
CS3383 Unit 5.2: Travelling Salesperson
Problem

David Bremner

March 31, 2018



Outline

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound



Contents

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound



Travelling Salesperson Problem
TSP

Given 𝐺 = (𝑉 , 𝐸)
Find a shortest tour that visits all nodes.

Brute Force
▶ 𝑛! different tours

▶ Each one takes Θ(𝑛) time to test
▶ Using Stirling’s approximation for 𝑛!

𝑛 · 𝑛! ∈ Θ(𝑛𝑛+3
2 𝑒−𝑛)



Travelling Salesperson Problem
TSP

Given 𝐺 = (𝑉 , 𝐸)
Find a shortest tour that visits all nodes.

Brute Force
▶ 𝑛! different tours
▶ Each one takes Θ(𝑛) time to test

▶ Using Stirling’s approximation for 𝑛!

𝑛 · 𝑛! ∈ Θ(𝑛𝑛+3
2 𝑒−𝑛)



Travelling Salesperson Problem
TSP

Given 𝐺 = (𝑉 , 𝐸)
Find a shortest tour that visits all nodes.

Brute Force
▶ 𝑛! different tours
▶ Each one takes Θ(𝑛) time to test
▶ Using Stirling’s approximation for 𝑛!

𝑛 · 𝑛! ∈ Θ(𝑛𝑛+3
2 𝑒−𝑛)



Contents

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound



Subproblems for Dynamic Programming

𝐶(𝑆, 𝑗) length of shortest path starting at 1, visiting all nodes in
𝑆 and ending at 𝑗.

Recurrence
𝐶(𝑆, 𝑗) = min

𝑖∈𝑆∖{ 𝑗 }
𝐶(𝑆 ∖ { 𝑗 }, 𝑖) + 𝑑𝑖𝑗



Dynamic Programming for TSP

𝐶[{ 1 }, 1] ← 0
f o r s = 2 to n do

fo r ∀ s u b s e t s S o f s i z e 𝑠 do
𝐶[𝑆, 1] ← ∞
f o r 𝑗 ∈ 𝑆 ∖ { 1 } do

𝐶[𝑆, 𝑗] ← min𝑖∈𝑆∖{ 𝑗 } 𝐶[𝑆 ∖ { 𝑗 }, 𝑖] + 𝑑𝑖𝑗
end

end
end
return min𝑗 𝐶[𝑉 , 𝑗] + 𝑑𝑗1



Analysis

▶ 𝑛 · 2𝑛 subproblems

▶ Each takes linear time
▶ Total 𝑂(𝑛22𝑛)
▶ Comparison with brute force (board)



Analysis

▶ 𝑛 · 2𝑛 subproblems
▶ Each takes linear time

▶ Total 𝑂(𝑛22𝑛)
▶ Comparison with brute force (board)



Analysis

▶ 𝑛 · 2𝑛 subproblems
▶ Each takes linear time
▶ Total 𝑂(𝑛22𝑛)

▶ Comparison with brute force (board)



Analysis

▶ 𝑛 · 2𝑛 subproblems
▶ Each takes linear time
▶ Total 𝑂(𝑛22𝑛)
▶ Comparison with brute force (board)



Contents

Combinatorial Search
Travelling Salesperson problem
Dynamic Programming for TSP
Branch and Bound



Branch and Bound
▶ In general dynamic programming is too slow (not surprising

since it’s exact)

▶ In practice people use an enhanced backtracking method called
branch and bound.

lower bounds
▶ Suppose we are minimizing some function 𝑓(·).
▶ We need some function lowerbound such that

▶ lowerbound(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all subproblems 𝑃𝑖
▶ lowerbound is faster to compute than 𝑓



Branch and Bound
▶ In general dynamic programming is too slow (not surprising

since it’s exact)
▶ In practice people use an enhanced backtracking method called

branch and bound.

lower bounds
▶ Suppose we are minimizing some function 𝑓(·).
▶ We need some function lowerbound such that

▶ lowerbound(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all subproblems 𝑃𝑖
▶ lowerbound is faster to compute than 𝑓



Branch and Bound
▶ In general dynamic programming is too slow (not surprising

since it’s exact)
▶ In practice people use an enhanced backtracking method called

branch and bound.

lower bounds
▶ Suppose we are minimizing some function 𝑓(·).
▶ We need some function lowerbound such that

▶ lowerbound(𝑃𝑖) ≤ 𝑓(𝑃𝑖) for all subproblems 𝑃𝑖
▶ lowerbound is faster to compute than 𝑓



Branch and Bound in General
def BranchAndBound (𝑃0 ) :

𝑆 ← { 𝑃0 }
best ← ∞
whi le 𝑆 ≠ ∅ :

(𝑃 , 𝑆) ← pop(𝑆)
f o r 𝑃𝑖 ∈ expand(𝑃 ) :

i f t e s t (𝑃𝑖 ) = SUCCESS :
b e s t ← min(best, 𝑓(𝑃𝑖))

e l i f lowerbound(𝑃𝑖) < best :
𝑆 ← 𝑆 ∪ { 𝑃𝑖 }

return b e s t



Subproblems for B&B TSP

[𝑎, 𝑆, 𝑏] path from 𝑎 to 𝑏 passing through 𝑆
completed by cheapest path from 𝑏 to 𝑎 using 𝑉 ∖ 𝑆.

𝑃0 [𝑎, { 𝑎 }, 𝑎]

Expand

expand([𝑎, 𝑆, 𝑏]) = { [𝑎, 𝑆 ∪ { 𝑥 }, 𝑥] ∣ 𝑥 ∈ 𝑉 ∖ 𝑆 }



Subproblems for B&B TSP

[𝑎, 𝑆, 𝑏] path from 𝑎 to 𝑏 passing through 𝑆
completed by cheapest path from 𝑏 to 𝑎 using 𝑉 ∖ 𝑆.

𝑃0 [𝑎, { 𝑎 }, 𝑎]

Expand

expand([𝑎, 𝑆, 𝑏]) = { [𝑎, 𝑆 ∪ { 𝑥 }, 𝑥] ∣ 𝑥 ∈ 𝑉 ∖ 𝑆 }



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆

▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ The last one is a (very special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆

▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ The last one is a (very special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.

▶ The last one is a (very special) spanning tree of 𝑉 ∖ 𝑆.



Lower bounds from MST

S V \ Sa

b

a′

b′

We need to connect
▶ 𝑎 to some 𝑎′ ∈ 𝑉 ∖ 𝑆
▶ 𝑏 to some 𝑏′ ∈ 𝑉 ∖ 𝑆
▶ 𝑎′ to 𝑏′ using all nodes of 𝑉 ∖ 𝑆.
▶ The last one is a (very special) spanning tree of 𝑉 ∖ 𝑆.


	Combinatorial Search
	Travelling Salesperson problem
	Dynamic Programming for TSP
	Branch and Bound


