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Travelling Salesperson Problem
TSP

Given 𝐺 = (𝑉 , 𝐸)
Find a shortest tour that visits all nodes.

Brute Force
▶ 𝑛! different tours

▶ Each one takes Θ(𝑛) time to test
▶ Using Stirling’s approximation for 𝑛!

𝑛 · 𝑛! ∈ Θ(𝑛𝑛+3
2 𝑒−𝑛)
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Subproblems for Dynamic Programming

𝐶(𝑆, 𝑗) length of shortest path starting at 1, visiting all nodes in
𝑆 and ending at 𝑗.

Recurrence
𝐶(𝑆, 𝑗) = min

𝑖∈𝑆∖{ 𝑗 }
𝐶(𝑆 ∖ { 𝑗 }, 𝑖) + 𝑑𝑖𝑗



Dynamic Programming for TSP

𝐶[{ 1 }, 1] ← 0
f o r s = 2 to n do

fo r ∀ s u b s e t s S o f s i z e 𝑠 do
𝐶[𝑆, 1] ← ∞
f o r 𝑗 ∈ 𝑆 ∖ { 1 } do

𝐶[𝑆, 𝑗] ← min𝑖∈𝑆∖{ 𝑗 } 𝐶[𝑆 ∖ { 𝑗 }, 𝑖] + 𝑑𝑖𝑗
end

end
end
return min𝑗 𝐶[𝑉 , 𝑗] + 𝑑𝑗1



Analysis

▶ 𝑛 · 2𝑛 subproblems

▶ Each takes linear time
▶ Total 𝑂(𝑛22𝑛)
▶ Comparison with brute force (board)
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Branch and Bound
▶ In general dynamic programming is too slow (not surprising

since it’s exact)

▶ In practice people use an enhanced backtracking method called
branch and bound.

lower bounds
▶ Suppose we are minimizing some function 𝑓(·).
▶ We need some function lowerbound such that

▶ lowerbound(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all subproblems 𝑃𝑖
▶ lowerbound is faster to compute than 𝑓
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Branch and Bound in General
def BranchAndBound (𝑃0 ) :

𝑆 ← { 𝑃0 }
best ← ∞
whi le 𝑆 ≠ ∅ :

(𝑃 , 𝑆) ← pop(𝑆)
f o r 𝑃𝑖 ∈ expand(𝑃 ) :

i f t e s t (𝑃𝑖 ) = SUCCESS :
b e s t ← min(best, 𝑓(𝑃𝑖))

e l i f lowerbound(𝑃𝑖) < best :
𝑆 ← 𝑆 ∪ { 𝑃𝑖 }

return b e s t



Subproblems for B&B TSP

[𝑎, 𝑆, 𝑏] path from 𝑎 to 𝑏 passing through 𝑆
completed by cheapest path from 𝑏 to 𝑎 using 𝑉 ∖ 𝑆.

𝑃0 [𝑎, { 𝑎 }, 𝑎]

Expand

expand([𝑎, 𝑆, 𝑏]) = { [𝑎, 𝑆 ∪ { 𝑥 }, 𝑥] ∣ 𝑥 ∈ 𝑉 ∖ 𝑆 }
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Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆

▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ The last one is a (very special) spanning tree of 𝑉 ∖ 𝑆.
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