CS3383 Unit 5.2: Travelling Salesperson Problem

David Bremner

March 31, 2018

Outline

Combinatorial Search

Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Contents

Combinatorial Search Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

Travelling Salesperson Problem

TSP

Given
$$G = (V, E)$$

Find a shortest tour that visits all nodes

Brute Force

Travelling Salesperson Problem

TSP

Given
$$G = (V, E)$$

Find a shortest tour that visits all nodes

Brute Force

Each one takes $\Theta(n)$ time to test

Travelling Salesperson Problem

TSP

Given
$$G = (V, E)$$

Find a shortest tour that visits all nodes

Brute Force

- \blacktriangleright *n*! different tours
- Each one takes $\Theta(n)$ time to test
- ▶ Using Stirling's approximation for *n*!

$$n\cdot n!\in \Theta(n^{n+\frac{3}{2}}e^{-n})$$

Contents

Combinatorial Search Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

Subproblems for Dynamic Programming

C(S,j) length of shortest path starting at 1, visiting all nodes in S and ending at j.

Recurrence

$$C(S,j) = \min_{i \in S \smallsetminus \{j\}} C(S \smallsetminus \{j\},i) + d_{ij}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Dynamic Programming for TSP

$$\begin{array}{l} C[\{1\},1] \leftarrow 0 \\ \text{for s} = 2 \ \text{to n do} \\ \text{for } \forall \ \text{subsets S of size } s \ \text{do} \\ C[S,1] \leftarrow \infty \\ \text{for } j \in S \smallsetminus \{1\} \ \text{do} \\ C[S,j] \leftarrow \min_{i \in S \smallsetminus \{j\}} C[S \smallsetminus \{j\},i] + d_{ij} \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{return } \min_{j} C[V,j] + d_{j1} \end{array}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Contents

Combinatorial Search

Travelling Salesperson problem Dynamic Programming for TSP Branch and Bound

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Branch and Bound

In general dynamic programming is too slow (not surprising since it's exact)

In practice people use an enhanced backtracking method called branch and bound.

lower bounds

- Suppose we are minimizing some function f(·).
 We need some function lowerbound such that
 lowerbound(P_i) ≤ f(P_i) for all subproblems P_i
 - \blacktriangleright lowerbound is faster to compute than f

Branch and Bound in General

```
def BranchAndBound (P_0):
       S \leftarrow \{P_0\}
       best \leftarrow \infty
       while S \neq \emptyset:
              (P, S) \leftarrow \mathsf{pop}(S)
              for P_i \in expand(P):
                      if test (P_i) = SUCCESS:
                             best \leftarrow \min(\text{best}, f(P_i))
                      elif lowerbound(P_i) < \text{best}:
                             S \leftarrow S \cup \{P_i\}
       return
                    best
```

Subproblems for B&B TSP

$\begin{array}{l} [a,S,b] \mbox{ path from } a \mbox{ to } b \mbox{ passing through } S \\ \mbox{ completed by cheapest path from } b \mbox{ to } a \mbox{ using } V\smallsetminus S. \\ P_0 \end{tabular} \left[a, \{\end{tabular}\}, a\right] \end{array}$

Subproblems for B&B TSP

$$[a, S, b]$$
 path from a to b passing through S
completed by cheapest path from b to a using $V \setminus S$.
 P_0 $[a, \{a\}, a]$

Expand

$$\mathsf{expand}([a,S,b]) = \{ \, [a,S \cup \{ \, x \, \}, x] \mid x \in V \smallsetminus S \, \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We need to connect

$$\blacktriangleright a \text{ to some } a' \in V \setminus S$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We need to connect

• a to some $a' \in V \setminus S$ • b to some $b' \in V \setminus S$

We need to connect

We need to connect

- a to some $a' \in V \setminus S$
- $\blacktriangleright b$ to some $b' \in V \smallsetminus S$
- ▶ a' to b' using all nodes of $V \setminus S$.
- The last one is a (very special) spanning tree of $V \ge S$.