertion
𝐸[𝑖 − 1, 𝑗 − 1] + 1 substition
𝐸[𝑖 − 1, 𝑗 − 1] equality

▶ dependency of subproblems is exactly the same as LCS, so
essentially the same DP algorithm works.

▶ or just memoize the recursion
▶ what are the base cases?


	Dynamic Programming
	Longest increasing subsequence
	Edit Distance


