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Nested Parallelism
▶ Spawn a subroutine, carry on with other work.
▶ Similar to fork in POSIX.

Parallel Loop

▶ iterations of a for loop can execute in parallel.
▶ Like OpenMP



Cilk+

▶ The multithreaded model is based on Cilk+, available in the
latest versions of gcc.

▶ Programmer specifies possible paralellism
▶ Runtime system takes care of mapping to OS threads
▶ Cilk+ contains several more features than our model, e.g.

parallel vector and array operations.
▶ Similar primitives are available in java.util.concurrent
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Writing parallel (pseudo)-code
Keywords

parallel Run the loop (potentially) concurrently
spawn Run the procedure (potentially) concurrently

sync Wait for all spawned children to complete.

Serialization
▶ remove keywords from parallel code yields correct serial code
▶ Adding parallel keywords to correct serial code might break it

▶ missing sync
▶ loop iterations not independent
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Fibonacci Example
function Fib(𝑛)

if 𝑛 ≤ 1 then
return 𝑛

else
𝑥 = Fib(𝑛 − 1)
𝑦 = Fib(𝑛 − 2)

return 𝑥 + 𝑦
end if

end function

▶ Code in C, Java, Clojure and Racket available from http:
//www.cs.unb.ca/~bremner/teaching/cs3383/examples

http://www.cs.unb.ca/~bremner/teaching/cs3383/examples
http://www.cs.unb.ca/~bremner/teaching/cs3383/examples
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Computation DAG
Strands
Seq. inst. with no parallel, spawn, return from spawn, or sync.

function Fib(𝑛)
if 𝑛 ≤ 1 then ▷

return 𝑛
else

𝑥 = spawn Fib(𝑛 − 1)
𝑦 = Fib(𝑛 − 2) ▷
sync
return 𝑥 + 𝑦 ▷

end if
end function
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Work and Speedup

𝑇1 Work, sequential time.

𝑇𝑝 Time on 𝑝 processors.

Work Law

𝑇𝑝 ≥ 𝑇1/𝑝
speedup ∶= 𝑇1/𝑇𝑝 ≤ 𝑝
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Parallelism

𝑇𝑝 Time on 𝑝 processors.

𝑇∞ Span, time given
unlimited processors.

We could idle processors:

𝑇𝑝 ≥ 𝑇∞ (1)

Best possible speedup:

parallelism = 𝑇1/𝑇∞
≥ 𝑇1/𝑇𝑝 = speedup
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Span and Parallelism Example

Assume strands are unit cost.
▶ 𝑇1 = 17

▶ 𝑇∞ = 8
▶ Parallelism = 2.125 for this

input size.
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Composing span and work
A

A

B

B

A‖B

A +B

series 𝑇∞(𝐴 + 𝐵) = 𝑇∞(𝐴) + 𝑇∞(𝐵)

parallel 𝑇∞(𝐴‖𝐵) = max(𝑇∞(𝐴), 𝑇∞(𝐵))
series or parallel 𝑇1 = 𝑇1(𝐴) + 𝑇1(𝐵)
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Work of Parallel Fibonacci
Write 𝑇 (𝑛) for 𝑇1 on input 𝑛.

𝑇 (𝑛) = 𝑇 (𝑛−1)+𝑇 (𝑛−2)+Θ(1)

Let 𝜙 ≈ 1.62 be the solution to

𝜙2 = 𝜙 + 1

We can show by induction (twice)
that

𝑇 (𝑛) ∈ Θ(𝜙𝑛)

𝑇 (𝑛) ≤ 𝑎𝜙𝑛 − 𝑏

(I.H.)

Substitute the I.H.

𝑇 (𝑛) ≤ 𝑎(𝜙𝑛−1 + 𝜙𝑛−2) − 2𝑏 + Θ(1)

= 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 + (Θ(1) − 𝑏)

≤ 𝑎𝜙 + 1
𝜙2 𝜙𝑛 − 𝑏 for 𝑏 large

= 𝑎𝜙𝑛 − 𝑏
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Span and Parallelism of Fibonacci

𝑇∞(𝑛) = max(𝑇∞(𝑛 − 1), 𝑇∞(𝑛 − 2)) + Θ(1)
= 𝑇∞(𝑛 − 1) + Θ(1)

Transforming to sum, we get

𝑇∞ ∈ Θ(𝑛)

parallelism = 𝑇1(𝑛)
𝑇∞(𝑛)

= Θ (𝜙𝑛

𝑛
)

▶ So an inefficient way to compute Fibonacci, but very parallel
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Parallel Loops
parallel for 𝑖 = 1 to 𝑛 do

statement...
statement...

end for

▶ Run 𝑛 copies in parallel with local setting of 𝑖.

▶ Effectively 𝑛-way spawn
▶ Can be implemented with spawn and sync
▶ Span

𝑇∞(𝑛) = Θ(log 𝑛) + max
𝑖

𝑇∞(iteration i)
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Parallel Matrix-Vector product
To compute 𝑦 = 𝐴𝑥, in parallel

𝑦𝑖 =
𝑛

∑
𝑗=1

𝑎𝑖𝑗𝑥𝑗

function RowMult(A,x,y,i)
𝑦𝑖 = 0
for 𝑗 = 1 to 𝑛 do

𝑦𝑖 = 𝑦𝑖 + 𝑎𝑖𝑗𝑥𝑗
end for

end function

function Mat-Vec(𝐴, 𝑥, 𝑦)
Let 𝑛 = rows(𝐴)
parallel for 𝑖 = 1 to 𝑛 do

RowMult(A,x,y,i)
end for

end function

𝑇1(𝑛) ∈ Θ(𝑛2) (serialization)
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Divide and Conquer Matrix-Vector product

function MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑡)
if 𝑓 == 𝑡 then

RowMult(A,x,y,f)
else

𝑚 = ⌊(𝑓 + 𝑡)/2⌋
spawn MVDC(𝐴, 𝑥, 𝑦, 𝑓, 𝑚)
MVDC(𝐴, 𝑥, 𝑦, 𝑚 + 1, 𝑡)
sync

end if
end function
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end function

▶ 𝑇∞(𝑛) = Θ(log 𝑛)
(binary tree)

▶ Θ(𝑛) leaves (one per
row)

▶ Θ(𝑛) interior nodes
(binary tree)

▶ 𝑇1(𝑛) = Θ(𝑛2)
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Scheduling
Scheduling Problem

Abstractly Mapping threads to processors
Pragmatically Mapping logical threads to a thread pool.

Ideal Scheduler
On-Line No advance knowledge of when threads will spawn or

complete.
Distributed No central controller.

▶ to simplify analysis, we relax the second condition
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A greedy centralized scheduler
Maintain a ready queue of strands ready to run.

Scheduling Step

Complete Step If ≥ 𝑝 (# processors) strands are ready, assign 𝑝
strands to processors.

Incomplete Step Otherwise, assign all waiting strands to processors

▶ To simplify analysis, split any non-unit strands into a chain of
unit strands

▶ Therefore, after one time step, we schedule again.
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Optimal and Approximate Scheduling
Recall

𝑇𝑝 ≥ 𝑇1/𝑝 (work law)
𝑇𝑝 ≥ 𝑇∞ (span)

Therefore

𝑇𝑝 ≥ max(𝑇1/𝑝, 𝑇∞) = opt

With the greedy algorithm we can achieve

𝑇𝑝 ≤ 𝑇1
𝑝

+ 𝑇∞ ≤ 2 max(𝑇1/𝑝, 𝑇∞) = 2 × opt
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Counting Complete Steps

▶ Let 𝑘 be the number of complete steps.

▶ At each complete step we do 𝑝 units of work.
▶ Every unit of work corresponds to one step of the serialization,

so 𝑘𝑝 ≤ 𝑇1.
▶ Therefore 𝑘 ≤ 𝑇1/𝑝
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Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.

▶ The ready queue of strands is
exactly the set of sources in 𝐺

▶ In incomplete step runs all sources
in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺

▶ In incomplete step runs all sources
in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺

▶ Every longest path starts at a
source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)

▶ After an incomplete step, length of
longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)
▶ After an incomplete step, length of

longest path shrinks by 1

▶ There can be at most 𝑇∞ steps.



Counting Incomplete Steps
▶ Let 𝐺 be the DAG of remaining

strands.
▶ The ready queue of strands is

exactly the set of sources in 𝐺
▶ In incomplete step runs all sources

in 𝐺
▶ Every longest path starts at a

source (otherwise, extend)
▶ After an incomplete step, length of

longest path shrinks by 1
▶ There can be at most 𝑇∞ steps.



Parallel Slackness

parallel slackness = parallelism
𝑝

= 𝑇1
𝑝𝑇∞

speedup = 𝑇1
𝑇𝑝

≤ 𝑇1
𝑇∞

= 𝑝 × slackness

▶ If slackness < 1, speedup < 𝑝

▶ If slackness ≥ 1, linear speedup achievable for given number of
processors
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Slackness and Scheduling
slackness ∶= 𝑇1

𝑝 × 𝑇∞

Theorem
For sufficiently large slackness,
the greed scheduler approaches
time 𝑇1/𝑝.

Suppose

𝑇1
𝑝 × 𝑇∞

≥ 𝑐

Then
𝑇∞ ≤ 𝑇1

𝑐𝑝
(2)

Recall that with the greedy
scheduler,

𝑇𝑝 ≤ (𝑇1
𝑝

+ 𝑇∞)

Substituting (2), we have

𝑇𝑝 ≤ 𝑇1
𝑝

(1 + 1
𝑐
)
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Race Conditions
Non-Determinism

▶ result varies from run to run
▶ sometimes OK (in certain randomized algorithms)
▶ mostly a bug.

Example

x = 0
parallel for i ← 1 to 2 do

x ← x + 1

▶ This is nondeterministic unless incrementing x is atomic
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Racy execution

𝑥 = 0

𝑟1 ← 𝑥𝑟2 ← 𝑥

incr 𝑟1incr 𝑟2

𝑥 ← 𝑟1𝑥 ← 𝑟2

print 𝑥

▶ all possible topological sorts are
valid execution orders

▶ In particular it’s not hard for both
loads to complete before either
store

▶ In practice there are various
synchronization strategies (locks,
etc…).

▶ Here we will insist that parallel
strands are independent
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We can write bad code with spawn too

sum(i, j)
if (i>j)

return;
if (i==j)

x++;
else

m=(i+j)/2;
spawn sum(i,m);
sum(m+1,j);
sync;

▶ here we have the same
non-deterministic interleaving of
reading and writing 𝑥

▶ the style is a bit unnatural, in
particular we are not using the
return value of spawn at all.



Being more functional helps

sum(i, j)
if (i>j) return 0;
if (i==j) return 1;

m ← (i+j)/2;

left ← spawn sum(i,m);
right ← sum(m+1,j);
sync;
return left + right;

▶ each strand writes into
different variables

▶ sync is used as a barrier to
serialize
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Single Writer races

x ← spawn foo(x)
y ← foo(x)
sync

▶ arguments to spawned
routines are evaluated in the
parent context

▶ but this isn’t enough to be
race free.

▶ which value 𝑥 is passed to
the second call of ’foo’
depends how long the first
one takes.
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