
CS3383 Unit 4: dynamic multithreaded
algorithms

David Bremner

March 25, 2018



Outline

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Contents

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Introduction to Parallel Algorithms

Dynamic Multithreading

▶ Also known as the fork-join model
▶ Shared memory, multicore
▶ Cormen et. al 3rd edition, Chapter 27



Introduction to Parallel Algorithms
Dynamic Multithreading

▶ Also known as the fork-join model
▶ Shared memory, multicore
▶ Cormen et. al 3rd edition, Chapter 27

Nested Parallelism
▶ Spawn a subroutine, carry on with other work.
▶ Similar to fork in POSIX.



Introduction to Parallel Algorithms

Nested Parallelism
▶ Spawn a subroutine, carry on with other work.
▶ Similar to fork in POSIX.

Parallel Loop

▶ iterations of a for loop can execute in parallel.
▶ Like OpenMP



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism
▶ Runtime system takes care of mapping to OS threads
▶ Cilk+ contains several more features than our model, e.g.

parallel vector and array operations.
▶ Similar primitives are available in java.util.concurrent



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism

▶ Runtime system takes care of mapping to OS threads
▶ Cilk+ contains several more features than our model, e.g.

parallel vector and array operations.
▶ Similar primitives are available in java.util.concurrent



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism
▶ Runtime system takes care of mapping to OS threads

▶ Cilk+ contains several more features than our model, e.g.
parallel vector and array operations.

▶ Similar primitives are available in java.util.concurrent



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism
▶ Runtime system takes care of mapping to OS threads
▶ Cilk+ contains several more features than our model, e.g.

parallel vector and array operations.

▶ Similar primitives are available in java.util.concurrent



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism
▶ Runtime system takes care of mapping to OS threads
▶ Cilk+ contains several more features than our model, e.g.

parallel vector and array operations.
▶ Similar primitives are available in java.util.concurrent



Writing parallel (pseudo)-code
Keywords

parallel Run the loop (potentially) concurrently
spawn Run the procedure (potentially) concurrently

sync Wait for all spawned children to complete.

Serialization
▶ remove keywords from parallel code yields correct serial code
▶ Adding parallel keywords to correct serial code might break it

▶ missing sync
▶ loop iterations not independent



Writing parallel (pseudo)-code
Keywords

parallel Run the loop (potentially) concurrently
spawn Run the procedure (potentially) concurrently

sync Wait for all spawned children to complete.

Serialization
▶ remove keywords from parallel code yields correct serial code
▶ Adding parallel keywords to correct serial code might break it

▶ missing sync
▶ loop iterations not independent



Writing parallel (pseudo)-code
Keywords

parallel Run the loop (potentially) concurrently
spawn Run the procedure (potentially) concurrently

sync Wait for all spawned children to complete.

Serialization
▶ remove keywords from parallel code yields correct serial code
▶ Adding parallel keywords to correct serial code might break it

▶ missing sync

▶ loop iterations not independent



Writing parallel (pseudo)-code
Keywords

parallel Run the loop (potentially) concurrently
spawn Run the procedure (potentially) concurrently

sync Wait for all spawned children to complete.

Serialization
▶ remove keywords from parallel code yields correct serial code
▶ Adding parallel keywords to correct serial code might break it

▶ missing sync
▶ loop iterations not independent



Fibonacci Example
function Fib(𝑛)

if 𝑛 ≤ 1 then
return 𝑛

else
𝑥 = Fib(𝑛 − 1)
𝑦 = Fib(𝑛 − 2)

return 𝑥 + 𝑦
end if

end function

▶ Code in C, Java, Clojure and Racket available from http:
//www.cs.unb.ca/~bremner/teaching/cs3383/examples

http://www.cs.unb.ca/~bremner/teaching/cs3383/examples
http://www.cs.unb.ca/~bremner/teaching/cs3383/examples


Fibonacci Example
function Fib(𝑛)

if 𝑛 ≤ 1 then
return 𝑛

else
𝑥 = spawn Fib(𝑛 − 1)
𝑦 = Fib(𝑛 − 2)
sync
return 𝑥 + 𝑦

end if
end function

▶ Code in C, Java, Clojure and Racket available from http:
//www.cs.unb.ca/~bremner/teaching/cs3383/examples

http://www.cs.unb.ca/~bremner/teaching/cs3383/examples
http://www.cs.unb.ca/~bremner/teaching/cs3383/examples


Contents

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

function Fib(𝑛)
if 𝑛 ≤ 1 then ▷

return 𝑛
else

𝑥 = spawn Fib(𝑛 − 1)
𝑦 = Fib(𝑛 − 2) ▷
sync
return 𝑥 + 𝑦 ▷

end if
end function

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

nodes strands
down edges spawn

up edges return
horizontal edges sequential
critical path longest path in DAG

span weighted length of
critical path ≡ lower
bound on time

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

nodes strands
down edges spawn
up edges return

horizontal edges sequential
critical path longest path in DAG

span weighted length of
critical path ≡ lower
bound on time

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

nodes strands
down edges spawn
up edges return

horizontal edges sequential

critical path longest path in DAG
span weighted length of

critical path ≡ lower
bound on time

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

nodes strands
down edges spawn
up edges return

horizontal edges sequential
critical path longest path in DAG

span weighted length of
critical path ≡ lower
bound on time

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

nodes strands
down edges spawn
up edges return

horizontal edges sequential
critical path longest path in DAG

span weighted length of
critical path ≡ lower
bound on time

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Work and Speedup

𝑇1 Work, sequential time.

𝑇𝑝 Time on 𝑝 processors.

Work Law

𝑇𝑝 ≥ 𝑇1/𝑝
speedup ∶= 𝑇1/𝑇𝑝 ≤ 𝑝



Work and Speedup

𝑇1 Work, sequential time.
𝑇𝑝 Time on 𝑝 processors.

Work Law

𝑇𝑝 ≥ 𝑇1/𝑝
speedup ∶= 𝑇1/𝑇𝑝 ≤ 𝑝



Work and Speedup

𝑇1 Work, sequential time.
𝑇𝑝 Time on 𝑝 processors.

Work Law

𝑇𝑝 ≥ 𝑇1/𝑝
speedup ∶= 𝑇1/𝑇𝑝 ≤ 𝑝



Parallelism

𝑇𝑝 Time on 𝑝 processors.

𝑇∞ Span, time given
unlimited processors.

We could idle processors:

𝑇𝑝 ≥ 𝑇∞ (1)

Best possible speedup:

parallelism = 𝑇1/𝑇∞
≥ 𝑇1/𝑇𝑝 = speedup



Parallelism

𝑇𝑝 Time on 𝑝 processors.
𝑇∞ Span, time given

unlimited processors.

We could idle processors:

𝑇𝑝 ≥ 𝑇∞ (1)

Best possible speedup:

parallelism = 𝑇1/𝑇∞
≥ 𝑇1/𝑇𝑝 = speedup



Parallelism

𝑇𝑝 Time on 𝑝 processors.
𝑇∞ Span, time given

unlimited processors.

We could idle processors:

𝑇𝑝 ≥ 𝑇∞ (1)

Best possible speedup:

parallelism = 𝑇1/𝑇∞
≥ 𝑇1/𝑇𝑝 = speedup



Span and Parallelism Example

Assume strands are unit cost.
▶ 𝑇1 = 17

▶ 𝑇∞ = 8
▶ Parallelism = 2.125 for this

input size.

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Span and Parallelism Example

Assume strands are unit cost.
▶ 𝑇1 = 17
▶ 𝑇∞ = 8

▶ Parallelism = 2.125 for this
input size.

P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Span and Parallelism Example

Assume strands are unit cost.
▶ 𝑇1 = 17
▶ 𝑇∞ = 8
▶ Parallelism = 2.125 for this

input size.
P-FIB(1) P-FIB(0)

P-FIB(3)

P-FIB(4)

P-FIB(1)

P-FIB(1)

P-FIB(0)

P-FIB(2)

P-FIB(2)



Composing span and work
A

A

B

B

A‖B

A +B

series 𝑇∞(𝐴 + 𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)

parallel 𝑇∞(𝐴‖𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))
series or parallel 𝑇1 = 𝑇1(𝐴) + 𝑇1(𝐵)



Composing span and work
A

A

B

B

A‖B

A +B

series 𝑇∞(𝐴 + 𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)
parallel 𝑇∞(𝐴‖𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))

series or parallel 𝑇1 = 𝑇1(𝐴) + 𝑇1(𝐵)



Composing span and work
A

A

B

B

A‖B

A +B

series 𝑇∞(𝐴 + 𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)
parallel 𝑇∞(𝐴‖𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))

series or parallel 𝑇1 = 𝑇1(𝐴) + 𝑇1(𝐵)



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏

(I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏

(I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏

(I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏 (I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏 (I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏 (I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏 (I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏 (I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏



Span and Parallelism of Fibonacci

𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) + Θ(1)
= 𝑇∞(𝑛 − 1) + Θ(1)

Transforming to sum, we get

𝑇∞ ∈ Θ(𝑛)

parallelism = 𝑇1(𝑛)
𝑇∞(𝑛)

= Θ (𝜙𝑛

𝑛
)

▶ So an inefficient way to compute Fibonacci, but very parallel



Span and Parallelism of Fibonacci

𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) + Θ(1)
= 𝑇∞(𝑛 − 1) + Θ(1)

Transforming to sum, we get

𝑇∞ ∈ Θ(𝑛)

parallelism = 𝑇1(𝑛)
𝑇∞(𝑛)

= Θ (𝜙𝑛

𝑛
)

▶ So an inefficient way to compute Fibonacci, but very parallel



Span and Parallelism of Fibonacci

𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) + Θ(1)
= 𝑇∞(𝑛 − 1) + Θ(1)

Transforming to sum, we get

𝑇∞ ∈ Θ(𝑛)

parallelism = 𝑇1(𝑛)
𝑇∞(𝑛)

= Θ (𝜙𝑛

𝑛
)

▶ So an inefficient way to compute Fibonacci, but very parallel



Span and Parallelism of Fibonacci

𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) + Θ(1)
= 𝑇∞(𝑛 − 1) + Θ(1)

Transforming to sum, we get

𝑇∞ ∈ Θ(𝑛)

parallelism = 𝑇1(𝑛)
𝑇∞(𝑛)

= Θ (𝜙𝑛

𝑛
)

▶ So an inefficient way to compute Fibonacci, but very parallel



Contents

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Parallel Loops
parallel for 𝑖 = 1 to 𝑛 do

statement...
statement...

end for

▶ Run 𝑛 copies in parallel with local setting of 𝑖.

▶ Effectively 𝑛-way spawn
▶ Can be implemented with spawn and sync
▶ Span

𝑇∞(𝑛) = Θ(log 𝑛) + max
𝑖

𝑇∞(iteration i)



Parallel Loops
parallel for 𝑖 = 1 to 𝑛 do

statement...
statement...

end for

▶ Run 𝑛 copies in parallel with local setting of 𝑖.
▶ Effectively 𝑛-way spawn

▶ Can be implemented with spawn and sync
▶ Span

𝑇∞(𝑛) = Θ(log 𝑛) + max
𝑖

𝑇∞(iteration i)



Parallel Loops
parallel for 𝑖 = 1 to 𝑛 do

statement...
statement...

end for

▶ Run 𝑛 copies in parallel with local setting of 𝑖.
▶ Effectively 𝑛-way spawn
▶ Can be implemented with spawn and sync

▶ Span
𝑇∞(𝑛) = Θ(log 𝑛) + max

𝑖
𝑇∞(iteration i)



Parallel Loops
parallel for 𝑖 = 1 to 𝑛 do

statement...
statement...

end for

▶ Run 𝑛 copies in parallel with local setting of 𝑖.
▶ Effectively 𝑛-way spawn
▶ Can be implemented with spawn and sync
▶ Span

𝑇∞(𝑛) = Θ(log 𝑛) + max
𝑖

𝑇∞(iteration i)



Parallel Matrix-Vector product
To compute 𝑦 = 𝐴𝑥, in parallel

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

𝑇1(𝑛) ∈ Θ(𝑛2) (serialization)
𝑇∞(𝑛) = Θ(log(𝑛))⏟⏟⏟⏟⏟

parallel for

+ Θ(𝑛)⏟
RowMult



Parallel Matrix-Vector product
To compute 𝑦 = 𝐴𝑥, in parallel

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

𝑇1(𝑛) ∈ Θ(𝑛2) (serialization)
𝑇∞(𝑛) = Θ(log(𝑛))⏟⏟⏟⏟⏟

parallel for

+ Θ(𝑛)⏟
RowMult



Parallel Matrix-Vector product
To compute 𝑦 = 𝐴𝑥, in parallel

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

𝑇1(𝑛) ∈ Θ(𝑛2) (serialization)
𝑇∞(𝑛) = Θ(log(𝑛))⏟⏟⏟⏟⏟

parallel for

+ Θ(𝑛)⏟
RowMult



Parallel Matrix-Vector product
To compute 𝑦 = 𝐴𝑥, in parallel

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

𝑇1(𝑛) ∈ Θ(𝑛2) (serialization)
𝑇∞(𝑛) = Θ(log(𝑛))⏟⏟⏟⏟⏟

parallel for

+ Θ(𝑛)⏟
RowMult



Parallel Matrix-Vector product

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

▶ Why is RowMult not using
parallel for?



Parallel Matrix-Vector product

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

▶ Why is RowMult not using
parallel for?



Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function

1,1 2,2 3,3 4,4 5,5 6,6 7,7 8,8

1,2 3,4 5,6 7,8

1,4 5,8

1,8



Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function

▶ 𝑇∞(𝑛) = Θ(log 𝑛)
(binary tree)

▶ Θ(𝑛) leaves (one per
row)

▶ Θ(𝑛) interior nodes
(binary tree)

▶ 𝑇1(𝑛) = Θ(𝑛2)



Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function

▶ 𝑇∞(𝑛) = Θ(log 𝑛)
(binary tree)

▶ Θ(𝑛) leaves (one per
row)

▶ Θ(𝑛) interior nodes
(binary tree)

▶ 𝑇1(𝑛) = Θ(𝑛2)



Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function

▶ 𝑇∞(𝑛) = Θ(log 𝑛)
(binary tree)

▶ Θ(𝑛) leaves (one per
row)

▶ Θ(𝑛) interior nodes
(binary tree)

▶ 𝑇1(𝑛) = Θ(𝑛2)



Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function

▶ 𝑇∞(𝑛) = Θ(log 𝑛)
(binary tree)

▶ Θ(𝑛) leaves (one per
row)

▶ Θ(𝑛) interior nodes
(binary tree)

▶ 𝑇1(𝑛) = Θ(𝑛2)



Contents

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler
On-Line No advance knowledge of when threads will spawn or

complete.
Distributed No central controller.

▶ to simplify analysis, we relax the second condition



Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler
On-Line No advance knowledge of when threads will spawn or

complete.
Distributed No central controller.

▶ to simplify analysis, we relax the second condition



Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler
On-Line No advance knowledge of when threads will spawn or

complete.
Distributed No central controller.

▶ to simplify analysis, we relax the second condition



A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.



A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.



A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.



A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.



Optimal and Approximate Scheduling
Recall

𝑇𝑝 ≥ 𝑇1/𝑝 (work law)
𝑇𝑝 ≥ 𝑇∞ (span)

Therefore

𝑇𝑝 ≥ max(𝑇1/𝑝, 𝑇∞) = opt

With the greedy algorithm we can achieve

𝑇𝑝 ≤ 𝑇1
𝑝

+ 𝑇∞ ≤ 2 max(𝑇1/𝑝, 𝑇∞) = 2 × opt



Optimal and Approximate Scheduling
Recall

𝑇𝑝 ≥ 𝑇1/𝑝 (work law)
𝑇𝑝 ≥ 𝑇∞ (span)

Therefore

𝑇𝑝 ≥ max(𝑇1/𝑝, 𝑇∞) = opt

With the greedy algorithm we can achieve

𝑇𝑝 ≤ 𝑇1
𝑝

+ 𝑇∞ ≤ 2 max(𝑇1/𝑝, 𝑇∞) = 2 × opt



Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.

▶ At each complete step we do 𝑝 units of work.
▶ Every unit of work corresponds to one step of the serialization,

so 𝑘𝑝 ≤ 𝑇1.
▶ Therefore 𝑘 ≤ 𝑇1/𝑝



Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.
▶ At each complete step we do 𝑝 units of work.

▶ Every unit of work corresponds to one step of the serialization,
so 𝑘𝑝 ≤ 𝑇1.

▶ Therefore 𝑘 ≤ 𝑇1/𝑝



Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.
▶ At each complete step we do 𝑝 units of work.
▶ Every unit of work corresponds to one step of the serialization,

so 𝑘𝑝 ≤ 𝑇1.

▶ Therefore 𝑘 ≤ 𝑇1/𝑝



Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.
▶ At each complete step we do 𝑝 units of work.
▶ Every unit of work corresponds to one step of the serialization,

so 𝑘𝑝 ≤ 𝑇1.
▶ Therefore 𝑘 ≤ 𝑇1/𝑝



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.

▶ The ready queue of strands is
exactly the set of sources in 𝐺

▶ In incomplete step runs all sources
in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺

▶ In incomplete step runs all sources
in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)
▶ After an incomplete step, length of

longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)
▶ After an incomplete step, length of

longest path shrinks by 1
▶ There can be at most 𝑇∞ steps.



Parallel Slackness

parallel slackness = parallelism
𝑝

= 𝑇1
𝑝𝑇∞

speedup = 𝑇1
𝑇𝑝

≤ 𝑇1
𝑇∞

= 𝑝 × slackness

▶ If slackness < 1, speedup < 𝑝

▶ If slackness ≥ 1, linear speedup achievable for given number of
processors



Parallel Slackness

parallel slackness = parallelism
𝑝

= 𝑇1
𝑝𝑇∞

speedup = 𝑇1
𝑇𝑝

≤ 𝑇1
𝑇∞

= 𝑝 × slackness

▶ If slackness < 1, speedup < 𝑝
▶ If slackness ≥ 1, linear speedup achievable for given number of

processors



Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)



Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)



Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)



Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)



Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)



Contents

Dynamic Multithreaded Algorithms
Fork-Join Model
Span, Work, And Parallelism
Parallel Loops
Scheduling
Race Conditions



Race Conditions
Non-Determinism

▶ result varies from run to run
▶ sometimes OK (in certain randomized algorithms)
▶ mostly a bug.

Example

x = 0
parallel for i ← 1 to 2 do

x ← x + 1

▶ This is nondeterministic unless incrementing x is atomic



Race Conditions
Non-Determinism

▶ result varies from run to run
▶ sometimes OK (in certain randomized algorithms)
▶ mostly a bug.

Example

x = 0
parallel for i ← 1 to 2 do

x ← x + 1

▶ This is nondeterministic unless incrementing x is atomic



Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for both
loads to complete before either
store

▶ In practice there are various
synchronization strategies (locks,
etc…).

▶ Here we will insist that parallel
strands are independent



Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for both
loads to complete before either
store

▶ In practice there are various
synchronization strategies (locks,
etc…).

▶ Here we will insist that parallel
strands are independent



Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for both
loads to complete before either
store

▶ In practice there are various
synchronization strategies (locks,
etc…).

▶ Here we will insist that parallel
strands are independent



Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for both
loads to complete before either
store

▶ In practice there are various
synchronization strategies (locks,
etc…).

▶ Here we will insist that parallel
strands are independent



We can write bad code with spawn too

sum(i, j)
if (i>j)

return;
if (i==j)

x++;
else

m=(i+j)/2;
spawn sum(i,m);
sum(m+1,j);
sync;

▶ here we have the same
non-deterministic interleaving of
reading and writing 𝑥

▶ the style is a bit unnatural, in
particular we are not using the
return value of spawn at all.



Being more functional helps

sum(i, j)
if (i>j) return 0;
if (i==j) return 1;

m ← (i+j)/2;

left ← spawn sum(i,m);
right ← sum(m+1,j);
sync;
return left + right;

▶ each strand writes into
different variables

▶ sync is used as a barrier to
serialize



Being more functional helps

sum(i, j)
if (i>j) return 0;
if (i==j) return 1;

m ← (i+j)/2;

left ← spawn sum(i,m);
right ← sum(m+1,j);
sync;
return left + right;

▶ each strand writes into
different variables

▶ sync is used as a barrier to
serialize



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned
routines are evaluated in the
parent context

▶ but this isn’t enough to be
race free.

▶ which value 𝑥 is passed to
the second call of ’foo’
depends how long the first
one takes.



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned
routines are evaluated in the
parent context

▶ but this isn’t enough to be
race free.

▶ which value 𝑥 is passed to
the second call of ’foo’
depends how long the first
one takes.



Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned
routines are evaluated in the
parent context

▶ but this isn’t enough to be
race free.

▶ which value 𝑥 is passed to
the second call of ’foo’
depends how long the first
one takes.


	Dynamic Multithreaded Algorithms
	Fork-Join Model
	Span, Work, And Parallelism
	Parallel Loops
	Scheduling
	Race Conditions


